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1 Introduction

Ai et al. (2021) proposed an estimation of the general treatment model that encompasses binary,
multi-valued, continuous, and a mixture of discrete and continuous treatments, with a variety of
parameters of interest including the average treatment effect, the quantile treatment effect, and
other types of treatment effect. They considered a parametric treatment-effect function, a function
of the treatment status only, and proposed a weighted regression to estimate the treatment-effect
function, with the weight function estimated by the maximum entropy approach. Under some
sufficient conditions, they established large sample properties of the estimated treatment-effect
function. This paper extends their work to the nonparametric and heterogeneous treatment-effect
function, an unknown function of the treatment status, and some covariates. This extension
is useful because a false parameterization of the treatment-effect function could lead to an er-
roneous conclusion and heterogeneous treatment-effect function enables individualized policy
design. Under some sufficient conditions, we derive the asymptotic distribution of the estimated
treatment-effect function and establish uniform confidence bands. The uniform confidence bands
enable more powerful inference.

This paper contributes to the literature by extending the estimation and inference of the con-
ditional average treatment effect (see e.g. Heckman and Vytlacil, 2005; Abrevaya et al., 2015;
Nie and Wager, 2021; Fan et al., 2022) and the conditional quantile treatment effect (Giessing
and Wang, 2021; Xu et al., 2022) in the binary treatment model to the general treatment model,
and extending the estimation and inference of the average treatment-effect function (Hirano and
Imbens, 2004; Imai and van Dyk, 2004; Florens et al., 2008; Kennedy et al., 2017; Fong et al.,
2018; Huang and Zhang, 2022) and the quantile treatment-effect function (e.g. Galvao and Wang
(2015); Ai et al. (2021, 2022)) in the continuous treatment model to the heterogeneous treatment-
effect function. Furthermore, the uniform confidence bands in the continuous treatment models
appear new and have not been reported in the literature.

The paper is organized as follows. Section 2 sets up the basic framework. Section 3 presents
a sequential estimation procedure in which the weights are estimated in the first stage by mini-
mizing the distance between arbitrary weights and uniform weights. The estimated weights are
then plugged into the second stage of weighted regression. Section 4 establishes the large sam-
ple properties of the estimated heterogeneous treatment-effect function. Section 5 constructs the
uniform bands based on the multiplier bootstrap. Section 6.2 suggests a data-driven approach for
selecting tuning parameters. Section 7 reports a simulation study, while Section 8 presents an
empirical application, followed by some concluding remarks in Section 9. All technical proofs
and extra simulation results are relegated to supplemental material.

2 Basic Framework

Let T denote the observed treatment status variable, with support T ⊂ R and a marginal proba-
bility distribution function FT (t). Let Y ∗(t) denote the potential response when treatment T = t
is assigned. The probability density of Y ∗(t) exists, denoted by fY ∗(t), and is continuously differ-
entiable. Let L(·) denote a nonnegative, strictly convex, and possibly non-smooth loss function
satisfying L(0) = 0 and L(v) ≥ 0 for all v ∈ R. The derivative of L(·), denoted by L′(·), exists
almost everywhere and is non-constant. Let X ∈ RdX , for some integer dX ≥ 1, denote a vector
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of observable covariates with support X . Let Z = H(X) denote a known transformation of X ,
with dimension dZ ≤ dX and support Z . Some examples of the transformation are Z = X
or Z = X1, a subset of X , or Z =

∑J
j=1 1 (X ∈ Xj) · j, with ∪J

j=1Xj = X . The covariates
Z shall be used to model the heterogeneity in the treatment-effect function across subpopula-
tions. The conditional-response function, g0(·, ·), is the unique solution to the following convex
optimization problem:

g0(·, ·) = argmin
g(·,·)

∫
T
E [L{Y ∗(t)− g(t, Z)}] dFT (t). (2.1)

The heterogeneous treatment-effect function, denoted by HTE, is defined as τ0(t1, t0|z) =
g0(t1, z) − g0(t0, z) when the treatment status is changed discretely from T = t0 to T = t1
or τ0(t|z) = ∂tg0(t, z) = ∂g0(t, z)

/
∂t when the treatment status is changed marginally.

Model (2.1) encompasses many popular models with a variety of parameters of interest. For
example, with L(v) = v2 and T = {0, 1}, model (2.1) gives the conditional average response
function for the binary treatment, g0(t, z) = E{Y ∗(t)|Z = z}. The conditional average treatment
effect, g0(1, z)− g0(0, z), is studied in Heckman et al. (1998); Hahn (1998); Heckman and Vyt-
lacil (2005); Crump et al. (2008); Wager and Athey (2018); Kennedy (2020) for the case Z = X ,
and in Abrevaya et al. (2015); Fan et al. (2022) for the case Z = a strict subset of X . With
L(v) = v{τ − 1(v ≤ 0)} for some τ ∈ (0, 1) and T = {0, 1}, model (2.1) gives the condi-
tional quantile response function for the binary treatment, g0(t, z) = F−1

Y ∗(t)|Z(τ |z) = inf{q :

P{Y ∗(t) ≥ q|Z = z} ≤ τ}. The conditional quantile treatment effect, g0(1, z) − g0(0, z), is
studied in Chernozhukov and Hansen (2005).

Let Y = Y ∗(T ) denote the observed response. Throughout the paper, we impose the follow-
ing condition to identify the conditional response function (Hirano and Imbens, 2004; Ai et al.,
2021).

Assumption 1 (Unconfoundedness). For all t ∈ T , given X , T is independent of Y ∗(t), i.e.,
Y ∗(t) ⊥ T |X , for all t ∈ T .

