Trade Collapse and Time Sensitivity

Juliana Yu Sun Jianhuan Xu¹

SMU-NUS-Paris Joint Trade Workshop (Merlion 2018 Workshop)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

¹Singapore Management University

Trade collapse

Source: Eaton, Kortum, Neiman and Romalis (AER, 2016)

Cyclicality of time-sensitive vs insensitive industries

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Motivation Wait time in LA (MarineTraffic)

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへ(?)

Search frictions: ships and exporters

Figure 3: Flow of ships arriving empty and loading, and ships leaving empty in 2 week intervals.

Source: Brancaccio, Kalouptsidi and Papageorgiou (2017)

The shipping market friction as a factor of trade pattern

< ∃→

ж

Source: Brancaccio, Kalouptsidi and Papageorgiou (2017)

Summary

- Trade collapsed more for time-sensitive industries;
- Waiting time of ships increased during the great recession;
- There exists shipping market friction worldwide;
- The shipping market may play a large role to determine the trade pattern in business cycle.

Literature

Shipping time as a trade cost

- Hummels and Schaur (2013), Harrigan (2010), Djankov, Freund and Pham (2010), Brancaccio, Kalouptsidi and Papageorgiou (2017)
- Trade collapse and the global recession
 - Eaton, Kortum, Neiman and Romalis (2016), Alessandria, Kaboski and Midrigan (2010), Ahn, Amiti and Weinstein (2011), Chor and Manova (2012)

- Time and business cycle
 - Meier (2018), Novy and Taylor (2014)

Roadmap

1. Empirical methodology and data

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- 2. Empirical findings
- 3. Search model
- 4. Preliminary results
- 5. Conclude

Methodology

$$\begin{aligned} \mathsf{ExGrowth}_{c,i,t} &= \delta_{i,c} + \delta_{i,t} + \delta_{c,t} + \beta_1 (\mathsf{REC}_{c,t} \times \mathsf{SEN}_i) \\ &+ \beta_2 \mathit{Controls}_{i,c,t} + \epsilon_{c,i,t} \end{aligned}$$

- REC_{c,t} is a country- and year-specific indicator, which equals one if country c is in a recession in year t, and zero otherwise.
- β₁ captures the difference in industry export growth in recessions relative to normal times for industries with different levels of sensitivity.
 - β₁ < 0 indicates that export growth in industries with high sensitivity is more seriously affected by recession;
 - $\beta_1 > 0$ indicate that such industries grow particularly fast when there is recession.
- Controls_{*i*,*c*,*t*}: share_{*i*,*c*,*t*-1} and $REC_{c,t} \times X_i$

Data

- Export growth: Exporter Dynamics Database HS2 level, 1997 – 2014.
- Recession: peak-to-trough criterion
 - Troughs are identified as years when the logarithm of annual real GDP falls one standard deviation of the cyclical GDP below its trend using the Hodrick-Prescott filter. (WDI)
 - The peak year is identified as the nearest proceeding year of the trough year, with its cyclical GDP higher than that of its previous and posterior year.
 - The period from the peak to the trough is defined as a contraction.
 - ► The dummy variable REC_{c,t} is equal to 1 if the year is in a contraction, and 0 if otherwise.

Time sensitivity: Hummels and Schaur (2013), Hummels (2011)

 probability of people choosing air transportation with 1 day of delay in transportation.

	10 most sensitive industries	10 least sensitive industries
1	Vegetable Fats	Iron And Steel
2	Meat And Meat Products	Metalliferous Ores
3	Animal Or Veget fats	Textile Yarn
4	Dairy Products	Fertilizers
5	Organic Chemical	Misc food products
6	Travel Goods	Nonmetallic Manufactures
7	Coal Coke	Cork And Wood Manufactures
8	Photographic Equipment	Furniture
9	Plastics In Nonprimary	Petroleum
10	Oil Seeds	Cork And Wood

Data

- Industry Technological Measures X_i: Samaniego and Sun, 2016
 - Investment lumpiness: the average number of investment spikes per firm during a decade in a given industry
 - Alessandria, Kaboski and Midrigan (2010)
 - Intermediate intensity: dividing gross output by the difference between gross output and value added
 - Bems, Johnson and Yi (2011)
 - External finance dependence: the share of capital expenditures not financed internally.

