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Abstract

This paper introduces an order on types by which the so-called mono-

tone comparative statics is valid in all supermodular games with incomplete

information. We fully characterize this order in terms of what we call the

common certainty of optimism. We say that type t
′
i is higher than type ti

in the order of the common certainty of optimism if t
′
i is more optimistic

about state than ti; t
′
i is more optimistic that all players are more opti-

mistic about state than ti; and so on ad infinitum. First, we show that

whenever the common certainty of optimism holds, monotone comparative

statics holds in all supermodular games. Second, we show the converse. We

construct an “optimism-elicitation game” as a single supermodular game

with the property that whenever the common certainty of optimism fails,

monotone comparative statics fails as well.
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1 Introduction

In many economic problems, we are often interested in studying the effects of

changes in certain variables (“parameters”) on the behaviors of economic agents.

This is well known as comparative statics. There are numerous examples showing

that the comparative statics analysis is ubiquitous in economics, such as in the

analyses of bidding strategies in auctions, portfolio choices in financial markets,

optimal taxation policy, and so on. The literature on supermodular games shows

that, given certain conditions1 on the way the parameters enter the players’ payoff

functions, monotone changes in those parameters affect the players’ equilibria in a

monotonic way, a property called monotone comparative statics.

Although many papers in the literature study supermodular games with com-

plete information, in practice, it is often the case that players do not observe some

of the parameters of the game they play, or they have different information about

them. In this paper, we study monotone comparative statics in supermodular

games with such incomplete information. Athey (2001, 2002), McAdams (2003),

Van Zandt (2010), and Van Zandt and Vives (2007) consider supermodular games

with incomplete information. Often their main motivation is existence of equilib-

ria (with nice properties such as in pure and monotone strategies), while our main

focus is purely on monotone comparative statics. Also, they consider different as-

sumptions with respect to the players’ information structure, reflecting different

levels of generality in this respect. In this sense, the setting in our paper is clos-

est to that of Van Zandt and Vives (2007) where no restriction is made on each

player’s belief and higher-order beliefs (except for certain topological and order

1In particular, certain forms of complementarity (such as supermodularity, increasing differ-

ence, and single-crossing conditions) among economic variables and players’ actions are shown

to be important. See, for example, Milgrom and Roberts (1990), Milgrom and Shannon (1994),

Topkis (1998), and Vives (1990).
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structures). Specifically, we allow not only standard common-prior type spaces,

but also non-common-prior cases where the players are allowed to enjoy arbitrary

heterogeneous beliefs and higher-order beliefs. Indeed, in our setup, any type in

the universal type space (and hence any belief hierarchy) is allowed.2

Including non-common-prior environments in our analysis is not just for tech-

nical generality. In some economic problems, it is well recognized that assuming

a common prior may be too demanding. For example, the cerebrated no-trade

theorem (Milgrom and Stokey (1982)) shows that, in certain trading contexts with

common-value assets and a common prior,3 all equilibria exhibit no trading, even

though, in reality, many traders appear to be involved in speculative trading. As

another example, the behavioral economics literature propose a number of ways

real economic agents “wrongly” process information and evidence for them.4

With strategic interaction, such heterogeneity in (high-order) beliefs makes

comparative statics much more subtle. Even if a trader becomes “more optimistic”

about the fundamental, which makes him eager to “trade more” ceteris paribus, he

may not want to do so if he believes that the other traders’ beliefs change in the way

that his “trading more” would hurt him. Our result could be useful in the analysis

of such situations. Indeed, our result suggests that, even in such heterogenous-

belief environments, there is a sense in which monotone comparative statics can

still be conducted. For example, imagine that investors agree that certain news

is “good news” for a startup even though they do not agree on “how good the

news is” (because they may believe different underlying distributions). We show

that this qualitative agreement may be sufficient to drive up the stock price of this

startup.5

To explain our main idea more formally, imagine an incomplete information

supermodular game with a parameter space Θ. Each player’s interim belief is

2See Mertens and Zamir (1985) and Brandenberger and Dekel (1993).
3In fact, their no-trade result holds with concordant beliefs, and a common-prior environment

is a special case.
4For example, see the cursed equilibrium of Eyster and Rabin (2005) and the analogy-based

expectation equilibrium of Jehiel (2005).
5In Section 7, we also consider a trading environment where it is common knowledge that the

asset has pure common value, but with heterogenous (high-order) beliefs about the exact value.

Monotone comparative statics for the size / possibility of trade is conducted with respect to the

size of the belief divergence between players.
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identified by his type, which induces his belief hierarchy, that is, his first-order

belief over Θ, his second-order belief (i.e., the joint belief over Θ and the other

players’ first-order beliefs), and so on, ad infinitum. We order two types of each

player based on their belief hierarchies. Namely, we say that type t̂i of player i is

higher than ti in the sense of common certainty of optimism (henceforth, CCO)

if t̂i’s first-order belief on Θ stochastically dominates ti’s first-order belief; t̂i’s

second-order belief (jointly about Θ and the first-order beliefs of the other players)

stochastically dominates ti’s second-order belief; and so on ad infinitum. That is, t̂i

is more “optimistic” about the realization of θ ∈ Θ than ti; t̂i is more “optimistic”

about the “optimism” of the other players, and so on.

In Theorem 1, we show that the common certainty of optimism is sufficient for

monotone comparative statics to hold in all supermodular games. More specifically,

we show that if type t
′
i is higher than type ti in the CCO sense, then, t

′
i’s action

in the least (greatest) equilibrium is higher than ti’s action in the least (greatest)

equilibrium in all supermodular games.6 The key observation for the proof of

this theorem is that the least and greatest equilibria of an incomplete-information

supermodular game (under certain regularity conditions) coincide with the game’s

least and greatest interim correlated rationalizability (henceforce, ICR) of Dekel,

Fudenberg, and Morris (2007), which is fully identified by his belief hierarchy.

Of course, different orders on these types may be induced if different games are

considered. Theorem 1 establishes that our CCO order is the “coarsest” order of

types such that, if a type of a player is higher than another in this order, then the

former plays a higher (least and greatest) equilibrium action than the latter in any

supermodular game.7

Theorem 2 shows its converse. Namely, we construct a supermodular game,

which we refer to as an “optimism-elicitation game” such that, if type t
′
i is not

higher than ti in the CCO sense, t
′
i’s action in the least (greatest) equilibrium of

6The set of equilibria in supermodular games is a complete lattice, and in particular, admits

the least and greatest equilibria. Establishing monotone comparative statics for those extremal

equilibria, monotone comparative statics for the set of equilibria (in an appropriate set-order

sense) is established.
7Of course, this may not be the only interesting order. For example, one may have a specific

supermodular game in mind, and desire to conduct comparative statics only in this game. Al-

though we provide some preliminary argument on this issue in Section 6, we leave this for our

future research.
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this game is not higher than ti’s action in the least (greatest) equilibrium. In

other words, the CCO order and monotone comparative statics in this game are

equivalent. The construction is reminiscent of scoring rules in belief-elicitation

procedures.8 However, there are some important differences. First, although a

scoring rule is usually constructed to elicit a single decision maker’s belief about

an uncertain variable, our game is to elicit multiple players’ belief hierarchies.

Second, because our goal is to construct a supermodular game, the action space of

each player cannot be the space of all possible belief hierarchies, because it then

does not constitute a lattice (with respect to first-order stochastic dominance). In

this sense, our construction cannot be a straightforward extension of a standard

(single-player) scoring rule to multiple players. Indeed, the action space of our

game is based on the set of capacities,9 in order to guarantee the (complete) lattice

structure of the action space. A further complication arises with multiple players,

because we must consider its “(infinitely-)higher-order” version. The key to our

construction is a careful choice of a topological structure for the set of capacities.10

The condition we identify is purely based on the players’ first and higher-order

beliefs with respect to the state variables, and does not depend on which game we

consider, as long as the game is supermodular. In this sense, our results may be

useful in the context of mechanism design, where a game is not fixed but rather

endogensouly constructed. The reader is referred to Mathevet (2010) for the study

of designing supermodular mechanisms, motivated by the desirable features of

supermodular games in terms of learning and bounded rationality in certain senses.

We consider the application of our paper to mechanism design as one promissing

direction of our future work.11

8Savage (1971) proposes the proper scoring rule to elicit an individual’s belief.
9A capacity can be interpreted as a non-additive (hence not-necessarily probabilistic) belief.

See Schmeideler (1986, 1989) for its application to decision theory.
10For example, a weak∗-topology, which is standard to topologize the set of probability mea-

sures, is not applicable (at least in a straightforward manner) to topologize the set of capacities.

Instead, our topology (or more specifically, a norm) is such that the action space is made isomor-

phic to a closed subset of a Hilbert cube, and hence a compact metric space. This nice structure

is exploited to prove Theorem 2.
11For example, our result shows that one type of a player must play a higher action than

another type of that player in any supermodular game. Viewing a game as a mechanism that

implements certain allocation rule, such a condition may imply natural monotonicity structures

on implementable social choice rules.
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As briefly mentioned above, this paper is closest to Van Zandt and Vives (2007)

who also investigate supermodular games with incomplete information. Van Zandt

and Vives consider an implicit (Harsanyi) type space endowed with an exogeneously

given partial order and then introduce each type’s belief map that is consistent

with this exogenous order. They establish the existence of the least and greatest

equilibria that are monotone in types as well as the following monotone comparative

statics result: the greatest and least equilibria are higher if there is a first-order

stochastic dominant shift in the interim belief. Naturally, our CCO order and their

exogenous order structure are quite related, discussed in detail in Section 6.

At a more abstract level, the motivation of our paper is closely related to

Dekel, Fudenberg, and Morris (2006) and Chen, Di Tillio, Faingold, and Xiong

(2010, 2016). Based on the observation that the interim correlated rationalizability

(ICR) correspondence is not continuous with respect to the product topology on

the universal type space,12 Dekel, Fudenberg, and Morris (2006) introduce what

they call the strategic topology, and show that this is the coarsest possible topology

with respect to which the ICR correspondence is continuous (i.e. both upper

and lower-hemi continuous) in all finite games. Chen, Di Tillio, Faingold, and

Xiong (2010, 2016) further investigate the strategic topology based on ICR. They

also propose the uniform strategic topology, which is described directly based on

belief hierarchies, and study its relationship with the strategic topology. In this

sense, Dekel, Fudenberg, and Morris (2006) and Chen, Di Tillio, Faingold, and

Xiong (2010, 2016) establish “economically meaningful” topologies on the universal

type space, thereby enhances a better understanding of this seemingly complicated

mathematical object. Quite analogously, our attempt is to introduce a partial

order over the universal type space (rather than topologies) that is “economically

meaningful” in the sense that this order fully characterizes monotone comparative

statics in all supermodular games.

The rest of the paper is organized as follows. In Section 2, we introduce the

basic setup and definitions and identify the least and greatest equilibria via the

iterated elimination of never best responses. Section 3 establishes the common

certainty of optimism (CCO) as a sufficient condition for monotone comparative

statics to hold in all supermodular games. In Section 4, by focusing on the single-

12More specifically, it satisfies upper-hemi continuity but not necessarily lower-hemi continuity.
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person decision making problem, we show that the CCO order is also necessary

for monotone comparative statics to hold in all supermodular games. We establish

this by constructing a single supermodular game. In Section 5, we extend this

result to the multi-player situation. Section 6 provides a detailed discussion about

the relationship with Van Zandt and Vives (2007). In Section 7, we provide an

application of our CCO order on types in the context of the no-trade result of

Milgrom and Stokey (1982). Section 8 concludes the paper and the Appendix

(Section 9) contains all the omitted proofs from the main body of the paper.