Let fT |X denote the conditional density of T given the observed covariates X . Under As-
sumption 1, the conditional-response function, g0(t, z), solves

g0(·, ·) = argmin
g(·,·)

E [π0(T,X)L{Y − g(T, Z)}] .

where

π0(T,X) =
fT (T )

fT |X(T |X)

is the weight function(Robins et al., 2000; Ai et al., 2021). We shall discuss the estimation of
π0(t,x), g0(t, z), and the partial derivative ∂tg0(t, z) in the next section.

Remark 1. Ai et al. (2021) studied a parametric-response function, g0(t,β0), with the finite
dimensional parameter β0 ∈ Rp solving the following optimization problem:

β0 = argmin
β

E [π0(T,X)L{Y − g(T ;β)}] ,
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where g(·, ·) is a known function. The parametric-response function cannot capture the hetero-
geneity of the treatment effects across subpopulations. Moreover, the parametric form could be
mis-specified, leading to a false conclusion.

3 Estimation

We propose an estimation of the conditional-response function by adapting the sequential esti-
mation approach of Ai et al. (2021). We notice that, for any suitable function u(t,x), the weight
function π0(t,x) satisfies the following moment restriction,

E {π0(T,X)u(T,X)} =

∫
u(t,x)fT (t)fX(x)dtdx. (3.1)

Equation (3.1) identifies π0(t,x) so we can estimate π0(Ti,Xi) by solving the sample analogue of
(3.1). The challenge is that ( 3.1) has an infinite number of restrictions. It is impossible to impose
an infinite number of restrictions on a finite number of sample observations. To overcome this
difficulty, we approximate a functional space by a sequence of finite-dimensional sieve spaces.
Specifically, let uK(T,X) = (uK,1(T,X), . . . , uK,K(T,X))⊤ denote the approximation sieves,
such as B-splines and power series (see Newey, 1997; Chen, 2007, for more discussion on sieve
approximation). π0(T,X) also satisfies

E {π0(T,X)uK(T,X)} =

∫
uK(t,x)fT (t)fX(x)dtdx . (3.2)

Let D(v, v0) denote a distance measure between the weight v and the design weight v0.
D(v, v0) is continuously differentiable in v, nonnegative, and strictly convex in v, and satisfies
D(v0, v0) = 0. The calibration idea put forward by Deville and Särndal (1992) is to minimize the
distance between the final weights and the design weights subject to the sample analog of (3.2).
Since E[π0(Ti,Xi)] = 1, we set v0 = 1 and estimate π0(Ti,Xi) by π̂i:{

{π̂i}Ni=1 = argmin
∑N

i=1D(πi, 1)

subject to 1
N

∑N
i=1 πiuK(Ti,Xi) =

1
N(N−1)

∑N
j=1,j ̸=i

∑N
i=1 uK(Ti,Xj).

(3.3)

The dual solution of the primal problem (3.3) is

π̂K(Ti,Xi) = ρ′
{
λ̂⊤

KuK(Ti,Xi)
}
,

with λ̂K maximizing the strictly concave function,

ĜK(λ) =
1

N

N∑
i=1

ρ
{
λ⊤uK(Ti,Xi)

}
− 1

N(N − 1)

N∑
j=1,j ̸=i

N∑
i=1

λ⊤uK(Ti,Xj),

where ρ(v) = D{(D′−1(1− v, 1), 1}+ v− v · (D′−1(1− v, 1) is a strictly increasing and concave
function and ρ′(·) is the first derivative of ρ(·).
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Remark 2. Our approach to estimating the weight function differs slightly from the one in Ai
et al. (2021). Ai et al. (2021) considered the product sieve uK(T,X) = wK1(T )⊗mK2(X) and
exploited the product-moment condition,

E
{
π0(T,X)wK1(T )m

⊤
K2
(X)

}
= E {wK1(T )} · E

{
m⊤

K2
(X)

}
,

where wK1(T ) and mK2(X) are approximation sieves of T and X respectively. They estimated
π0(Ti,Xi) by minimizing the KL distance from the uniform weight, subject to the product-moment
condition, {π̂i}Ni=1 = argmin

∑N
i=1 πi log πi

subject to 1
N

∑N
i=1 πiwK1(Ti)m

⊤
K2
(Xi) =

{
1
N

∑N
i=1wK1(Ti)

}{
1
N

∑N
j=1m

⊤
K2
(Xj)

} .

Their dual solution is π̂(Ti,Xi) = exp(−w⊤
K1
(Ti)Λ̂K1×K2 mK2(Xi)−1), with Λ̂K1×K2 maximiz-

ing the following objective function

Λ̂K1×K2 = argmax
Λ∈RK1×K2

{
− 1

N

N∑
i=1

exp
(
−w⊤

K1
(Ti)Λ̂K1×K2mK2(Xi)− 1

)
−

(
1

N

N∑
i=1

w⊤
K1
(Ti)

)
Λ

(
1

N

N∑
j=1

mK2(Xj)

)}
.

Their approach is technically difficult to extend to other types of distance measures. In con-
trast, our approach does not exploit the product-moment condition but permits general distance
measure D(·, ·), which encompasses the exponential tilting, D(v, 1) = v log v (Imbens et al.
(1998)), the empirical likelihood, D(v, 1) = log v (Owen (1988)), and the quadratic program-
ming, D(v, 1) = (v − 1)2/2 (Yiu and Su (2018)).

Remark 3. The advantage of the quadratic distance, D(v, 1) = (v − 1)2/2, is that it gives a
closed-form solution,

π̂K(t,x) =

(
1

N(N − 1)

N∑
i=1

N∑
j=1,i ̸=j

uK (Ti,Xj)−
1

N

N∑
i=1

uK (Ti,Xi)

)⊤

×

(
1

N

N∑
i=1

uK (Ti,Xi)u
⊤
K (Ti,Xi)

)−1

uK (t,x) + 1.