Chor and Manova (2012)

Data

Industry	ISTC	EFD	LMP	INT
Food products	311	-0.039	1.195	0.658
Beverages	313	-0.048	1.29	0.549
Tobacco	314	-0.801	0.815	0.357
Textiles	321	0.029	1.232	0.586
Apparel	322	0.075	1.998	0.493
Leather	323	-0.959	1.927	0.55
Footwear	324	-0.45	2.239	0.483
Wood products	331	0.052	1.72	0.596
Furniture, except metal	332	0.015	1.381	0.484
Paper and products	341	-0.062	0.902	0.551
Printing and publishing	342	-0.222	1.67	0.35
Industrial chemicals	351	0.028	1.34	0.558
Other chemicals	352	1.654	2.13	0.393
Petroleum refineries	353	-0.055	0.763	0.833
Misc. pet. and coal products	354	-0.059	1.042	0.648
Rubber products	355	-0.064	1.098	0.482
Plastic products	356	0.088	1.557	0.494
Pottery, china, earthenware	361	-0.107	1.292	0.311
Glass and products	362	0.289	1.755	0.409
Other non-met. Min. prod.	369	0.021	0.99	0.478
Iron and steel	371	-0.004	0.951	0.578
Non-ferrous metals	372	0.037	1.245	0.681
Fabricated metal products	381	-0.052	1.365	0.488
Machinery, except electrical	382	0.542	2.694	0.479
Machinery, electric	383	0.543	2.704	0.443
Transport equipment	384	0.041	1.614	0.598
Prof. & sci. equip.	385	0.942	2.79	0.344
Other manufactured prod.	390	0.404	2.006	0.46

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

Findings: main results

		Export growth		
Rec imes SE	N -1.325***	-0.970***	-1.225***	-0.875***
	(0.148)	(0.158)	(0.230)	(0.232)
Rec $ imes$ EF	D	-0.174***		
		(0.0300)		
Rec imes IN	Τ		-0.00586	
			(0.0105)	
Rec $ imes$ LN	1P		. ,	-0.00958**
				(0.00386)
Obs	175,067	173, 698	173, 698	173, 698

<□ > < @ > < E > < E > E のQ @

Findings: alternative measure

	Export growth			
$\mathit{Rec} imes \mathit{SEN}$	-0.399***	-0.349***	-0.535***	-0.509***
	(0.0887)	(0.0868)	(0.0880)	(0.0873)
$\mathit{Rec} imes \mathit{EFD}$		-0.237***		
		(0.0277)		
$\mathit{Rec} imes \mathit{INT}$			-0.0563***	
			(0.00674)	
$\mathit{Rec} imes \mathit{LMP}$			· · · ·	-0.0228***
				(0.00244)
Obs	175,067	173, 698	173, 698	173, 698

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 のへで

Model: Environment

- Aggregate state s follows a Markovian process P(s'|s)
- Domestic producers need to search a ship to export. A ship announce contracts to attract exporters.
- Each contract is sufficiently to denote with the expected value x that the producers can get. All the contracts that offer the same expected value are pooled as one market segment.
- Producers direct their search to a market segment x, and meet the ships randomly
 - market tightness on market x as $\theta(x, s)$
 - $\eta(\theta)$: prob a good producer meets a ship
 - $\mu(\theta) = \eta(\theta) / \theta$: prob a ship meets a producer
- The ship is heterogeneous in terms of the fixed transportation cost z

Model: Environment (cont')

- A contract of the ship specifies $\{d_t, p_t, x_t\}_{t=0}^{\infty}$
 - $d_t = 1$ if the ship will leave the habour and 0 otherwise

- *p_t* is the transportation fee charged by the ship
- x_t is the market that the ship posts the contract
- Or in a recursive way $\{d(n, z', s'), p(n, z', s'), x(n, z', s'), W(n, z', s')\}$
 - n: orders received
 - W: the future promised value to the exporter

Model: Producer prob

- Discount rate $\beta < 1$
- Profit only selling in domestic market π(s); profit serving export market π^{*}(s)
- To export, pays a random search cost h, h draws from H(h)
- The good producer has four possible states:
 - 1. only sells on domestic market and is searching on ship now;
 - 2. only sells on domestic market now and does not search a ship;
 - only sells on domestic market but has been matched to a ship and is waiting to deliver;

4. exports now.