2 Preliminaries

We shall prepare the preliminary materials needed throughout the paper. Section

2.1 introduces first-order stochastic dominance. Section 2.2 introduces belief hi-

erarchies and defines the concept of common certainty of optimism. We defines

supermodular games in Section 2.3 and their Bayesian equilibria in Section 2.4. It

is well-known that, in a supermodular game, the set of Bayesian equilibria has a

lattice structure, and hence, admits the least and greatest equilibria. As is stan-

dard in the literature, monotone comparative statics are about those extremal

equilibria.

2.1 First Order Stochastic Dominance

Let X be a separable, complete metric space.13 Consider two Borel probability

measures, b and b′, on X. Let ∆(X) denote the set of all Borel-measurable prob-

ability distributions over X endowed with the weak∗-topology. In Section 5, we

introduce capacities (non-additive measures) over X endowed with a finer topol-

ogy than the weak∗-topology. In such a case, we avoid the use of the notation

like ∆(X), which usually means the set of all probability distributions. We say

that a partial order � on X is closed if, for any pair of sequences {xn}, {yn} ∈ X,

whenever xn � yn for each n and xn → x, and yn → y as n→∞, we have x � y.

We endow X with such a closed partial order �.

We say that b
′

first-order stochastically dominates b if, for any increasing, mea-

13Examples include any finite set, [0, 1], Rd, and Lp(Rd).
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surable, and bounded function f : X → R,∫
x

f(x)db
′ ≥

∫
x

f(x)db,

and b
′

strictly first-order stochastically dominates b if b
′

first-order stochastically

dominates b and, in addition, the inequality is strict at least for some f that is

increasing, measurable, and bounded.

Under the following two assumptions on X and �, we have an alternative

representation of first-order stochastic dominance, which is used in Section 4 and

5. We believe that they are mild requirements. For example, a Euclidean space

with the usual component-wise partial order satisfies them.

Assumption 1. There exists a countable dense subset X0 ⊆ X for which for each

x ∈ X and ε > 0, there is y ∈ X0 such that y ≥ x and y ∈ Bε(x).14

Because X is separable, it has a countable dense subset. But our assumption

requires an additional condition, which is a sort of “local non-satiation”.15

To introduce the second assumption, for each x ∈ X, let up(x) ⊆ X be the

smallest upper set that contains x, i.e., up(x) = {y ∈ X|y ≥ x}. For each Y ⊆ X,

let up(Y ) ⊆ X be the smallest upper set that contains Y , i.e., up(Y ) =
⋃
y∈Y up(y).

The second assumption says that the upper-set correspondence is continuous.

Assumption 2. For each Y ⊆ X and ε > 0, there exists δ(Y, ε) > 0 such that,

for any Z ⊆ X with d(Y, Z) < δ(Y, ε),16 we have d(up(Y ), up(Z)) < ε.

For each Y ⊆ X, let clup(Y ) denote the closure of up(Y ). The next result

shows that, under the assumptions above, we can show that we do not need to

check all increasing, measurable, and bounded functions to determine whether b

first-order stochastically dominates b′. We only need to check a countable subclass

14Bε(x) denotes the open ball around x with radius ε.
15In their analysis of revealed preference theory, Chambers, Echenique, and Lambert (2017)

use the countable order property, which is similar to our Assumption 1. See also Proposition 13

of their paper for two prominent cases where the countable order property is satisfied.
16By abuse of notation, we let

d(Y,Z) = max{sup
y∈Y

inf
z∈Z

d(y, z), sup
z∈Z

inf
y∈Y

d(y, z)}

denote the Hausdorff metric between Y, Z ⊆ X.
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of “clup” sets. The proof is in the appendix, but it is worth mentioning that the

proposition (in particular, Lemma 1 as its intermediate step) requires that X be

Polish (i.e., separable and completely metrizable) and � be a closed partial order.

Proposition 1. Let b, b
′ ∈ ∆(X). b (first-order) stochastically dominates b′ if

and only if, for any Y0 ⊆ X0, b(clup(Y0)) ≥ b′(clup(Y0)). In addition, b strictly

stochastically dominates b′ if and only if the inequality holds for any Y0 ⊆ X0 and

it is strict at least for some Y0 ⊆ X0.

Proof. First, we state the following intermediate result, dues to Kamae, Krengel,

and O’Brien (1977). Its proof is omitted.

Lemma 1. Let b, b
′ ∈ ∆(X). b

′
first-order stochastically dominates b (denoted

b
′ �SD b) if and only if b

′
(Y ) ≥ b(Y ) for any Y ∈ U(X). In this case, we say

that b
′

is more optimistic than b. In addition, b
′
strictly first-order stochastically

dominates b if and only if b
′ �SD b and b

′
(Y ) > b(Y ) for some Y ∈ U(X).

The result states that it is enough to consider all the closed upper sets (instead

of all the increasing, measurable, and bounded functions) to establish a first-order

stochastic dominance relation (and its strict variant) between two probability mea-

sures. We relegate the rest of the proof to the Appendix.

2.2 Belief Hierarchies

Throughout this paper, let I denote the set of (finitely many) players, and let Θ

denote the payoff-relevant state space. We assume that Θ is a separable, complete

metric space, endowed with a closed partial order �Θ, and that Assumption 1 and

2 are satisfied for X = Θ and �=�Θ, where the corresponding countable dense

subset is denoted by Θ0.17

It is often the case in practice that the players only partially and asymmetrically

observe θ before they play a particular game. We represent their beliefs over θ and

over each other’s beliefs by types. Let (Ti,Ti, πi)i∈I be a type space where each Ti

represents player i’s set of types; each Ti represents a sigma-algebra over Ti and

T and T−i represent the product sigma-algebra over T and T−i, respectively; and

17To be clear, these assumptions are not used for the results in Section 3, but used in Section

4 and 5.
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a Ti-measurable πi : Ti → ∆(Θ × T−i) is player i’s interim belief map about the

parameter and the other players’ types.

Observe that, given any type space (Ti,Ti, πi)i∈I , we can deduce the belief

hierarchy of each type ti of each player i as follows. Define Z1
j = ∆(Θ) for j ∈ I,

Z1
−i =

∏
j 6=i Z

1
j , and inductively for each k ≥ 1, define Zk+1

j = ∆(Θ×Z1
−j×· · ·×Zk

−j)

for j ∈ I, and Zk+1
−i =

∏
j 6=i Z

k+1
j . Then, (i) his first-order belief is defined by

h1
i (ti) = margΘπi(ti) ∈ Z1

i , i.e., for each measurable Θ̃ ⊆ Θ,

h1
i (ti)[Θ̃] = πi(ti)[Θ̃× T−i];

and inductively for each k ≥ 1, (ii) his (k+1)th-order belief is defined by hk+1
i (ti) =

margΘ×Z1
−i×···×Zk

−i
πi(ti) ∈ Zk+1

i . The belief hierarchy of ti is then defined by

(hki (ti))
∞
k=1.

We now introduce this paper’s fundamental concept of common certainty of

optimism. Let ti and t
′
i be two types of player i. Suppose that (i) t

′
i is more

optimistic about Θ than ti; (ii) t
′
i is more optimistic that all players are more

optimistic about Θ than ti; (iii) t
′
i is more optimistic that all players are more

optimistic that all players are more optimistic about Θ than ti; and so on ad

infinitum. In such a case, we say that t
′
i is at least high as ti in the order of

common certainty of optimism. We formally define this as follows:

Definition 1. t
′
i is at least as high as ti in the order of common certainty of

optimism (denoted by t
′
i �CCO ti) if hk(t

′
i) �SD hk(ti) for each k ∈ N.

In what follows, we often refer to this order as the CCO order.

2.3 Supermodular Games

The players in the set I play the following game. For each player i ∈ I, let Ai

denote his action space, and let ui : A×Θ→ R denote his payoff function, where

A =
∏

j∈I Aj. Recall that Θ is the payoff-relevant state space introduced in the

previous subsection.

Let X be a complete lattice and a partial order ≥. For each Y ⊆ X, let∨
Y ∈ X denote the least upper bound (“join”) of Y , and

∧
Y ∈ X denote the
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greatest lower bound (“meet”) of Y .18 That X is a complete lattice means that

the join and meet exist for any Y ⊆ X. In case Y is a binary set of the form {x, y}
with x, y ∈ X, following the standard notation, we denote its join by x∨ y and its

meet by x ∧ y.

We consider supermodular games as a domain of games, defined as follows.

First, Ai is a complete lattice endowed with a partial order �Ai
. Second, each

ui(·) is supermodular on Ai and has increasing difference in both (ai, a−i) and

(ai, θ). That is, for each ai, a
′
i ∈ Ai, a−i, a

′
−i ∈ A−i, and θ, θ

′ ∈ Θ, whenever

(a−i, θ) ≥ (a′−i, θ
′), it follows that

ui((a; θ) ∨ (a′; θ′)) + ui((a; θ) ∧ (a′; θ′)) ≥ ui(a; θ) + ui(a
′; θ′),

or equivalently,

ui(ai ∨ a′i, a−i; θ) + ui(ai ∧ a′i, a′−i; θ′) ≥ ui(ai, a−i; θ) + ui(a
′
i, a
′
−i; θ

′).

A tuple G = (I,Θ, (Ai, ui, Ti, πi)i∈I) comprises an (incomplete-information) su-

permodular game.

2.4 Equilibria

In an incomplete-information supermodular game G, we denote a pure strategy of

each player i by a Ti-measurable function σi : Ti → Ai. We first define a pure

strategy Bayesian equilibrium.

Definition 2. A strategy profile σ∗ = (σ∗i )i∈I is a (pure-strategy) Bayesian equi-

librium if, for each i ∈ I, ti ∈ Ti, and ai ∈ Ai,∫
Θ×T−i

ui(σ
∗
i (ti), σ

∗
−i(t−i), θ)dπi(ti)[θ, t−i] ≥

∫
Θ×T−i

ui(ai, σ
∗
−i(t−i), θ)dπi(ti)[θ, t−i].

Let Σ∗ denote the set of “all” Bayesian equilibria of an incomplete information

supermodular game G = (g, (Ti), (Ti), (πi))i∈I . It may well be the case that Σ∗ is

empty. The interested reader should be referred to Van Zandt and Vives (2007) for

18z ∈ X is an upper (a lower) bound of Y ⊆ X if z � y (z � y) for all y ∈ Y . z ∈ X is the

least upper bound of Y ⊆ X if is an upper bound of Y , and moreover, we have z′ � z for any

upper bound z′ of Y . Analogously, z ∈ X is the greatest lower bound of Y ⊆ X if is a lower

bound of Y , and moreover, we have z′ � z for any lower bound z′ of Y .

11



a sufficient condition for Σ∗ to be nonempty.19 In what follows, we simply assume

that Σ∗ is nonempty.