Remark 4. By construction, π̂K(Ti,Xi) is positive for all i. Moreover, by the first order condi-
tion, π̂K(Ti,Xi) satisfies the sample analog of (3.2):

1

N

N∑
i=1

π̂K(Ti,Xi)uK(Ti,Xi) =
1

N(N − 1)

N∑
i=1,i ̸=j

N∑
j=1

uK(Ti,Xj).

With the constant one included in the sieve basis functions, π̂K(Ti,Xi) also satisfies

1

N

N∑
i=1

π̂K(Ti,Xi) = 1.

These restrictions prevent the extreme weights.
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In the second stage, we substitute the weight function with the estimates and apply the local
linear regression to estimate the conditional-response function, g0(t, z), and its partial derivative
with respect to t,

(ĝ(t, z), ∂̂tg(t, z)) = argmin
(α,β)

N∑
i=1

π̂K(Ti,Xi)L{Yi − α− (Ti − t)β}Kh (Ti − t, Zi − z) ,

where h = (h0, h1, ..., hdZ ) denotes the bandwidth, Kh (t, z) = K(t/h0) ·
∏dZ

k=1K(zk/hk), and
K(·) is a univariate kernel function.

Remark 5. If T is discrete, the estimate of g0(t, z) simplifies to

ĝ(t, z) = argmin
a∈R

N∑
i=1

π̂K(Ti,Xi)L (Yi − a)1(Ti = t)KhZ
(Zi − z) for all (t, z) ∈ T × Z,

where hZ = (h1, ..., hdZ )
⊤ is the bandwidth, KhZ

(z) =
∏dZ

k=1 K(zk/hk).

Remark 6. The sieve generalized empirical likelihood (GEL) approach proposed in Chen et al.
(2019) can be adapted to estimate the conditional-response function. Note that g0(T, Z) solves
the following conditional-moment restriction,

E [π0(T,X)L′(Y − g0(T, Z))|T, Z] = 0,

which implies
E [π0(T,X)L′(Y − g0(T, Z))vK1(T, Z)] = 0,

where {vK1(T, Z)} is a K1-dimensional approximating sieve. Let s(·) be a strictly concave
and twice-continuously differentiable function, with Lipschitz-continuous second derivative and
s′(0) = s′′(0) = −1. Following Chen et al. (2019), the sequential GEL estimator of g0(t, z) is
given by

ĝGEL(t, z) = α̂⊤
K0
vK0(t, z),

where α̂K0 ∈ RK0 solves the following saddle point optimization problem:

α̂K0 = arg min
α∈RK0

max
λ∈RK

1

N

N∑
i=1

s
{
π̂K(Ti,Xi)L′(Yi − β⊤vK0(Ti, Z)) · λ⊤vK1(Ti, Zi)

}
− s(0).

The large sample properties of this estimator can be established but the derivation is more com-
plicated than that in Chen et al. (2019).

4 Large Sample Properties

4.1 Notation

To aid exposition, we introduce some notation. For any matrix A, ∥A∥ denotes the Euclidean
norm of A. For any measurable function f , ∥f∥L2(X) = (E[|f(X)|2])1/2 denotes the L2(X)
norm. For any sequences aN , bN ∈ R+, aN ≲ bN means aN ≤ CbN for some constant C > 0
for all N , aN ≺ bN means aN/bN → 0 as N → ∞, and aN ∼ bN means aN/bN bounded and
bounded away from zero for all N . For any a, b ∈ R, denote a ∧ b = min(a, b) and a ∨ b =
max(a, b).
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4.2 Assumptions

The following conditions are maintained throughout the remainder of the paper.

Assumption 2. {Ti,Xi, Yi}Ni=1 are observations drawn independently from the distribution of
(T,X, Y ). The support T × X of (T,X) is compact.

Assumption 3. There exist two positive constants η and η such that 0 < η ≤ π0(t,x) ≤ η < ∞
for all (t,x) ∈ T × X .

Assumption 4. ρ(v) is strictly concave in v ∈ R.

Assumption 5. With hpro =
∏dZ

k=0 hk, suppose that hpro ∼ N−c1 and K ∼ N c2 hold for some
constants c1, c2 > 0.

Assumption 6. Let ρ′−1(·) be the inverse function of the derivative of ρ(·). There exist λK ∈
RK and a positive constant ω > 0 such that sup(t,x)∈T ×X |{ρ′−1 (π0(t,x)) − λ⊤

KuK(t,x)| =
O(K−ω).

Assumption 7. The eigenvalues of E[uK(T,X)u⊤K(T,X)] are bounded from above and away
from zero uniformly in K.

Assumption 8. With ζ(K) = sup(t,x)∈T ×X ∥uK(t,x)∥, suppose that ζ(K)(K−ω+
√
K/N) → 0,∑dZ

s=0 h
2
s → 0, and Nhproh20 → ∞ as N → ∞.

Assumption 2 restricts the random variables to be bounded. This condition is restrictive
but convenient for large-sample derivations. Assumption 3 requires the weight function to be
bounded and bounded away from zero. This condition is commonly imposed in the covariate-
balancing literature. Assumption 4 permits a wide class of estimators, including the exponential
tilting, ρ(v) = − exp(−v− 1), as a special case. Assumption 6 requires the sieve approximation
errors to shrink to zero at polynomial rates. Assumption 7 rules out near multicollinearity in the
approximating basis functions. This condition is familiar in the sieve regression literature(Chen,
2007). Assumption 8 restricts the growth rate of K to ensure consistency of the proposed esti-
mator. Newey (1997) derived ζ(K) = O(K) for the power series and ζ(K) = O(

√
K) for the

B-splines.
Under the above conditions, we first compute the convergence rates under the mean-squared

error norm.