Timeline

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Model: Producer prob (cont')

 Expected value of the producer if it does not match with a ship

$$U(s) = \max_{x_{u}} \pi(s) + \beta E_{s',h'} \max[-h' + \eta \left(\theta \left(x_{u}(s'), s'\right)\right) x_{u}(s') + \left(1 - \eta \left(\theta \left(x_{u}(s'), s'\right)\right)\right) U(s'), U^{D}(s')]$$

 Expected value if the producer does not want to search the ship

$$U^{D}(s) = \pi(s) + \beta E_{s'} U(s')$$

- If the good producer is matched to a ship with order *n* and productivity *z*, τ periods ago. The value of the producer is
 W (n, z, τ, s; ω) = π(s) + βE_{z',s'}[d (n, z', s') U^E (s', τ + 1) + (1 d (n, z', s')) W (n, z', s')]
- Value of export is

$$U^{\mathcal{E}}\left(\mathbf{s}, au
ight)=\pi\left(\mathbf{s}
ight)+\max(\pi^{*}\left(\mathbf{s}
ight)-
ho au,\mathbf{0}
ight)+eta\mathcal{E}_{\mathbf{s}'}U\left(\mathbf{s}'
ight)$$

where ho captures the time sensitivity of the goods when export. Ξ

Model: Ship Prob

- An empty ship starts with space n
 (same across all firms) and gradually receives orders.
- Suppose the number of exporters that have been matched with the ship is n
- ► The promised value and waiting time of each exporter j is W_j and τ_j for j ∈ [0, n]
- Wait in the habour, the cost is c (n); leave the habour, fixed cost z
- Two states of the ship: choose to wait in the habour; choose to deliver

Model: Ship Prob (cont')

Wait in the habour

$$J^{N}\left(n, z', s', \{W'_{j}, \tau'_{j}\}_{j \in [0, n]}\right) = \max_{p, k, x_{s}, W'_{j}} pq - w\left(s'\right) \frac{q}{\mu\left(\theta\left(x_{s}, s'\right)\right)} + J\left(n', z', s', \{W'_{j}, \tau'_{j}\}_{j \in [0, n']}\right)$$

s.t.
$$n' = n+q, \quad n' \leq \bar{n}$$

 $k = \frac{q}{\mu\left(\theta\left(x_{s}, s'\right)\right)}$

$$W_{j} = \pi (s) + \beta E_{z',s'} [dU^{E} (s', \tau'_{j}) + (1 - d) W'_{j}] \text{ if } j \in [0, n]$$

$$\tau'_{j} = \tau_{j} + 1 \text{ if } j \in [0, n]$$

$$W'_{j} = x_{s} + p \text{ if } j \in (n, n']$$

$$\tau'_{j} = 0 \text{ if } j \in (n, n']$$

Model: Ship Prob (cont')

Leave the habour

$$J^{A}\left(z',s'
ight)=-z+eta J^{e}\left(z',s'
ight)$$

• $J^{e}(z, s)$ is the value of an empty ship and defines as

$$J^{e}(z,s) = \max_{p^{e},q^{e},x^{e}_{s}} [p^{e}(z,s) q^{e}(z,s) - w(s) \frac{q^{e}(z,s)}{\mu(\theta(x^{e}_{s},s))} + J(q^{e}(z,s),z,s)]^{+}$$