We call σ ∈ Σ∗ the least equilibrium if, for each σ∗ ∈ Σ∗, i ∈ I, and ti ∈ Ti,
we have σ∗i (ti) �Ai

σi(ti), and similarly, call σ̄ ∈ Σ∗ the greatest equilibrium if,

for each σ∗ ∈ Σ∗, i ∈ I, and ti ∈ Ti, we have σi(ti) �Ai
σ∗i (ti). As is usually the

case for monotone comparative statics, this paper focuses on the least and greatest

Bayesian equilibria in supermodular games. The following is our definition of

monotone comparative statics with respect to the CCO order.

Definition 3. We say that monotone comparative statics holds in a supermodular

game G with respect to the CCO order if, for each i and ti, t
′
i ∈ Ti such that

ti �CCO t′i, we have σi(ti) �Ai
σi(t

′
i) and σi(ti) �Ai

σi(t
′
i).

3 Sufficiency for Monotone Comparative Statics

In this section, up to technical regularity conditions guaranteeing the existence

of the least and greatest equilibria, monotone comparative statics holds in any

supermodular game G with respect to the common certainty of optimism (CCO)

order. In what follows, we focus only on the least equilibrium of a supermodular

game G, because the logic for the greatest equilibrium is similar.

The key observation is that, for each type ti of each player i, his least equilibrium

action is characterized by his least interim correlated rationalizability (ICR) of

Dekel, Fudenberg, and Morris (2006).

The least ICR is identified by iterative elimination of never best responses “from

below”. First, for each i ∈ I, ti ∈ Ti, let A0
i (ti) = Ai and a0

i (ti) =
∧
A0
i (ti), and

then, let

A1
i (ti) = arg max

ai∈A0
i (ti)

∫
Θ×T−i

ui(ai, a
0
−i(t−i); θ)dπi(ti)[θ, t−i],

and a1
i (ti) =

∧
A1
i (ti). Later we assume that A1

i (ti) is a complete sublattice,

implying that a1
i (ti) ∈ A1

i (ti), and that a1
i (·) is a measurable mapping. Note that,

whenever a1
i (ti) �Ai

ai, it follows from supermodularity that any such ai is a

never-best response.

19See also our Proposition 2 and Remark 1 right after the proposition.
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By an induction argument, for each k ≥ 1, for each i ∈ I, ti ∈ Ti, let

Ak+1
i (ti) = arg max

ai∈Ak
i (ti)

∫
Θ×T−i

ui(ai, a
k
−i(t−i); θ)dπi(ti)[θ, t−i],

and ak+1
i (ti) =

∧
Ak+1
i (ti). Again, later we assume that Ak+1

i (ti) is a complete

sublattice, implying that ak+1
i (ti) ∈ Ak+1

i (ti), and that ak+1
i (·) is a measurable

mapping. Note that, whenever ak+1
i (ti) �Ai

ai, it follows from supermodularity

that any such ai is a never-best response.

Finally, for each i ∈ I, ti ∈ Ti, define

a∞i (ti) =
∨
{a1

i (ti), a
2
i (ti), . . .}.

Since Ai is a complete lattice, we have a∞i (ti) ∈ Ai. Thus, if a∞i (ti) is a

best response to a∞−i(·) (given his belief πi(ti) over Θ × T−i), then σ defined by

σi(ti) = a∞i (ti) for each i, ti constitutes an equilibrium. By construction, σ must

be the least equilibrium of the game, because in each step k of the induction, any

action ai ≺Ai
aki (ti) is shown to be a never-best response to the lowest selection

of the others’ actions from Ak−1
i (·), and hence, a never-best response to any other

strategy profile σ−i of the other players such that σ−i(t−i) �A−i
ak−i(t−i). We note

this result as a proposition.

Proposition 2. Assume that, for each i, ti, and k ≥ 1, (i) Aki (ti) is a complete

sublattice, (ii) aki (·) =
∧
Aki (·) is a measurable mapping, and (iii) a∞i (ti) is a best

response to a∞−i(·). Then, σ defined by σi(ti) = a∞i (ti) for each i and ti constitutes

the least equilibrium.

Remark 1. Interested readers are referred to Van Zandt and Vives (2007) and Van

Zandt (2010) for more primitive assumptions on the environment that guarantee

the existence of the least (and analogously, greatest) equilibrium. Specifically, they

assume that (i) Ai is a compact metric lattice;20 (ii) ui is bounded, continuous in

ai and measurable in θ; and (iii) πi(·) is measurable (as a mapping from Ti to

∆(Θ× T−i)).
20Compactness is used not for existence of best replies (thanks to the supermodularity), but

for guaranteeing that aki (·) is a measurable mapping. For this point, see Footnote 3 of Van Zandt

(2010) who mentions that compactness can be replaced by sigma-compactness for this measurable

selection argument.
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Now we prove that monotone comparative statics holds in any supermodular

game G with respect to the CCO order.

Theorem 1. Let G = (g, (Ti), (Ti), (πi))i∈I be an incomplete information super-

modular game that satisfies (as in Proposition 2): for each i ∈ I, ti ∈ Ti, and

k ≥ 1, (i) Aki (ti) is a complete sublattice; (ii) aki (·) =
∧
Aki (·) is a measurable

mapping; and (iii) a∞i (ti) is a best response to a∞−i. Let ti and t
′
i be two types of

player i such that t
′
i �CCO ti. Then, for the least equilibrium of the game G, σ, we

have σi(t
′
i) �Ai

σi(ti).

Proof. In the previous proposition, we show that the least equilibrium is fully char-

acterized by the iterated elimination of never-best responses of interim correlated

rationalizability “from below.” Thus, it suffices to show that, for each i ∈ I, k ≥ 1,

and ti, t
′
i such that ti �CCO t′i, we have aki (ti) �Ai

aki (t
′
i).

First, because a1
i (ti) ∈ A1

i (ti) and a1
i (t
′
i) ∈ A1

i (t
′
i), we have∫

Θ×T−i

ui(a
1
i (t
′
i), a

0
−i(t−i); θ)dπ(t′i)[θ, t−i] ≥

∫
Θ×T−i

ui(a
1
i (ti)∨a1

i (t
′

i), a
0
−i(t−i); θ)dπ(t′i)[θ, t−i]

and∫
Θ×T−i

ui(a
1
i (ti), a

0
−i(t−i); θ)dπ(ti)[θ, t−i] ≥

∫
Θ×T−i

ui(a
1
i (ti)∧a1

i (t
′

i), a
0
−i(t−i); θ)dπ(ti)[θ, t−i]

Since h1
i (t
′
i) �SD h1

i (ti) and a0
−i(t−i) does not depend on t−i, the distribution

over Θ × A−i induced by πi(t
′
i) first-order stochastically dominates that induced

by πi(ti). Therefore, by the supermodularity of the game, we have∫
Θ×T−i

ui(a
1
i (ti) ∨ a1

i (t
′

i), a
0
−i(t−i); θ)dπ(t′i)[θ, t−i]−

∫
Θ×T−i

ui(a
1
i (t
′
i), a

0
−i(t−i); θ)dπ(t′i)[θ, t−i]

≥
∫

Θ×T−i

ui(a
1
i (ti), a

0
−i(t−i); θ)dπ(ti)[θ, t−i]−

∫
Θ×T−i

ui(a
1
i (ti) ∧ a1

i (t
′

i), a
0
−i(t−i); θ)dπ(ti)[θ, t−i].

Because the left-hand side of the above inequality is nonpositive and the right-

hand side is nonnegative, we must have both equal to zero. In particular, this

implies that a1
i (ti) ∧ a1

i (t
′
i) ∈ A1

i (ti). However, because a1
i (ti) =

∧
A1
i (ti) ∈ A1

i (ti),

we must have a1
i (t
′
i) �Ai

a1
i (ti).

We move on to the next step. Let

A1
2(ti) = arg max

ai∈A1
i (ti)

∫
Θ×T−i

ui(ai, a
1
−i(t−i); θ)dπi(ti)[θ, t−i],

14



and a2
i (ti) =

∧
A2
i (ti). Again, we assume that A1

i (ti) is a complete sublattice,

implying that a1
i (ti), and that a1

i (·) is a measurable mapping.

Whenever a2
i (ti) �Ai

ai, it follows from supermodularity that any such ai does

not survive the iterative elimination of never-best responses. Recall that for any

j 6= i and tj, t
′
j, if h1

j(t
′
j) �SD h1

j(tj), then a1
j(t
′
j) �Aj

a1
j(tj). Since we assume that

t
′
i �CCO ti, we also have h2

i (t
′
i) �SD h2

i (ti). Define

Ỹ =
{

(θ, a1
−i) ∈ Θ× A−i

∣∣∣ ∃(θ̂, t̂−i) s.t. (θ, a1
−i) � (θ̂, a1

−i(t̂−i))
}
.

Clearly, Ỹ ∈ U(Θ × A−i) where U(Θ × A−i) denotes the set of all upper events

of ˜Θ× A−i. By Lemma 1, we can conclude that the weight h2
i (t
′
i) assigns to the

event Ỹ is at least as high as the weight h2
i (ti) does.

Due to the definition of a2
i (ti) ∈ A2

i (ti) and a2
i (t
′
i) ∈ A2

i (t
′
i), we have∫

Θ×T−i

ui(a
2
i (t
′
i), a

1
−i(t−i); θ)dπ(t′i)[θ, t−i] ≥

∫
Θ×T−i

ui(a
2
i (ti)∨a2

i (t
′

i), a
1
−i(t−i); θ)dπ(t′i)[θ, t−i],

and∫
Θ×T−i

ui(a
2
i (ti), a

1
−i(t−i); θ)dπ(ti)[θ, t−i] ≥

∫
Θ×T−i

ui(a
2
i (ti)∧a2

i (t
′

i), a
1
−i(t−i); θ)dπ(ti)[θ, t−i].

Since h2
i (t
′
i) �SD h2

i (ti), by the supermodularity of the game, we have∫
Θ×T−i

ui(a
2
i (ti) ∨ a2

i (t
′

i), a
1
−i(t−i); θ)dπ(t′i)[θ, t−i]−

∫
Θ×T−i

ui(a
2
i (t
′
i), a

1
−i(t−i); θ)dπ(t′i)[θ, t−i]

≥
∫

Θ×T−i

ui(a
2
i (ti), a

1
−i(t−i); θ)dπ(ti)[θ, t−i]−

∫
Θ×T−i

ui(a
2
i (ti) ∧ a2

i (t
′

i), a
1
−i(t−i); θ)dπ(ti)[θ, t−i].

Because the left-hand side of the above inequality is nonpositive and the right-

hand side is nonnegative, we must have both equal to zero. In particular, this

implies that a2
i (ti) ∧ a2

i (t
′
i) ∈ A2

i (ti). However, because a2
i (ti) =

∧
A2
i (ti) ∈ A2

i (ti),

we must have a2
i (t
′
i) �Ai

a2
i (ti).

By an induction argument, we can analogously show that aki (t
′
i) �Ai

aki (ti) for

each k ∈ N, which implies that a∞i (t
′
i) �Ai

a∞i (ti).

Since the least equilibrium σ is defined as σi(ti) = a∞i (ti) for every i ∈ I and

ti, we complete the proof.
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4 Necessity for Monotone Comparative Statics:

The Single Person Case

In this section, common certainty of optimism (CCO) is shown to be a necessary

condition for monotone comparative statics to be valid in all supermodular games.