Theorem 1. Suppose that Assumptions 1-8 hold. We obtain

∫
|ĝ(t, z)− g0(t, z)|2 dFT,Z(t, z) = Op

 1

Nhpro
+

(
dZ∑
s=0

h2s

)2
+

{
K−2ω +

K

N

} and

∫ ∣∣∣∂̂tg(t, z)− ∂tg0(t, z)
∣∣∣2 dFT,Z(t, z) = Op

 1

Nhproh20
+

(
dZ∑
s=0

h2s

)2
+

{
K−2ω +

K

N

} .
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We now turn to the large sample properties of ĝ(t, z) − g0(t, z) and ∂̂tg(t, z) − ∂tg0(t, z)

for any (t, z) ∈ T × Z . Denote ϕ(a|t, z) = E{L(Y − a)|T = t, Z = z} and ϕ̃(a|t, z) =
E{π0(T,X)L(Y − a)|T = t, Z = z}.

Assumption 9. •

(i) ϕ(a|t, z) and ϕ̃(a|t, z) are twice continuously differentiable with respect to a, and
all derivatives are continuous in (t, z) ∈ T × Z for every fixed a. Moreover,
inf(t,z)∈T ×Z ∂

2
aϕ̃(g0(t, z)|t, z) > 0.

(ii) The kernel function K(v) ≥ 0 has a bounded support and κj1 :=
∫∞
−∞ vjK(v)dv satisfies

κ0,1 = 1, κ1,1 = 0, and κj,1 <∞ for j = 2, 3, 4.

(iii) The density function fT,Z(t, z) is continuous and satisfies inf(t,z)∈T ×Z fT,Z(t, z) > 0.

(iv) The conditional density function fY |T,Z(y|t, z) is continuous in (t, z) for every y ∈ R.
There exists a positive constant ε > 0 and a positive function G(y|t, z) such that
sup∥(t′,z′)−(t,z)∥≤ϵ fY |T,Z(y|t′, z′) ≤ G(y|t, z) holds for almost all y, and that∫

{L(y − δ)− L(y) + L′(y) · δ}2G(y|t, z)dy = O(δ4) as δ → 0

holds uniformly over (t, z) ∈ T × Z .

(v) The second derivatives ∂2aϕ(g0(t, z)|t, z) and ∂2aϕ̃(g0(t, z)|t, z), fT,Z(t, z), and g0(t, z) are
continuously differentiable in (t, z), with derivatives uniformly bounded over (t, z) ∈ T ×
Z .

Assumption 10. •

(i) There exists a sufficiently large constant, M , such that

sup
(t,z)∈T ×Z

{|g0(t, z)− t · ∂tg0(t, z)| ∨ |∂tg0(t, z)|} ≤M.

The function classes F1 = {(y, t) 7→ L(y − α − β · t) : α, β ∈ [−M,M ]} and F2 =
{(y, t) 7→ L′(y − α − β · t) : a, b ∈ [−M,M ]} are of VC-type in the sense that, for some
constants A and v,

sup
Q

N (Fj, ∥ · ∥Q,2, τ∥Fj∥Q,2) ≤
(
A

τ

)v

, j = 1, 2,

where N (Fj, ∥ · ∥Q,2, ε) is the covering number of Fj at scale ε with respect to the norm
∥ · ∥Q,2, Fj is an envelope function for Fj, and the supreme of Q is taken over all finitely
discrete distributions on R2.

(ii) E
[
supα,β∈[−M,M ] |L′(Y − α− β · T )|q

]
<∞ for some q > 2.

Assumption 11. (i) ζ(K)2K ≺ N1/2 ≺ Kω and {ζ(K)2K1−2ω} ∨ (K2/N) ≺ N1−2/qhproh
2
0;

(ii)
∑dz

s=0 h
2
s ≺ (Nhpro)

−1/2.
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Assumption 9 is similar to Condition A of Fan et al. (1994). Assumption 10 is needed
for applying Corollary 5.1 of Chernozhukov et al. (2014b), and it is satisfied by commonly
used loss function. Assumption 11 is an under-smoothing condition. Denote e(t, z) =

∂2aϕ̃(g0(t, z)|t, z)fT,Z(t, z),

ψ0,h(Ti,Xi, Yi; t, z) =
1

e(t, z)
·
[
π0(Ti,Xi)L′(Yi − g0(t, z)− ∂tg0(t, z)(Ti − t))

− E{π0(Ti,Xi)L′(Yi − g0(t, z)− ∂tg0(t, z)(Ti − t))|Ti,Xi}
]
Kh(Ti − t, Zi − z)

and ψ1,h(Ti,Xi, Yi; t, z) =
1

e(t, z)κ21
·
[
π0(Ti,Xi)L′(Yi − g0(t, z)− ∂tg0(t, z)(Ti − t))

− E{π0(Ti,Xi)L′(Yi − g0(t, z)− ∂tg0(t, z)(Ti − t))|Ti,Xi}
]
(Ti − t)Kh(Ti − t, Zi − z).

Under these conditions, we establish the following asymptotic representation:

Theorem 2. Under Assumptions 2-11, we obtain the linear (Bahadur) representation of ĝ(t, z)
and ∂̂tg(t, z) uniformly over (t, z):

√
Nhpro {ĝ(t, z)− g0(t, z)} =

1√
Nhpro

N∑
i=1

ψ0,h(Ti,Xi, Yi; t, z) +R0,N(t, z)

and√
Nhproh0

{
∂̂tg(t, z)− ∂tg0(t, z)

}
=

1√
Nhproh0

N∑
i=1

ψ1,h(Ti,Xi, Yi; t, z) +R1,N(t, z).