Value of the ship

$$J\left(n, z, s, \{W_{j}, \tau_{j}\}_{j \in [0, n]}\right)$$

= $-c(n) + \beta E_{z', s'} \left[\begin{array}{c} \max_{d} (J^{A}(z', s'), \\ J^{N}(n, z', s', \{W'_{j}, \tau'_{j}\}_{j \in [0, n']}) \end{array} \right]$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Joint Surplus

 V (n, z, T, s) is the joint surplus if a ship is matched with n exporters.

$$V(n, z, T, s) = \max_{q, x_s} n\pi(s) - c(n) + \\ \beta E_{z', s'} \{ \max_{d'} \begin{bmatrix} -\left(x_s(n, z', T', s') + \frac{w(s')}{\mu(\theta(x_s, s'))}\right)q(n, z', T', s') \\ + V(n + q, z', T', s'), \\ -z' + \beta V^e(z', s') + U^E(s', T')n \end{bmatrix} \\ s.t. \ n + q \le \bar{n} \\ T' = \frac{n}{n + q}(T + 1)$$

The value V^e (z, s) is the joint surplus of an empty ship which is defined as

$$V^{e}(z,s) = \max_{q^{e},d^{e}} \left\{ \begin{array}{c} -\left(x_{s}^{e}(z,s) + \frac{w(s)}{\mu(\theta(x_{s}^{e},s))}\right) q^{e}(z,s) \\ + V\left(q^{e},z,0,s\right) \end{array} \right\}^{+}$$

Proposition

The ship's and the producer's problem and the joint surplus problem are equivalent in the following sense:

(i)
$$V(n, z, T, s) = J(n, z, s, \{W_j, \tau_j\}_{j \in [0,n]}) + \sum_{j=0}^{n} W_j;$$

(ii) the firm's policy functions maximize the joint surplus;(iii) the policy functions in the joint-surplus functions maximize the firm's problem.

Calibration

The matching technology is assumed to be

$$\begin{array}{lll} \eta \left(\theta \right) & = & \zeta \theta^{1-\varepsilon} \\ \mu \left(\theta \right) & = & \zeta \theta^{-\varepsilon} \end{array}$$

The cost of holding inventory is

$$c(n) = \gamma_0 n^{\gamma_1}$$

• The profit function $\pi(s)$ is assumed to

$$\pi(s) = s^{\alpha}$$

 \blacktriangleright We choose the $\pi^{*}\left(s
ight)$ as

$$\pi^{*}\left(\mathbf{s}\right)=\mathbf{A}\pi\left(\mathbf{s}\right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Parameter Values

Parameter	Value	Source
ζ	1.2	Schaal(2015)
ϵ	0.6	Schaal(2015)
γ_0	3.4	Haltiwanger net al.(2005)
γ_1	2	Haltiwanger et al. (2005)
α	0.75	Lucas(1988)
A	1.1	Data export sales/domestic sales
ρ	0.2	Hummels and Schaur (2013)

Numerical Methods

1. We can first guess V(n, z, s) and solve $\kappa(s)$ from the free entry condition. This step is monotonistic and we can use the bisect to solve it.

$$\int \max_{q^{e}(z,s)} \left[-\kappa\left(s\right)q^{e} + V\left(q^{e}, z, s\right)\right]^{+} dG\left(z\right) = k_{e}$$

2. Then we solve $\theta(x, s)$ and the exporters problem to get $U^{E}(s)$

$$x + rac{w(s)}{\mu(\theta(x,s))} = \kappa(s)$$

for each $x < \kappa(s)$; otherwise $\theta(x, s) = 0$ if $x \ge \kappa(s)$ The value function of U should be standard. 3. Finally, we can solve V(n, z, s) and check for convergence.

Results

Impulse response of 1% negative TFP shock

◆□ → ◆□ → ◆臣 → ◆臣 → □臣

Results

Counter-factual Analysis

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

Conclusion

- We find that industries which are sensitive to shipping time experienced more decline in their trade growth rates.
- The dynamic search model featuring heterogenous producers and ships is able to generate the sensitivity of trade to waiting time.

Future work?