We show this by constructing a specific supermodular game, which we call an

optimism-elicitation game, which satisfies the following: for each player i and his

types ti and t′i, if we do not have ti �CCO t′i, then for the least equilibrium of

this optimism-elicitation game, denoted by σ, we do not have σi(ti) �Ai
σi(t

′
i).

Together with the previous theorem, we thus conclude that the CCO order is nec-

essary and sufficient for monotone comparative statics in all supermodular games.

4.1 A Single-Person Game

We first consider the single-person environment to explain the key technical issue

and the main intuition how we treat it. The restriction to the single-person case

simplifies our analysis significantly because there is no need to consider interactive

beliefs so that we lose nothing to focus on the first-order beliefs only. Thus, a

naive candidate for our optimism-elicitation game is a so-called scoring rule, which

is essentially a single-person decision problem where the decision maker reveals

his belief over Θ (and his payoff function is such that the truthful revelation is

uniquely optimal). That is, his action space is the set of all probability measures

over Θ. Monotone comparative statics is obtained in a straightforward manner by

endowing this action space with a partial order based on the first-order stochastic

dominance.

However, as we observe in the next example, this decision problem is not a

(single-person) supermodular game, because the action space, ∆(Θ), is not a lat-

tice, even if the parameter space Θ itself is. This means that we need a more careful

choice of the action space. To illustrate this point, we go through the following

example.

Example 1 (Kamae, Krengel, and O’Brien (1977)). 21

21To be rigorous, it is a slightly different example from the one provided there, but essentially

the same.
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Let Θ = {0, 1}2 be endowed with a component-wise partial order. Consider

two probability measures P, P ′ ∈ ∆(Θ) such that P (0, 0) = P (1, 1) = 1/2 and

P ′(1, 0) = P ′(0, 1) = 1/2. Then, two probability measures Q,Q′ ∈ ∆(Θ) are

upper bounds of {P, P ′}: Q(1, 0) = Q(1, 1) = 1/2 and Q′(0, 1) = Q′(1, 1) = 1/2.

Suppose that there exists a least upper bound Q′′. Then, we have Q′′(1, 1) = 1/2

because we need P (1, 1) ≤ Q′′(1, 1) ≤ Q(1, 1). Moreover, we have Q′′(0, 1) = 0 (or

Q′′(0, 1) +Q′′(1, 1) = 1/2) because we need Q′′(0, 1) +Q′′(1, 1) ≤ Q(0, 1) +Q(1, 1).

Similarly, we have Q′′(1, 0) = 0. However, then, such Q′′ is equivalent to P , which

does not first-order dominate P ′. This contradicts that Q′′ is an upper bound of

{P, P ′}.
Therefore, if we consider (the single-person version of) the optimism-elicitation

game where an individual chooses his probability measure over Θ, the correspond-

ing game, no matter how we define it, is “not” a supermodular game because his

action space, the set of all probability measures over Θ (endowed with a stochastic

dominance partial order), does not constitute a lattice.

The problem illustrated in the above example is that the set of all probability

distributions (over Θ) is not closed in the meet and join operators. To elaborate

on this point, we revisit the same example.

Example 2. We consider the same example as above, but now the agent chooses

a function

α : U(Θ)→ [0, 1],

where U(Θ) ⊆ 2Θ denotes the set of all subsets of Θ that are upper sets (recall

that Y ⊆ Θ is an upper set if [x ∈ Y and y ≥ x] implies y ∈ Y ). In the current

context, we have

U(Θ) =
{
∅, {(1, 1)}, {(0, 1), (1, 1)}, {(1, 0), (1, 1)},

{(0, 1), (1, 0), (1, 1)}, {(0, 0), (0, 1), (1, 0), (1, 1)}︸ ︷︷ ︸
=Θ

}
.

We may interpret each α(Θ) as the agent’s “belief” regarding the event Θ, and

in fact, each belief corresponds to some mapping α.22 However, other α may not

22For example, P in the previous example is equivalent to αP such that (i) α(∅) = 0, (ii)

αP (Y ) = 1/2 for any nonempty Y ∈ U(Θ) with (0, 0) /∈ Y , and (iii) αP (Y ) = 1 for any

Y ∈ U(Θ) with (0, 0) ∈ Y .
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correspond to any probability measure. For example, let α be defined in such a

way that, for each Y ∈ U(Θ),

α(Y ) = max{P (Y ), P ′(Y )}.

That is,

α(Y ) =


0 if Y = ∅

1/2 if Y = {(1, 1)}, {(0, 1), (1, 1)}, {(1, 0), (1, 1)}, and

1 otherwise.

If it corresponds to a probability measure Q∗ over Θ, then α({1, 1}) = 1/2 implies

Q∗(1, 1) = 1/2, which, together with α({(0, 1), (1, 1)}) = α({(1, 0), (1, 1)}) = 1/2,

implies Q∗(0, 1) = Q∗(1, 0) = 0. However, α({(0, 1), (1, 0), (1, 1)}) = 1 implies

that Q∗(0, 1) + Q∗(1, 0) = 1, which is a contradiction. Therefore, this α does not

correspond to any probability measure.

Consider a “modified” optimism-elicitation game with a single player who

chooses any α : U(Θ) → [0, 1]. Let A∗ denote the set of all such α. The

player has a strictly larger strategy space than in the original optimism-elicitation

game because some “non-additive” measures are allowed. Moreover, A∗ is now

a lattice (associated with the first-order stochastic dominance partial order), be-

cause, for any α, α′, we have α′′, α′′′ such that α′′(Y ) = max{α(Y ), α′(Y )} and

α′′′(Y ) = min{α(X), α′(Y )} for any Y ∈ U(Θ). In fact, it is even a complete

lattice, because for any nonempty subset A ⊆ A∗, there are α′, α′′ ∈ A∗ such that

α′(Y ) = supα∈A α(Y ) and α′′(Y ) = infα∈A α(Y ) for any Y ∈ U(Θ).

The key for the construction of our optimism-elicitation game is two-fold. First,

the action space of our game is based on non-additive beliefs such as α discussed

above,23 in order to make it a complete lattice. Second, as we see below in the

formal construction, the action space of our game essentially comprises only count-

ably many “test sets” to (partially) identify the agent’s belief. We explain these

features more in detail after formally introducing our optimism-elicitation game.

Formally, the optimism-elicitation game for the single agent case is defined as

follows: (i) the agent chooses an action β : F (Θ0) × Q+ → [0, 1] (recall that Θ0

denotes the countable dense subset of Θ where Assumption 1 is satisfied) where

23See Schmeideler (1986, 1989) for non-additive beliefs or capacities in decision theory.
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• F (Θ0) denotes the set of all finite subsets of Θ0,

• Q+ denotes the set of nonnegative rational numbers, and

• β is nondecreasing (i.e., for any (γ, q) and (γ′, q′) with clup(Bq(γ)) ⊆ clup(Bq′(γ
′)),

we have β(γ, q) ≤ β(γ′, q′))

and (ii) given any realization θ ∈ Θ, the agent’s payoff is given:

u(β, θ) =
∑

(γ,q)∈F (Θ0)×Q+

[
β(γ, q)I{clup(Bq(γ))}(θ)−

β(γ, q)2

2

]
µ(γ, q),

where

• Bq(γ) =
⋃
y∈γ Bq(y);

• µ is a full-support distribution over a countable set F (Θ0)×Q+
24; and

• The indicator function is defined as:

I{clup(Bq(γ))}(x) =

{
1 if x ∈ clup(Bq(γ))

0 otherwise.

Let

B =
{
β : F (Θ0)×Q+ → [0, 1]

∣∣β is nonderecasing
}

denote the space of the agent’s strategies. Note that B constitutes the set of

capacities (i.e., non-additive measures) for closed upper sets generated by F (Θ0)×
Q+.25 A capacity is often considered as a natural generalization of a probability

measure.26 In addition, the space of capacities has an advantageous feature that

it is a complete lattice.

24We can set h : F (Θ0)×Q+ → N as an injection mapping because F (Θ0)×Q+ is countable.

Specifically, we define the full-support distribution µ by µ(γ, q) = (1/2)h(γ,q) > 0.
25A capacity is usually defined as a monotone set function as above, but with additional

normalization conditions that it assigns probability zero (one) on the null (entire) set. Redefining

B by adding these normalization conditions does not essentially change our arguments, and hence,

we adopt the current definition to simplify the notation. Indeed, it should be clear that any type

of any agent should find optimal to set β(γ, q) = 0 (1) if clup(Bq(γ)) = ∅ (Θ). In this sense, the

definition above is without loss of generality. The same comment applies to the definitions of Bm

and B∞ in Section 5.1.
26See Schmeidler (1986, 1989) for more details on capacities.
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As we mention above, another feature of our construction is that the action

space of our game essentially comprises only countably many “test sets” to (par-

tially) identify the agent’s belief. Countability enables us to have a full-support

distribution over the test sets, which makes the agent’s incentive to tell the truth

strict (and hence, the optimal decision is unique).27

Indeed, if a player has a belief b ∈ ∆(Θ) over Θ,28 then his unique optimal

action is β∗(b) : F (Θ0)×Q+ → [0, 1] such that

β∗(γ, q|b) = b(clup(Bq(γ)))

for each (γ, q) ∈ F (Θ0)×Q+.

Endowing B with a natural product order, we show that the game is a super-

modular game. First, we claim that B is a complete lattice: for each C ⊆ B, define

two functions,
∨

(C) and
∧

(C), so that∨
(C)(γ, q) = sup

β∈C
β(γ, q),∧

(C)(γ, q) = inf
β∈C

β(γ, q),

which makes both
∨

(C) and
∧

(C) elements of B, because they both take values

in [0, 1] for any (γ, q), and they are both monotonic. Suppose, on the contrary,

that
∨

(C) is not monotonic for some C. Then, there exist (γ, q), (γ′, q′) such that

clup(Bq(γ)) ⊆ clup(Bq′(γ
′)) and

∨
(C)(γ, q) >

∨
(C)(γ′, q′). By definition, there

exists β ∈ C such that β(γ, q) is close to
∨

(C)(γ, q), and in particular, β(γ, q) >∨
(C)(γ′, q′) ≥ β(γ′, q′). This contradicts the hypothesis that β is monotonic.

Second, the payoff function u(·) is supermodular on B and has increasing dif-

27Moreover, as we see in Section 5 to extend this construction to the case of multiple players,

this countability plays another crucial role. There, we consider the “higher-order belief” version

of the current construction as each player’s action space (in order to elicit his belief hierarchy),

and countability at each level of hierarchy (and certain continuity) is crucial to make the next

level of hierarchy (and hence at any level of hierarchy) stay countable.
28Recall that ∆(Θ) denotes the set of all probability measures over Θ.
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ference in (β, x): for any β, β′ ∈ B, x, x′ ∈ Θ with x ≥ x′, we have

u(β ∨ β′, x)− u(β, x) + u(β ∧ β′, x′)− u(β′, x′)

=

∫
(γ,q):β′(γ,q)>β(γ,q)

[
(β′(γ, q)− β(γ, q))I{clup(Bq(γ))}(x)− β′(γ, q)2 + β(γ, q)2

]
dµ

−
∫

(γ,q):β′(γ,q)>β(γ,q)

[
(β(γ, q)− β′(γ, q))I{clup(Bq(γ))}(x

′
)− β(γ, q)2 + β′(γ, q)2

]
dµ

=

∫
(γ,q):β′(γ,q)>β(γ,q)

[
(β′(γ, q)− β(γ, q))I{clup(Bq(γ))}(x)(1− I{clup(Bq(γ))}(x

′
))
]
dµ

≥ 0.