Moreover, we show that

sup
(t,z)∈T ×Z

|R0,N(t, z)| = oP
(
{logN}−1/2

)
and sup

(t,z)∈T ×Z
|R1,N(t, z)| = oP

(
{logN}−1/2

)
.

Remark 7. In the proof of Theorem 2, we show that the bias of of the estimators ĝ(t, z) and
∂̂tg(t, z) are of O(

∑dZ
s=0 h

2
s) uniformly over (t, z) ∈ T × Z , which converge to zero faster than

{Nhpro}−1/2 under Assumption 11 (ii).

Denote the variances by

σ2
0,N(t, z) =

V ar (ψ0,h(Ti,Xi, Yi; t, z))

hpro
and σ2

1,N(t, z) =
V ar (ψ1,h(Ti,Xi, Yi; t, z))

hproh20
.

Assumption 12. There exists some C > 0 such that min(t,z)∈T ×Z σ
2
0,N(t, z) ≥ C and

min(t,z)∈T ×Z σ
2
1,N(t, z) ≥ C.

Applying the Lyapunov central limit theorem (CLT) and Theorem 2, we obtain the pointwise
convergence in distribution,√

Nhpro{ĝ(t, z)− g0(t, z)}
σ0,N(t, z)

d−→ N (0, 1) and

√
Nhproh0{∂̂tg(t, z)− ∂tg0(t, z)}

σ1,N(t, z)

d−→ N (0, 1)
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for every (t, z) ∈ T × Z .
The heterogeneous treatment-effect function when the treatment level changed marginally,

τ0(t|z) = ∂tg0(t, z), is estimated by τ̂(t|z) =∂̂tg(t, z), whose asymptotic distribution follows
from applying Theorem 2, √

Nhproh0{τ̂(t|z)− τ0(t|z)}
σ1,N(t, z)

d−→ N (0, 1).

The heterogeneous treatment-effect function when the treatment level changed discretely from
t0 to t1, τ(t1, t0|z) = g(t1, z) − g(t0, z), is estimated by τ̂(t1, t0|z) = ĝ(t1, z) − ĝ(t0, z), whose
asymptotic distribution also follows from applying Theorem 2.

Corollary 3. Under Assumptions 2-11, we obtain√
Nhpro {τ̂(t1, t0|z)− τ0(t1, t0|z)}

=
1√
Nhpro

N∑
i=1

{ψ0,h(Ti,Xi, Yi; t1, z)− ψ0,h(Ti,Xi, Yi; t0, z)}+RN(t1, t0, z),

where
sup

(t0,t1,z)∈T ×T ×Z
|RN(t0, t1, z)| = oP

(
{logN}−1/2

)
.

5 Uniform Inference Bounds

The asymptotic distribution derived above can be used for (pointwise) statistical inference.
Specifically, with τ0(t|z) and τ0(t1, t0|z) as hypothesized functions, denote

Ẑ1,N(t, z) =

√
Nhproh0{τ̂(t|z)− τ0(t|z)}

σ̂1,N(t, z)
and

Ẑ2,N(t1, t0, z) =

√
Nhpro {τ̂(t1, t0|z)− τ0(t1, t0|z)}

σ̂2,N(t1, t0, z)
,

where σ̂1,N(t, z) and σ̂2,N(t1, t0, z) are respectively consistent estimates of σ1,N(t, z) and

σ2,N(t1, t0, z) =

√
V ar (ψ0,h(Ti,Xi, Yi; t1, z)− ψ0,h(Ti,Xi, Yi; t0, z))

hpro
.

For a given level of significance α, let cα denote the critical value of the standard normal distri-
bution. Then for any given point (t, t0, t1, z), we reject τ0(t|z) (τ0(t1, t0|z)) if∣∣∣Ẑ1,N(t, z)

∣∣∣ > cα

(∣∣∣Ẑ2,N(t1, t0, z)
∣∣∣ > cα

)
.
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The pointwise tests can be applied to all points. The hypothesized function is rejected if it is
rejected by some pointwise tests. These tests are not powerful enough to test the hypothesized
functions. A more powerful test is to find the critical values C1α, C2α such that, under the null,

lim
N→∞

P
(
sup
t,z

∣∣∣Ẑ1,N(t, z)
∣∣∣ < C1α

)
= lim

N→∞
P
(
sup
t1,t0,z

∣∣∣Ẑ2,N(t1, t0, z)
∣∣∣ < C2α

)
= 1− α.

To develop such test, we apply the wild-bootstrap algorithm. Specifically, let ξ denote a positive
random variable, independent of (T,X, Y ) with E[ξ] = 1 and V ar(ξ) = 1. The distribution
of ξ has a sub-exponential tail. Let B be a positive integer and let {ξ(b)i }N,B

i=1,b=1 be an i.i.d.
sequence from the distribution of ξ. For b = 1, ..., B and every (t, z) ∈ T × Z , we compute

π̂
(b)
K (Ti,Xi) = ρ′

{(
λ̂

(b)
K

)⊤
uK(Ti,Xi)

}
, with λ̂

(b)

K ∈ RK the maximizer of

Ĝ
(b)
K (λ) =

1

N

N∑
i=1

ξ
(b)
i ρ

{
λ⊤uK(Ti,Xi)

}
− 1

N(N − 1)

N∑
j=1,j ̸=i

N∑
i=1

λ⊤uK(Ti,Xj).