We now examine monotone comparative statics for this supermodular game.

The first result establishes the sufficiency of first-order stochastic dominance for

monotone comparative statics in this supermodular game (as should be expected).

Proposition 3. Let b, b′ ∈ ∆(Θ). If b
′

first-order stochastically dominates b, then,

for any (γ, q) ∈ F (Θ0)×Q+, we have β∗(γ, q|b′) ≥ β∗(γ, q|b).

Proof. While it is a corollary to Theorem 1, the proof is also straightforward once

we notice that β∗(γ, q|b) = b(clup(Bq(γ))) and β∗(γ, q|b′) = b′(clup(Bq(γ))).

Next, we show the desired necessity of first-order dominance for monotone

comparative statics in this supermodular game.

Proposition 4. Let b, b′ ∈ ∆(Θ). If β∗(γ, q|b′) ≥B β∗(γ, q|b) for each (γ, q) ∈
F (Θ0)×Q+, then b

′ �SD b.

Proof. We take the contrapositive of the statement. Then what we want to show is

that if b′ does “not” stochastically dominate b, then β∗(γ, q|b′) “cannot” be higher

than β∗(γ, q|b) in the sense of the partial order on B. Thus, the rest of the proof

is completed by the following lemma.

Lemma 2. Let b, b′ ∈ ∆(Θ). If b′ does not first-order stochastically dominate b,

then there exists (γ, q) ∈ F (Θ0)×Q+ such that β∗(γ, q|b) > β∗(γ, q|b′).

Proof. We relegate the proof to the Appendix.

With this lemma, we complete the proof of Proposition 4.
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4.2 Properties of B

Recall the definition of B = {β : F (Θ0)×Q+ → [0, 1]| β is nonderecasing}. Let

B = {β : F (Θ0) × Q+ → [0, 1]} be the superset of B in which we only drop the

property that β is nondecreasing from B. In this subsection, we first introduce a

metric for B, inducing a topology with respect to which B is shown to be a compact

metric space. Second, we claim that B is a closed subset of B so that B is also

a compact metric space. Note that every compact metric space is complete and

separable. Thus, B has a countable dense subset B0. Finally, we will establish

that B possesses its closed partial order, and satisfies Assumptions 1 and 2 (with

replacement of X by B and X0 with B0 in the statements). These properties are

exploited in the next section when we consider the multi-player case.

First, we introduce a norm over B to make it a normed space (and accordingly,

its metric is induced by this norm).29 For each β ∈ B, its norm is given by

‖β‖ =
∑

(γ,q)∈F (Θ0)×Q+

|β(γ, q)|µ(γ, q),

where µ is a full-support probability distribution over F (Θ0) × Q+ such that we

set h : F (Θ0) × Q+ → N as an injection map and µ(γ, q) = (1/2)h(γ,q) for each

(γ, q) ∈ F (Θ0)×Q. Because β(γ, q) ∈ [0, 1] for any (γ, q), we have ‖β‖ ∈ [0, 1] for

any β ∈ B.

Lemma 3. B is a compact metric space.

Proof. We relegate the proof to the Appendix.

Remark 2. The lemma implies that B is a separable and complete metric space.

Next, we show that B satisfies Assumption 1. First, for each K ∈ N, we define

B1,K ⊆ B as follows: β ∈ B1,K if and only if there exists a K-element subset of Θ0,

say XK = {x1 . . . , xK} ∈ F (Θ0), such that for any (γ, q) ∈ F (Θ0)×Q+, we have

β(γ, q) =

{
minq′∈QK

β(XK ∩ γ, q′) sub. to Bq′(XK ∩ γ) ⊇ Bq(γ) if XK ∩ γ 6= ∅,
1 if XK ∩ γ = ∅.

29A standard topology for the set of probability distributions is a weak∗-topology (e.g., Bran-

denburger and Dekel (1993)), but note that B is not a set of probability distributions. In partic-

ular, some β ∈ B does not necessarily correspond to any probability measure over Θ. The norm

above and its induced topology on B are well-defined despite this “non-probabilistic” nature of

B. The same comment applies when we discuss the objects like Bm and B∞ later in Section 5.1.
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where QK = { k
K
|k = 0, 1, . . . , K}.

Note that such β is fully identified by (β(X̃, q))X̃⊆XK ,q∈QK
. This implies that

B1,K contains countably many elements, and thus B0 =
⋃
K∈N B1,K contains count-

ably many elements. The next lemma shows that Assumption 1 is satisfied for B,

where in the statement, X is replaced by B and X0 is replaced by B0.

Lemma 4. For any β ∈ B and ε > 0, there exists β0 ∈ B0 such that ‖β0 − β‖ < ε

and β0 ≥ β.

Proof. We relegate the proof to the Appendix.

The next lemma shows that Assumption 2 is also satisfied for B.

Lemma 5. For each C ⊆ B and ε > 0, there exists δ(C, ε) > 0 such that, for any

D ⊆ B with d(C,D) < δ(C, ε), we have d(up(C), up(D)) < ε.

Proof. The proof is relegated to the Appendix.

Finally, we show that the partial order on B is a closed partial order.

Lemma 6. Let B be endowed with a natural product order ≥B. Then, ≥B is a

closed order.

Proof. Consider two sequences {βn} and {β′n} in B, such that βn → β and β′n → β′

as n→∞. Then, due to the continuity of β and β
′
, for each (γ, q) ∈ F (X0)×Q+,

we have βn(γ, q) → β(γ, q) and β′n(γ, q) → β′(γ, q) as n → ∞. Now suppose that

βn(γ, q) ≥B β′n(γ, q) for any n. Then, we must have β(γ, q) ≥B β′(γ, q) for each

(γ, q). This means that the partial order on B is a closed partial order.

5 Necessity for Monotone Comparative Statics:

The Multi-Player Case

With multiple agents, we need an optimism-elicitation game where the equilibrium

reflects each player’s belief hierarchy (not only his first-order belief). Although one

may think that the situation becomes prohibitively more complicated, we show in

this section that the same technique as in the single-person case can be extended

appropriately.
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The goal of this section is to construct a (multi-player) supermodular game

such that common certainty of optimism holds if and only if monotone comparative

statics holds in this game (Theorem 2 in Section 5.2). The crucial step is where

the construction of each player’s action space where each player bets not only on

the realization of θ ∈ Θ but also on each other’s betting behavior, reflecting his

high-order beliefs (Section 5.1).

5.1 Preliminary

Let X1 = Θ, X1
0 = Θ0, and B1 = B. For m ≥ 2, we inductively construct super-

modular games where each player’s m-th order belief is relevant. Specifically, for

m ≥ 2, assume that (i) Xm−1 is a separable, complete metric space with a count-

able dense subset Xm−1
0 , (ii) Xm−1 satisfies Assumption 1 and 2 (with replacement

of X by Xm−1 and X0 by Xm−1
0 in the statements) with the corresponding closed

partial order, (iii) Bm−1 is a compact metric space with a countable dense subset

Bm−1
0 , and (iv) Bm−1 satisfies Assumption 1 and 2 (with replacement of X by Bm−1

and X0 by Bm−1
0 in the statements) with the corresponding closed partial order.

We define Xm = Xm−1× (Bm−1)I−1, endowed with product topology and prod-

uct partial order. Because both Xm−1 and Bm−1 are separable, complete metric

spaces and satisfy Assumption 1 and 2, Xm also satisfies the same properties:

Lemma 7. Xm is a separable, complete metric space with a countable dense subset

Xm
0 such that Assumption 1 and 2 are satisfied with replacement of X by Xm and

X0 by Xm
0 in the statements.

Next, we define

Bm =
{
β : F (Xm

0 )×Q+ → [0, 1]
∣∣∣ β is nonderecasing

}
.

Then, applying the same logic in Section 4.2, we obtain the following (the proof

omitted):

Lemma 8. Bm is a compact metric space with a countable dense subset Bm0 such

that Assumption 1 and 2 are satisfied with replacement of X by Bm and X0 by Bm0
in the statements.
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Therefore, for any m ≥ 1, (i)-(iv) are satisfied: (i) Xm is a separable, complete

metric space with a countable dense subset Xm
0 , (ii) Xm satisfies Assumption 1

and 2 (with replacement of X by Xm and X0 by Xm
0 in the statements) with

the corresponding closed partial order, (iii) Bm is a compact metric space with

a countable dense subset Bm0 , and (iv) Bm satisfies Assumption 1 and 2 (with

replacement of X by Bm and X0 by Bm0 in the statements) with the corresponding

closed partial order.

Finally, let X∞ =
∏∞

m=1X
m. Then, we obtain the analogous properties for

X∞.

Lemma 9. X∞ is a separable, complete metric space with a countable dense

subset X∞0 such that Assumption 1 and 2 are satisfied with replacement of X by

X∞ and X0 by X∞0 in the statements.

Similarly, let

B∞ =
{
β : F (X∞0 )×Q+ → [0, 1]

∣∣∣ β is nonderecasing
}
,

and we obtain the following analogous properties for B∞.

Lemma 10. B∞ is a compact metric space with a countable dense subset B∞0 such

that Assumption 1 and 2 are satisfied with replacement of X by B∞ and X0 by

B∞0 in the statements.

5.2 Optimism-Elicitation Game: The Multi-Player Case

Now we show that the necessity of the CCO order for monotone comparative

statics.

Theorem 2. There is a supermodular game with the property that, for any player

i ∈ I and two types ti, t
′
i, we have that t

′
i �CCO ti if and only if σi(t

′
i) �Ai

σi(ti),

where σ is the least equilibrium of this supermodular game.

Proof. We construct an optimism-elicitation game such that: (i) each player i

chooses an action from Bi = B∞ and (ii) given any realization x ∈ X∞ and action

β ∈ Bi, each player i’s payoff is given:

ui(β, x) =
∑

(γ,q)∈F (X∞0 )×Q+

[
∞∑
m=1

δm−1

{
β(γ, q)Im{clup(Bq(γ))}(x)− β(γ, q)2

2

}]
µ(γ, q),
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where

• 0 < δ < 1;

• Bq(γ) =
⋃
y∈γ Bq(y);

• µ is a full-support distribution over a countable set F (X∞0 )×Q+
30; and

• The indicator function is defined as:

Im{clup(Bq(γ))}(x) =

{
1 if xm ∈ clup(Bq(γ)) ∩Xm

0 otherwise,

where xm denotes the truncation of x to Xm.

We can establish the following result by mimicking the argument for the case

of single-person optimism-elicitation game. So, we only state the result.

Lemma 11. We obtain the following results:

1. Bi is a complete lattice;

2. u(·) is supermodular on Bi; and

3. u(·) has increasing difference in (β, x).

Therefore, the game constructed above is indeed a supermodular game. The

proposition below shows that player i reveals his probability assessment for each

upper event (those generated by F (X∞0 × Q+)) truthfully in this game, as his

unique ICR action.

Proposition 5. For each player i with type ti, we have A∞i (ti) = {β∗}, where for

each m ∈ N and each (γ, q) ∈ F (Xm
0 )×Q+, we have

β∗(γ, q) = hm(ti)[clup(Bq(γ))],

where hm(ti) is ti’s belief on Xm.

Proof. We relegate the proof to the Appendix.

30We can set h : F (X∞0 )×Q+ → N as an injection mapping because F (X∞0 )×Q+ is countable.

Specifically, we define the full-support distribution µ by µ(γ, q) = (1/2)h(γ,q) > 0.
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This means that “any” interim correlated rationalizable strategy of each player

i induces his true belief about any upper event U(X∞). We now examine mono-

tone comparative statics for this supermodular game. The first result shows the

sufficiency for monotone comparative statics in this supermodular game (as should

be expected).

Proposition 6. For each i and ti, t
′
i such that t′i �CCO ti, we have β′ �Bi β where

β and β′ satisfy A∞i (ti) = {β} and A∞i (t′i) = {β′}, respectively.

Proof. While this is a corollary to Theorem 1, the proof is also straightforward

once we notice that, by Proposition 5, for each m ∈ N and (γ, q) ∈ F (X∞0 )×Q+,

we obtain

β(γ, q) = hm(ti)[clup(Bq(γ))] and β′(γ, q) = hm(t′i)[clup(Bq(γ))].

Next, we show the desired necessity for monotone comparative statics in this

supermodular game.

Proposition 7. For each i and ti, t
′
i such that A∞i (ti) = {β} and A∞i (t′i) = {β′},

if β �Bi β′, then t′i �CCO ti.

Proof. We take the contrapositive of the statement: if there is some m ∈ N
such that hm(t′i) does “not” stochastically dominate hm(ti) (so that hm(ti)[Y ] >

hm(t
′
i)[Y ] for some closed upper set Y ⊆ Xm), then β′ “cannot” be higher than β

in the sense of the partial order on Bi = B∞. This can be shown quite analogously

as in Lemma 2, by replacing (i) X by Xm; (ii) X0 by Xm
0 ; (iii) b with hm(ti); and

(iv) b
′

with hm(t
′
i), respectively. This completes the proof.

Propositions 6 and 7 together complete the proof of Theorem 2.

6 Relation to Van Zandt and Vives (2007)

In this section, we discuss the relationship with Van Zandt and Vives (henceforth,

VZV, 2007). Both VZV and our paper attempt to represent the supermodular

27



games with a (possibly non-common-prior) general type space, and discuss mono-

tone comparative statics with respect to the orders on types. However, there are

several differences in these two approaches:

• VZV consider an implicit (Harsanyi) type space endowed with a partial or-

der and then introduce each type’s belief map that is consistent with those

implicitly given structures. On the other hand, our order on types is based

on belief hierarchies constructed from the fundamentals space Θ, and in this

sense, our order is based on the given order on Θ (rather than giving an order

directly on a type space).

• Both papers order types based on the first-order stochastic dominance re-

lation, but their formal relationship is not clear because they have different

constructions of type spaces and their orders.

• VZV and our paper make different assumptions on the primitives: We con-

sider a Polish space Θ so that each belief hierarchy is a Borel probability

measure on a Polish space (thanks to the universal-type-space construction

of Brandenburger and Dekel (1993)). VZV do not assume that their type

space is a topological space.

• These two papers consider somewhat different classes of games. We consider

a class of games where only θ is payoff-relevant information, and the play-

ers’ (first and higher-order) beliefs are not directly payoff-relevant. In VZV,

however, the agents’ types can be directly payoff-relevant.

Despite those differences, both of the papers provide (their versions of) mono-

tone comparative statics. In this sense, it seems natural to conjecture that one

obtains some formal relationship between the two approaches. We formalize this

relationship as the following propositions. First, we show that the order on types

in VZV can be seen as our CCO order on types.

Proposition 8 (VZV ⇒ CCO). Fix an arbitrary supermodular game studied in

VZV. Recall that, in VZV, each player’s (Harsanyi) type space Ti is endowed with

an exogenously given partial order. Fix any player i and any pair of types ti and

t̂i such that ti is a higher type than t̂i in the sense of VZV (i.e., pi(ti) ∈ ∆(T−i)

first-order stochastically dominates pi(t̂i) ∈ ∆(T−i)).
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Define Θ as Θ = T , endowed with the same partial order as that for T . Then,

ti is higher than t̂i in the sense of CCO.

Proof. By definition, bi = (b1
i , b

2
i , . . .) is given as follows: for each i ∈ I and

θ̃ = (t̃i, t̃−i) ∈ Θ,

b1
i (θ̃) =

{
pi(ti)[t̃−i] if t̃i = ti,

0 otherwise,

and inductively, for each k ≥ 1 and b̃k−i ∈ B1
−i,

bk+1
i (θ̃, b̃k−i) =

{
pi(ti)[t̃−i] if t̃i = ti, and b̃k−i = p−i(t̃−i) = (pj(t̃j))j 6=i,

0 otherwise.

Similarly, b̂i = (b̂1
i , b̂

2
i , . . .) is given as follows: for each i ∈ I and θ̃ = (t̃i, t̃−i) ∈

Θ,

b̂1
i (θ̃) =

{
pi(t̂i)[t̃−i] if t̃i = t̂i,

0 otherwise,

and inductively, for each k ≥ 1 and b̃k−i ∈ B1
−i,

b̂k+1
i (θ̃, b̃1

−i) =

{
pi(t̂i)[t̃−i] if t̃i = t̂i, and b̃k−i = p−i(t̃−i) = (pj(t̃j))j 6=i,

0 otherwise.

Then, we can prove that ti �CCO t̂i inductively.

In this sense, the CCO order is (weakly) finer than the VZV order, and hence it

admits (weakly) more comparative statics. One way to interpret this result is that

(modulo some technical differences mentioned above) the class of games considered

by VZV is a special case of our games where each player’s belief hierarchy is

degenerated in the above sense.

The next proposition shows that, conversely, the CCO order on types can be

interpreted as the VZV order on types.

Proposition 9 (CCO ⇒ VZV). Fix an arbitrary supermodular game studied in

our paper. Define T0 = Θ; Ti = T ∗i for each i ∈ I, where T ∗i represents the

universal type space constructed based on Θ in the sense of Brandenberger and

29



Dekel (1993); and T =
∏I

i=0 Ti. For each i and his belief hierarchy bi ∈ T ∗i , let

pi(bi) ∈ ∆(T−i) be his belief map for T−i induced by bi.

Then, if bi ∈ T ∗i is a higher type than b̂i ∈ T ∗i in the CCO sense, then bi ∈ Ti is

higher than b̂i ∈ Ti in the VZV sense.

Proof. By construction of the universal type space, we have pi(bi) = bi = (b1
i , b

2
i , . . .),

and therefore, the CCO order and the VZV order coincide.

Similarly to the previous proposition, one interpretation of this result is that

the class of games we consider is a special case of that considered by VZV, where

ti is not directly payoff-relevant.

7 Application

Although our contribution is primarily theoretical, we suggest a situation where

our results could be potentially useful. Consider a simple trading game between

two parties with pure common values. According to the celebrated no-trade the-

orem of Milgrom and Stokey (1982), when the initial allocation of the goods is

Pareto efficient and the parties share a common belief about how the prices of the

goods are determined ex post, i.e., the rational expectations hypothesis is satisfied,

they never trade ex post. However, in practice, traders may enjoy heterogeneous

beliefs about how the prices of the goods are determined so that some traders

may be systematically more optimistic than others. More specifically, the ratio-

nal expectations hypothesis may be violated. Such belief divergence may admit

some possibility of trading. Then, a natural question arises as to the relationship

between belief divergence and volume of (or possibility of) trading. We introduce

a partial order with respect to the size of belief divergence, and show that the

corresponding CCO order admits monotone comparative statics.

There are two traders, a seller (i = 1) and a buyer (i = 2). Let I = {1, 2}.
The seller has an asset whose common value is v ∈ R. Due to this common value

assumption, the initial allocation of the asset is trivially Pareto efficient. Each

trader decides to “enter a market” or not. Let Ai = {0, 1}, where ai ∈ Ai is the

indicator for i’s entrance. If he enters, he has to pay a fixed cost c > 0. Unless

both traders enter, there is no trade. Thus, a trader’s payoff is −c if he enters and

there is no trade, and 0 if he does not. After both traders enter, we assume that
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they trade the asset at price p ∈ R. Then, the seller’s (ex post) payoff is p− v− c,
and the buyer’s (ex post) payoff is v− p− c. Hence, their ex post payoffs are given

by the following matrix:

a2 = 1 a2 = 0

a1 = 1 (p− v − c, v − p− c) (−c, 0)

a1 = 0 (0,−c) (0, 0)

At the timing of the (simultaneous) entry decision, imagine that v and p could

be uncertain for the players. Let Θ = R2 represent the payoff-state space so that,

given θ = (θ1, θ2) ∈ Θ, θi denotes i’s trading payoff. That is, θ1 = p − v and

θ2 = v− p. It is assumed to be common knowledge that θ1 + θ2 = 0 (i.e., the asset

has a pure common value), but the players may not agree on the exact value of θ1

(and hence that of θ2). Player i’s ex post payoff can be written as follows: for any

θ = (θ1, θ2) ∈ Θ and a ∈ {0, 1}2,

ui(a, θ) = θia1a2 − cai.

Observe that the constructed game g = (I,
∏

i∈I Ai,Θ, (ui)i∈I) is a (complete-

information) supermodular game.

Let T = (T1, T2, b1, b2) denote a Harsanyi type space, where a measurable space

Ti denotes player i’s type set, and a measurable map bi : Ti → ∆(Θ×T−i) denotes

his belief map. We assume that, for any i ∈ I and ti ∈ Ti,

bi(ti) [{θ ∈ Θ|θ1 + θ2 = 0} × T−i] = 1,

that is, it is common knowledge that the asset has a pure common value.

First, consider the case where the players share a common prior. That is, there

exists µ ∈ ∆(Θ×T1×T2) such that each i’s belief map bi is a system of conditional

probabilities induced by µ in the following sense: for all i ∈ I and measurable

events Θ̃ ⊆ Θ, T̃1 ⊆ T1, and T̃2 ⊆ T2, we have

µ(Θ̃× T̃1 × T̃2) =

∫
T̃i

bi(ti)
[
Θ̃× T̃−i

]
dµi(ti),

where µi ∈ ∆(Ti) is the marginal of µ on Ti.
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Observation 1. The ex ante probability of trading is zero for any Bayesian (Nash)

equilibrium σ = (σi(ti))i∈I, ti∈Ti .

Proof. Suppose contrarily that the ex ante probability of trading is strictly positive

for some equilibrium σ. In what follows, we only consider the case where σ is a pure

strategy equilibrium, although the conclusion holds for mixed-strategy equilibria

as well.

Let T̂i ⊆ Ti denote the set of all types of player i who plays ai = 1. Focus on

player i = 1. For any t1 ∈ T̂1, we have

E[θ1 ∈ Θ1|t ∈ {t1} × T̂2]− c ≥ 0,

which implies E[θ1|t ∈ T̂1 × T̂2] > 0. Similarly, we have E[θ2|t ∈ T̂1 × T̂2] > 0.