We then compute

(ĝ(b)(t, z), τ̂ (b)(t, z)) = argmin
(α,β)

N∑
i=1

ξ
(b)
i π̂

(b)
K (Ti,Xi)L{Yi − α− β · (Ti − t)}Kh (Ti − t, Zi − z)

and τ̂ (b)(t1, t0, z) = ĝ(b)(t1, z)− ĝ(b)(t0, z). Denote

Z
(b)
1,N(t, z) =

1√
Nhproh0σ1,N(t, z)

N∑
i=1

{ξ(b)i − 1}ψ1,h(Ti, Xi, Yi; t, z)

and

Z
(b)
2,N(t1, t0, z) =

1√
Nhproσ2,N(t1, t0, z)

N∑
i=1

{ξ(b)i −1} (ψ0,h(Ti,Xi, Yi; t1, z)− ψ0,h(Ti,Xi, Yi; t0, z)) .

The following theorem provides a theoretical foundation for computing the critical values.

Theorem 4. Under Assumptions 2-11, we have, for b = 1, . . . , B,√
Nhproh0

{
τ̂ (b)(t, z)− τ̂(t, z)

}
σ1,N(t, z)

= Z
(b)
1,N(t, z) +R

(b)
1,N(t, z)

and √
Nhpro

{
τ̂ (b)(t1, t0, z)− τ̂(t1, t0, z)

}
σ2,N(t1, t0, z)

= Z
(b)
2,N(t1, t0, z) +R

(b)
2,N(t1, t0, z),

where
sup

(t,z)∈T ×Z
|R(b)

1,N(t, z)| = sup
(t,z)∈T ×Z

|R(b)
2,N(t1, t0, z)| = oP

(
{logN}−1/2

)
.
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Theorem 4 implies √
Nhproh0{τ̂ (b)(t, z)− τ̂(t, z)}

σ1,N(t, z)

d−→ N (0, 1)

and √
Nhpro{τ̂ (b)(t1, t0, z)− τ̂(t1, t0, z)}

σ2,N(t1, t0, z)

d−→ N (0, 1)

for every (t, z) ∈ T × Z .
The following procedure constructs the uniform inference bands. A similar procedure can be

implemented for the uniform inference of τ(t, z) and τ(t1, t0, z).
Uniform Confidence Band Implementation Procedure

1. Compute τ̂(t, z) for a suitably fine grid over T × Z and τ̂(t1, t0, z) for a suitably fine grid
over T × T × Z .

2. Consider a sufficiently large integer, B. Compute τ̂ (b)(t, z) and τ̂ (b)(t1, t0, z) over the same
grid for b = 1, ..., B, with a new set of i.i.d. 2×Bernoulli(1/2) random variables {ξ(b)i }Ni=1

in each step b.

3. Estimate σ1,N(t, z) by the sample standard deviation of
√
Nhproh0{τ̂ (b)(t, z)− τ̂(t, z)}Bb=1,

denoted by σ̂1,N(t, z). Estimate σ2,N(t1, t0, z) by the sample standard deviation of√
Nhpro{τ̂ (b)(t1, t0, z)− τ̂(t1, t0, z)}Bb=1, denoted by σ̂2,N(t1, t0, z).

4. For b = 1, ..., B, compute

M1−sided
1b = sup

(t,z)∈T ×Z

√
Nhproh0{τ̂ (b)(t, z)− τ̂(t, z)}

σ̂1,N(t, z)
,

M2−sided
1b = sup

(t,z)∈T ×Z

√
Nhproh0|τ̂ (b)(t, z)− τ̂(t, z)|

σ̂1,N(t, z)
,

and

M1−sided
2b = sup

(t1,t0,z)∈T ×T ×Z

√
Nhpro{τ̂ (b)(t1, t0, z)− τ̂(t1, t0, z)}

σ̂2,N(t1, t0, z)
,

M2−sided
2b = sup

(t1,t0,z)∈T ×T ×Z

√
Nhpro|τ̂ (b)(t1, t0, z)− τ̂(t1, t0, z)|

σ̂2,N(t1, t0, z)
,

where the supremum is approximated by the maximum over the chosen grid point.

5. Given a confidence level 1 − α, find the empirical 1 − α quantile of the sets of number
{M1−sided

jb : b = 1, ..., B} and {M2−sided
jb : b = 1, ..., B}, which are denoted by Ĉ1−sided

jα

and Ĉ2−sided
jα respectively for j = 1, 2.

12



6. The uniform confidence bands are constructed as

I1L =

{(
τ̂(t, z)− Ĉ1−sided

1α

σ̂1,N(t, z)√
Nhproh0

,∞

)
: (t, z) ∈ T × Z

}
,

I1R =

{(
−∞, τ̂(t, z) + Ĉ1−sided

1α

σ̂1,N(t, z)√
Nhproh0

)
: (t, z) ∈ T × Z

}
,

I12 =

{(
τ̂(t, z)− Ĉ2−sided

1α

σ̂1,N(t, z)√
Nhproh0

, τ̂(t, z) + Ĉ2−sided
1α

σ̂1,N(t, z)√
Nhproh0

)
: (t, z) ∈ T × Z

}
,

I2L =

{(
τ̂(t1, t0, z)− Ĉ1−sided

2α

σ̂2,N(t1, t0, z)√
Nhpro

,∞

)
: (t1, t0, z) ∈ T × Z

}
,

I2R =

{(
−∞, τ̂(t1, t0, z) + Ĉ1−sided

2α

σ̂2,N(t1, t0, z)√
Nhpro

)
: (t1, t0, z) ∈ T × Z

}
,

I22 =

{(
τ̂(t1, t0, z)− Ĉ2−sided

2α

σ̂2,N(t1, t0, z)√
Nhpro

, τ̂(t1, t0, z) + Ĉ2−sided
2α

σ̂2,N(t1, t0, z)√
Nhpro

)
: (t1, t0, z) ∈ T × Z

}
.