However, it clearly contradicts the pure-common-value assumption.

Next, imagine an alternative situation where the players enjoy heterogeneous

beliefs. For each player i ∈ I and types ti, t
′
i ∈ Ti, we write t

′
i �CCO ti if hk(t

′
i) �SD

hk(ti) for any k ∈ N. That is, t
′
i is more optimistic about θi than ti; t

′
i is more

optimistic that all players are more optimistic about θi than t′i, and so on, ad

infinitum.31

As a corollary of Theorem 1, we establish monotone comparative statics with

respect to this partial order. We state the result without its proof.

Corollary 1. If t
′
i �CCO ti, then in the least and greatest equilibrium of the game,

player i with type t
′
i plays a higher action than with ti.

Recall that it is common knowledge that θ1 + θ2 = 0. Nevertheless, trade can

sometimes occur, because the players do not agree on the exact level of θ1(= −θ2).

The CCO order introduced in this paper captures the connection between the size

of the belief divergence and the trading probability.32

8 Concluding Remark

In this paper, we introduce an order on types over a universal type space. We

consider it as a natural order in the sense that monotone comparative statics is

31Recall that any type ti believes that θ1 + θ2 = 0 throughout the entire belief hierarchies.
32We can also reproduce essentially the same result if we make the cost of entry zero but instead

assume that the players are strictly risk averse.
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valid in a class of supermodular games with incomplete information. We fully

characterize this order in terms of common certainty of optimism, that is, type t
′
i

is higher than type ti if t
′
i is more optimistic about state than ti; more optimistic

that all players are more optimistic about state than ti; and so on ad infinitum.

First, we show that whenever the common certainty of optimism holds, monotone

comparative statics holds in all supermodular games. Second, as its converse,

we construct an “optimism-elicitation game” as a single supermodular game with

the property that whenever the common certainty of optimism fails, monotone

comparative statics fails.

Although our CCO order characterizes monotone comparative statics in any

supermodular game, in some cases, one may be more interested in a fixed super-

modular game. In such a case, the CCO order continues to be a sufficient condition

for monotone comparative statics of that game, but may not be necessary. That

is, monotone comparative statics may hold even between types which are not or-

dered in the CCO sense. To see this, we consider a simple example where there

are no strategic interactions. It is clearly a supermodular game. Imagine a pair

of types of player i, ti and t′i, such that the first-order belief of ti (over Θ) first-

order stochastically dominates t′i, while the second-order belief of ti does “not”

first-order stochastically dominates t′i. Then, ti and t′i are not ordered in the CCO

sense, but clearly ti plays a higher equilibrium action than t′i. More generally, in

any supermodular game that is solvable by R(<∞) rounds of iterative elimination

of strictly dominated strategies, only up to R-th order beliefs matter for monotone

comparative statics. Hence, the CCO order is “too restrictive.”33

Establishing a possibly finer order on types that is both necessary and sufficient

for monotone comparative statics in a given supermodular game is interesting but

challenging. Although we leave it as a future research question, here we briefly

33On the other hand, suppose that a researcher who analyzes such a R(<∞)-round dominance

solvable game fears a possibility of misspecification or over-simplification of the game, so that

the “actual” environment is not R-round dominance solvable, although she is fine to assume

that the actual game is supermodular. In such cases, the CCO order would be a “safe” way

to introduce an order on types because monotone comparative statics holds uniformly in all

(supermodular) games. Similarly, the CCO order would be relevant if one considers a mechanism

design situation, where any game can be designed as long as it is supermodular. See Mathevet

(2010) for supermodular mechanism design.
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explain our conjecture, on which we are currently working.34 The basic idea is

to introduce “indifference” relations on types of each player as follows. Consider

the first round of elimination of never best responses. If we have a1
i (ti) �Ai

a1
i (t
′
i),

then we let ti �1
i t
′
i.

35 This order is richer than the first-order stochastic dominance

order: if ti first-order stochastically dominates t′i in terms of their first-order beliefs,

then we have ti �1
i t
′
i, but the converse may not be true.

As the next step, if we have a2
i (ti) �Ai

a2
i (t
′
i), then we let ti �2

i t
′
i. We conjecture

that this order is richer than the first-order stochastic dominance order: if ti first-

order stochastically dominates t′i in terms of their second-order beliefs, then we

have ti �2
i t
′
i. If this logic goes through up to any level of iterative elimination,

then in the limit, we conjecture that this alternative order is (i) richer than the

CCO order; (ii) is implied by monotone comparative statics in this game; and (iii)

implies monotone comparative statics in this game.

9 Appendix

In this appendix, we provide all the omitted proof from the main body of the paper.

9.1 Proof of Proposition 1

Proposition 1: Let b, b
′ ∈ ∆(X). b (first-order) stochastically dominates b′ if

and only if, for any Y0 ⊆ X0, b(clup(Y0)) ≥ b′(clup(Y0)). In addition, b strictly

stochastically dominates b′ if and only if the inequality holds for any Y0 ⊆ X0 and

it is strict at least for some Y0 ⊆ X0.

Proof. (⇐) First, suppose that b does not stochastically dominate b′. Then, there

exists a closed upper set Y such that b(Y ) < b′(Y ). We show that, in such a case,

there exists Y0 ⊆ X0 such that clup(Y0) = Y . Then this implies that b(clup(Y0)) <

b′(clup(Y0)). To show this, we establish the following result:

34We thank Takashi Ui because this conjecture stems from a discussion with him.
35Technically, we may not be able to interpret �1

i as a partial order because both ti �1
i t
′
i and

ti �1
i t
′
i are possible even if ti 6= t′i. In that case, we can interpret those types as equivalent (in

the sense of �1
i ) and can consider a quotient space based on this equivalence class. Then, �1

i is

a partial order on this quotient space.
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Lemma 12. For any Y ⊆ X, up(Y ) ∩ X0 is dense in up(Y ), i.e., the closure of

up(Y )∩X0 is up(Y ). In particular, if Y is itself an upper set, then Y ∩X0 is dense

in Y .

Proof. Fix Y ⊆ X. The lemma is trivially true if up(Y ) is empty. So let us assume

not. Let y ∈ up(Y ). Then, by Assumption 1, for any ε > 0, there is x ∈ X0

such that x ≥ y (and hence x ∈ up(Y )) and x ∈ Bε(y). This shows that up(Y ) is

dense.

(⇒) Next, suppose that b stochastically dominates b′. Fix Y0 ⊆ X0. If clup(Y0) is

a closed upper set, then we have b(clup(Y0)) ≥ b′(clup(Y0)) by the previous lemma.

Since clup(Y0) is closed by definition, it remains to show in the next lemma that

clup(Y0) is an upper set, which completes the proof. In fact, we can further show

that, for any Y ⊆ X (not only for any Y0 ⊆ X0), clup(Y ) is a closed upper set,

which turns out to be useful later.

Lemma 13. For any Y ⊆ X, clup(Y ) is a closed upper set.

Proof. Suppose, on the contrary, that clup(Y ) is not an upper set. Then, there

exist x ∈ clup(Y ) and y ≥ x such that y /∈ clup(Y ). Since clup(Y ) is closed, one

can find ε > 0 such that d(y, clup(Y )) ≥ ε.

By the previous lemma, up(Y )∩X0 is dense in up(Y ), and hence, up(Y )∩X0 is

dense in clup(Y ). Thus, for any δ > 0, there is z ∈ up(Y )∩X0 such that d(x, z) < δ.

By Assumption 2, we can set δ = δ(x, ε) so that we have d(up(x), up(z)) < ε.

This contradicts our hypothesis that d(y, clup(Y )) ≥ ε because we can deduce the

following implication:

ε ≤ d(y, clup(Y ))

= inf
y0∈clup(Y )

d(y, y0)

≤ inf
y0∈up(z)

d(y, y0) (∵ up(z) ⊆ clup(Y ))

= d(y, up(z)) (due to the definition of the Hausdorff metric)

≤ sup
y′∈up(x)

d(y′, up(z)) (∵ y ∈ up(x))

≤ d(up(x), up(z)) (due to the definition of the Hausdorff metric)

< ε. (Contradiction!)

This completes the proof of Lemma 13.
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With Lemmas 12 and 13, we thus complete the proof of Proposition 1.

9.2 Proof of Lemma 2

Lemma 2. Let b, b′ ∈ ∆(Θ). If b′ does not first-order stochastically dominate b,

then there exists (γ, q) ∈ F (Θ0)×Q+ such that β∗(γ, q|b) > β∗(γ, q|b′).

Remark 3. Suppose that there exists some closed upper set Y ⊆ X such that

b(Y ) > b′(Y ). By Proposition 1, there exists some Y0 ⊆ X0 such that Y =

clup(Y0). If this Y0 is finite, i.e., Y0 ∈ F (X0), then we trivially have β∗(Y0, 0|b) >
β∗(Y0, 0|b′). Thus, the subtlety of the proof of Lemma 2 lies in the possibility that

Y0 is (countably) infinite.

Proof. Suppose that there exists some closed upper set Y ⊆ X such that b(Y ) >

b
′
(Y ). Then, we fix ε ∈ (0, (b(Y ) − b′(Y ))/2). First, by the “inner regularity”

property, there exist two compact sets Z1, Z2 ⊆ X such that b(Z1) ≥ 1 − ε and

b′(Z2) ≥ 1 − ε. Let Z = Z1 ∪ Z2. This Z is again compact, and we have that

b(Z) ≥ 1− ε and b′(Z) ≥ 1− ε.
Let {ηj}∞j=1 be a decreasing sequence such that ηj > 0 for each j ∈ N and

ηj → 0 as j →∞. For each j, define

δj =
δ(Y ∩ Z, ηj)

2
,

where δ(Y ∩ Z, ηj) is given as δ(Y, ε) in Assumption 2. By construction, we have

that δj → 0 as j →∞.

Because Y is closed, Y ∩ Z is compact. Fix j ∈ N. Let {Bδj(x)}x∈Y ∩Z be

an open cover of Y ∩ Z. Since Y ∩ Z is compact, we can take a finite subcover

{Bδj(xn)}Nj

n=1 such that xn ∈ Y ∩ Z for each n = 1, . . . , Nj. Since X0 is dense in

X, for each n = 1, . . . Nj, we can take yn ∈ X0 so that yn ∈ Bδj(xn).

Define γj = {y1, . . . , yNj
} ∈ F (X0). Then, for each n = 1, . . . , Nj, we have

d(yn, Bδj(xn)) < 2δj. This implies that B2δj(yn) ⊇ Bδj(xn). Therefore,

B2δj(γj) =

Nj⋃
n=1

B2δj(yn) ⊇
Nj⋃
n=1

Bδj(xn) ⊇ Y ∩ Z.
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Define also

Dj =
∞⋃
k=j

B2δk(γk).

By construction, we observe that Dj ⊇ B2δj(γj) for each j ∈ N, and D1 ⊇
D2 ⊇ · · · ⊇ Y ∩Z. Moreover, we have that d(Y ∩Z,Dj) < 2δj. Since Assumption

2 guarantees that the upper set correspondence is continuous with respect to the

Hausdorff metric, we obtain

d(clup(Y ∩ Z), clup(Dj)) = d(up(Y ∩ Z), up(Dj)) < ηj.