The following theorem establishes the asymptotic validity of the proposed confidence bands.

Theorem 5. Under Assumptions 2-11, and suppose that B → ∞ as N → ∞, we have

lim
N→∞

P (τ(·, ·) ∈ I1L) = lim
N→∞

P (τ(·, ·) ∈ I1R) = lim
N→∞

P (τ(·, ·) ∈ I12) = 1− α

and

lim
N→∞

P (τ(·, ·, ·) ∈ I2L) = lim
N→∞

P (τ(·, ·, ·) ∈ I2R) = lim
N→∞

P (τ(·, ·, ·) ∈ I22) = 1− α.

We can use the uniform confidence bands to test the hypothesized treatment-effect functions.
For example, with T ∈ {0, 1}, Z = X, and L(v) = v2, we use the uniform confidence band to
test the null,

H0 : τ(1, 1, x) = E[Y ∗(1)− Y ∗(0)|X = x] = 0 for all x ∈ X ,

which is studied by Crump et al. (2008). For multivalued treatments, T ∈ T = {0, 1, ..., J}, we
use the uniform confidence band to test the null,

H0 : τ(t1, t0, z) = 0 for all z ∈ Z and all t1 ̸= t0 ∈ {0, 1, ..., J}.

For continuous treatments, we use the uniform confidence band to test the null,

H0 : τ(t, z) = 0 for all (t, z) ∈ T × Z . (5.1)

The null is rejected at α significance if there exists a pair of (t, z) ∈ T × Z such that 0 is not
contained in the (1− α) uniform confidence region.
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6 Numerical Details

6.1 Basis function
In our numerical studies, we set the sieve basis uK to be the product power series. Specifically,
we define uK(T,X) = wK1(T )⊗wK2(X) and K = (K1+1) · (K2+1), where, for any positive
integers p and r, wp : Rr 7→ Rpr+1:

wp(v) = (1,v1:p
1 , . . . ,v1:p

r )⊤ ,

and v1:p
j = (vj,v

2
j , . . . ,v

p
j ) for the jth element of v for any variable v ∈ Rr.

6.2 Selection of tuning parameters
The tuning parametersK and h must satisfy some sufficient conditions for the asymptotic deriva-
tion. However, those conditions do not give a unique selection in practice. This section presents
a data-driven approach to selecting the tuning parameters. Specifically, we randomly split the
dataset into F sets, for an integer 2 ≤ F ≤ N . In principle, we choose the tuning parameters for
estimating g0, K̂ = (K̂1 + 1) · (K̂2 + 1) and ĥ, to minimize the F -fold GCV criteria

GCV (K1, K2,h) =
F∑

j=1

1

|Sj|

[∑
k∈Sj

π̂K(Tk,Xk)L{Yk − ĝ(−j)(Tk, Zk)}
]2/

(1−K/N)2 ,

over (K1, K2,h) ∈ {1, . . . , P}2 × ΠdZ
i=0Hi, for some positive integer P and set Hi’s, where Sj

denotes the jth set of the dataset, |Sj| is the sample size of the jth set, and ĝ(−j) is computed from
the sample observations excluding the observations in Sj .

Remark 7 suggests that the rate of the optimal bandwidth, hj ≍ N−1/(4+d), for ĝ, and
N−1/(6+d) for ∂̂tg, where d = dZ + 1, for j = 0, . . . , dZ . We thus suggest to set Hj =
sdj ·N−1/(4+d) ·[(log(N)/3)−1, log(N)/3], where sdj denotes the sample standard deviation of the
corresponding covariate, j = 0, . . . , dZ . For estimating the derivative ∂tg0, we take K̂ the same as
for g0, but the bandwidths h̃ = ĥ ·N1/(4+d) ·N−1/(6+d). Finally, the sufficient conditions in The-
orem 5 require under-smoothing for the uniform inference so we take ĥj ·N1/(4+d) ·N−1/(4+d−cj)

for the uniform CI of g0, and h̃j ·N1/(6+d) ·N1/(6+d−ej) for ∂tg0, for some constants 0 ≤ cj < 4+d
and 0 ≤ ej < 6 + d. The choice of the cj’s and ej’s are discussed in the next section.

7 Numerical Studies

7.1 Simulation study

We conduct a small-scale study on a continuous treatment model to assess the finite performance
of the proposed estimators ĝ and ∂̂tg. We consider three response functions. Specifically, let Uw,
Ut and Uy be three independent standard normal random variables. The models are given by

Z ∼ Uniform(−0.65, 0.65), W = 0.5Z + 0.5Uw, T = 0.1W + 0.1Z + 0.4Ut.

DGPC0 : Y ∗(t) = Z +W + 0.5Uy,

14
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Figure 1: Plots of our estimators (row 1) and the naive estimators (row 2) of the conditional
mean dose-response from DGPC0 (first two columns) and the conditional median dose-response
from DGPC1L (last two columns), and their derivatives, N = 200 (dotted line) and N = 600
(dash-dotted line), for z = {−0.25, 0, 0.25}.

DGPC1L : Y ∗(t) = t+ Z +W + 0.5Uy (linear in t),
DGPC1NL : Y ∗(t) = t2 + Z +W + 0.5Uy (non-linear in t).