Fix x /∈ clup(Y ∩ Z) arbitrarily. Then, we have d(x, clup(Y ∩ Z)) > 0 because

clup(Y ∩Z) is closed. Let j(x) ∈ N be defined in such a way that d(x, clup(Y ∩Z)) ≥
ηj(x). Then we have that x /∈ clup(Dj) for any j ≥ j(x), implying that x /∈⋂∞
j=1 clup(Dj). Therefore, we have

⋂∞
j=1 clup(Dj) ⊆ clup(Y ∩Z). However, because

clup(Dj) ⊇ clup(Y ∩ Z) for any j ∈ N, we obtain
⋂∞
j=1 clup(Dj) = clup(Y ∩ Z).

Thus, we have limj→∞ b(clup(Dj)) = b(clup(Y ∩ Z)).

Now, recall that, for each j ∈ N,

clup(Y ∩ Z) ⊆ clup(B2δj(γj)) ⊆ clup(Dj),

and thus,

b(clup(B2δj(γj))) ∈ [b(clup(Y ∩ Z)), b(clup(Dj))],

b′(clup(B2δj(γj))) ∈ [b′(clup(Y ∩ Z)), b′(clup(Dj))].

Regarding b′, first observe that

lim
j→∞

b′(clup(B2δj(γj))) = b′(clup(Y ∩ Z)).

Thus, by our hypothesis, there must exist J ∈ N such that b′(clup(B2δJ (γJ))) ≤
b′(clup(Y ∩ Z)) + ε. Define γ = γJ ∈ F (X0) and q ∈ Q+ such that q ∈ (0, 2δJ ].

Then, we deduce the following implication:

β∗(γ, q|b′) = b′(clup(Bq(γ))) (by the optimality of β∗ given b
′
)

≤ b′(clup(Y ∩ Z)) + ε (by our hypothesized inequality)

≤ b′(clup(Y )) + ε (∵ Y ∩ Z ⊆ Y )

= b′(Y ) + ε (∵ Y is a closed upper set).
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Regarding b, we have

β∗(γ, q|b) = b(clup(Bq(γ))) (by the optimality of β∗ given b)

≥ b(clup(Y ∩ Z)) (∵ clup(Y ∩ Z) ⊆ clup(Bq(γ)))

≥ b(Y )− ε,

where the last inequality is obtained because

b(Y ) = b(Y ∩ Z) + b(Y \ Z) (∵ b is a probability measure)

≤ b(clup(Y ∩ Z)) + ε

(∵ Y ∩ Z ⊆ clup(Y ∩ Z) and b(Z) ≥ 1− ε⇒ b(Y/Z) ≤ ε).

Because 0 < ε < (b(Y )−b′(Y ))/2, we conclude that β∗(γ, q|b) > β∗(γ, q|b′).

9.3 Proof of Lemma 3

Lemma 3: B is a compact metric space.

Proof. Since B is made isomorphic to Hilbert cube, we confirm that B is a compact

metric space. Thus, it suffices to show that B is a closed subset of B. Therefore,

our task here reduces to showing that B\B is open. Fix β ∈ B\B arbitrarily. Then,

we know that there exist (γ′, q′), (γ′′, q′′) ∈ F (X0)×Q+ such that clup(Bq′ (γ
′)) ⊆

clup(Bq′′ (γ
′′)) and β(γ′, q′) > β(γ′′, q′′). What we want to show is that there exists

an open ball containing β that does not intersect with B.

Define

ε = (β(γ′, q′)− β(γ′′, q′′)) min{µ(γ′, q′), µ(γ′′, q′′)}.

By our hypothesis, we have ε > 0. It then suffices to show that an open ball

Bε(β) = {β′ ∈ B|‖β − β′‖ < ε} does not intersect with B. Suppose, on the
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contrary, that there is β′ ∈ Bε(β) ∩ B. Then,

‖β − β′‖ =
∑

(γ,q)∈F (X0)×Q+

|β(γ, q)− β′(γ, q)|µ(γ, q)

≥ |β(γ′, q′)− β′(γ′, q′)|µ(γ′, q′) + |β(γ′′, q′′)− β′(γ′′, q′′)|µ(γ′′, q′′)

= |β(γ′, q′)− β′(γ′, q′)|µ(γ′, q′) + |β′(γ′′, q′′)− β(γ
′′
, q
′′
)|µ(γ′′, q′′)

≥
{
|β(γ′, q′)− β′(γ′, q′)|+ |β′(γ′′, q′′)− β(γ

′′
, q
′′
)|
}

min{µ(γ′, q′), µ(γ′′, q′′)}

≥ |β(γ′, q′)− β′(γ′, q′) + β′(γ′′, q′′)− β(γ
′′
, q
′′
)|min{µ(γ′, q′), µ(γ′′, q′′)}

≥ (β(γ′, q′)− β(γ′′, q′′)) min{µ(γ′, q′), µ(γ′′, q′′)}
(∵ β

′ ∈ B and clup(Bq′ (γ
′
)) ⊆ clup(Bq′′ (γ

′′
))⇒ β

′
(γ
′
, q
′
) ≤ β

′
(γ
′′
, q
′′
))

= ε,

which contradicts that ‖β − β′‖ < ε.

9.4 Proof of Lemma 4

Lemma 4. For any β ∈ B and ε > 0, there exists β0 ∈ B0 such that ‖β0 − β‖ < ε

and β0 ≥ β.

Proof. Fix β ∈ B and ε > 0. For each N ∈ N, let ΓN =
⋃
h(γ,q)≤N γ (recall that

h : F (X0) × Q+ → N is an injection). Because each γ is a finite subset of X0, so

is ΓN . Hence, we denote ΓN by {x1, . . . , x|ΓN |}.
We first construct βN0 ∈ B0 as an approximation of β ∈ B such that βN0 ap-

proaches β as N → ∞.36 For each X̃ ⊆ ΓN and q ∈ QN , we set n ∈ N with the

following three properties: (i) β(X̃, q) ∈ ((n − 1)/N, n/N ]; (ii) βN0 (X̃, q) = n/N ;

and (iii) for each (γ, q) ∈ F (X0)×Q+,

βN0 (γ, q) = inf
q′∈QN

βN0 (ΓN ∩ γ, q′)

subject to Bq′(ΓN ∩ γ) ⊇ Bq(γ).

Second, we have that βN0 ∈ B1
0 because βN0 (γ, q) ∈ QN and βN0 is monotonic.

Third, we claim that βN0 ≥ β. For any (γ, q) ∈ F (X0)×Q+, we have

βN0 (γ, q) ≥ inf
q′∈QN

β(ΓN ∩ γ, q′)

subject to Bq′(ΓN ∩ γ) ⊇ Bq(γ),

36To be precise, βN0 ∈ B1,M , where M = N × |ΓN |.
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while, by monotonicity of β, we have

β(γ, q) ≤ β(ΓN ∩ γ, q′),

for any q′ ∈ QN satisfying Bq′(ΓN ∩ γ) ⊇ Bq(γ). The above two inequalities

together imply βN0 (γ, q) ≥ β(γ, q).

Finally, we show that there exists N ∈ N such that ‖β − βN0 ‖ < ε. For each

(γ, q) ∈ F (X0) × Q+, whenever h(γ, q) ≤ |ΓN |, we have γ ⊆ ΓN , and hence,

0 ≤ (βN0 (γ, q)− β(γ, q)) ≤ 1/N . Thus,

‖β − βN0 ‖ ≤
1

N
+

∞∑
n=N+1

µ(h−1(n))

=
1

N
+

1

2N
(∵ µ(γ, q) = (1/2)h(γ,q)).

By taking N large enough so that N > max{2/ε, 1 + log2(1/ε)}, we obtain

‖β − βN0 ‖ < ε. This completes the proof.

9.5 Proof of Lemma 5

Lemma 5: For each C ⊆ B and ε > 0, there exists δ(C, ε) > 0 such that, for any

D ⊆ B with d(C,D) < δ(C, ε), we have d(up(C), up(D)) < ε.

Proof. Fix C ⊆ B, ε > 0, and D ⊆ B with d(C,D) < ε. We show that

d(up(C), up(D)) < ε (i.e., we show that δ(C, ε) = ε works for any C).

Take any β ∈ C and β′ ≥ β. Because d(C,D) < ε, there exists β′′ ∈ D such

that d(β, β′′) < ε.
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Let β∗ = β′ ∨ β′′ ∈ up(D). Then we have

d(β∗, β′) = ‖β∗ − β′‖
=

∑
(γ,q)

(β∗(γ, q)− β′(γ, q))µ(γ, q)

=
∑

(γ,q)|β′(γ,q)<β′′(γ,q)

(β′′(γ, q)− β′(γ, q))µ(γ, q)

≤
∑

(γ,q)|β′(γ,q)<β′′(γ,q)

(β′′(γ, q)− β(γ, q))µ(γ, q)

≤
∑
(γ,q)

|β′′(γ, q)− β(γ, q)|µ(γ, q)

= d(β, β′′)

< ε.

By a symmetric argument, taking any β ∈ D and β′ ≥ β, there exists β′′ ∈ C
such that d(β, β′′) < ε, and we have d(β′ ∨ β′′, β′) < ε.

Therefore, we conclude that d(up(C), up(D)) < ε.

9.6 Proof of Proposition 5

Proposition 5. For each player i with type ti, we have A∞i (ti) = {β∗}, where for

each m ∈ N and each (γ, q) ∈ F (Xm
0 )×Q+, we have

β∗(γ, q) = hm(ti)[clup(Bq(γ))],

where hm(ti) is ti’s belief on Xm.

Proof. Fix m = 1. Then, player i effectively plays a single-person game in which

he reveals his first-order belief only. Suppose by way of contradiction that there

is β ∈ Bi such that β(γ̂, q̂) 6= h1(ti)[clup(Bq̂(γ̂))] for some (γ̂, q̂) ∈ F (X1
0 ) × Q+.

Then, β is strictly dominated by another β′ ∈ Bi, where β′(γ, q) = β(γ, q) for

any (γ, q) 6= (γ̂, q̂) and β′(γ̂, q̂) = h1(ti)[clup(Bq̂(γ̂))]. Note that such β′ is feasible

because we impose no coherency condition among across different orders of beliefs.

Thus, β∗ must satisfy the truth-telling condition:

β∗(γ, q) = h1(ti)[clup(Bq(γ))].
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The rest of the proof is by induction. Fix m ≥ 2, and assume that, up to

(m − 1)th order, each type of each agent behaves truthfully. Assume by way of

contradiction that there is an action β ∈ Bi such that β(γ̂, q̂) 6= h1(ti)[clup(Bq̂(γ̂))]

for some (γ̂, q̂) ∈ F (Xm
0 )×Q+. Then, β is strictly dominated by another β′ ∈ Bi,

where β′(γ, q) = β(γ, q) for any (γ, q) 6= (γ̂, q̂) and β′(γ̂, q̂) = h1(ti)[clup(Bq̂(γ̂))].

Again, such β′ is feasible because we impose no coherency condition among across

different orders of beliefs. Therefore, for any m and (γ, q) ∈ F (Xm
0 )×Q+ we have

β∗(γ, q) = hm(ti)[clup(Bq(γ))].
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