We generate J = 200 samples of size N = 200, 400 and 600 respectively. With L(v) = v2

and L(v) = v{0.5 − 1(v ≤ 0)} respectively, we compute the estimators ĝ and ∂̂tg for the
conditional average response g0(t, z) = E{Y ∗(t)|Z = z} and the conditional median response
g0(t, z) = F−1

Y ∗(t)|Z(0.5|z), over the grid (t, z) ∈ V = {−0.5,−0.45, . . . , 0.45, 0.5}2. Note that

our estimators ĝ and ∂̂tg have closed-form solutions for the conditional average dose-response,
but not for the conditional quantile dose-response function. The numerical minimization for
estimating g0(t, z) = F−1

Y ∗(t)|Z(0.5|z) is time-consuming. To speed up the computation, we use
the iteratively reweighted least squares algorithm proposed by Lejeune and Sarda (1988). We
estimate π0 using the closed-form solution in Remark 3 with ρ(v) = −(v−1)2/2. Note that such
a ρ choice does not guarantee positive π̂K . We thus truncate any non-positive results to be the
minimum positive value in {π̂K(Ti,Xi)}Ni=1.

We compute the naive estimators, ĝN and ∂̂tgN, by setting π̂K ≡ 1. We evaluate the per-
formance of the estimators using the average squared errors (ASEs) and report the mean and
standard deviation of the ASEs for each estimator from the 200 simulation samples in Table 1.
The simulation results reveal that the proposed estimator consistently outperforms the naive esti-
mator. Moreover, as the sample size increases, both the mean and standard deviation of the ASEs
for the response function and its partial derivative decrease.

Figure 1 displays the bias of the proposed estimator and the naive estimator for the conditional
average dose-response in model DGPC0 and the conditional median dose-response in model
DGPC1L with sample sizesN = 200 andN = 600. The bias of the naive estimator is substantial
since it does not control all the confounding factors. In contrast, the proposed estimator controls
all the confounding factors and consequently, the bias decreases as the sample size increases.

Figure 2 plots the proposed estimator and the naive estimator of the conditional average re-
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Figure 2: Plots of our estimators (1st & 3rd) and the naive estimators (2nd & 4th) of the con-
ditional average dose-response g0(t, z) for z = −0.25, 0.25, from DGPC1NL, N = 400 (1st
& 2nd) and N = 600 (3rd & 4th), corresponding to the 1st quartile (dash-dotted) and the 3rd
quartile (dotted) of the 200 ASEs against the true curve (solid).

sponse in model DGPC1NL, with sample sizesN = 400 andN = 600. We present the estimators
obtained from two random samples, corresponding to the 1st and the 3rd quartiles of the ASEs
from the 200 simulated samples. The plot reveals that the variabilities of all the estimators de-
crease as the sample size increases. The proposed estimator converges to the true curve while
the naive one shows a bias. In particular, the naive estimator tends to have a positive linear
relationship between t and the true curve due to the confounding.

We also compute the uniform confidence bands for g0 and ∂tg0 with the wild-bootstrap
method with B = N . We take the under-smoothing bandwidth constants in Section 6.2 to be
c0 = e0 = 0, c1 = 3.5, e1 = 4.5 for conditional average dose-response and c1 = 2.5, e1 = 0
for conditional median dose-response. Tables 2 reports the empirical coverage probability of the
confidence band for g0 at confidence levels 0.99, 0.95 and 0.90, respectively. Table 3 shows the
empirical rejection probability ofH0 in (5.1) at significance levels 0.01, 0.05 and 0.1 respectively.
The null hypothesis H0 holds under DGPC0, but does not under DGPC1L and DGPC1NL. All
three tables reveal that the size of the uniform inferences and the power of the tests are reasonably
good.

Figure 3 depicts the uniform 95% confidence bands for each model computed from random
samples with sizes N = 200 and N = 600 respectively. The simulation results also show that
the selected bandwidths decrease as the sample size increases and the uniform confidence bands
cover the true curves.

8 Empirical Study

In this section, we apply the proposed estimation method to analyze a dataset from the U.S.
presidential campaign to understand how the number of political advertisements aired causally
affects campaign contributions in non-competitive states. The dataset, commonly utilized in
continuous treatment effect literature, covers a range of 0 to 22379 across N = 16265 zip codes
in non-competitive states (see e.g. Urban and Niebler, 2014; Fong et al., 2018; Ai et al., 2021;
Huang et al., 2022).

The covariates X considered include log(Population), the percentage of the population that
is over 65 years old, log(Median Family Income+1), the percentage of the Hispanic population,
the percentage of the black population, log(Population density + 1), the percentage of college
graduates and the indicator whether the area can commute to a competitive state. Additional
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Figure 3: Plots of the true curve (solid), our estimator (dashed) of g0(t, z) for z = 0 with the
uniform confidence band (dotted) from a simulated sample of DGPC0 (left), DGPC1L (centre)
and DGPC1NL (right) with N = 200 (top) and N = 600 (bottom).

information can be found in Fong et al. (2018).
Urban and Niebler (2014) analyzed the causal relationship between advertising and campaign

contributions from this data using a binary model. They compared the campaign contributions
from the 5230 zip codes that received more than 1000 advertisements with those from the re-
maining 11035 zip codes that received fewer than 1000 advertisements. Their analysis revealed
a significant causal effect of advertising in non-competitive states on the level of campaign con-
tributions.

In contrast, Ai et al. (2021) treated the number of political advertisements as continuous and
assumed a linear model on the average response function. They applied log transformations to
both the outcome and treatment variables: log(Contribution+1) and log(#ads+1), respectively,
where #ads is the number of advertisements. Their analysis finds no significant causal effect of
advertising on campaign contributions, which is consistent with the finding in Fong et al. (2018).

Huang et al. (2022) proposed a unified framework for the specification test of the continuous
treatment effect models and rejected the linear model assumed in Ai et al. (2021). They recom-
mended a Tobit model, combined with a Box-Cox transformation of the observed contributions
and a composite log transformation of #ads, as a better fit for the data. Specifically, their Box-
Cox transformation is defined as BoxCox(Contribution, λ1, λ2) = {(Contribution+λ2)λ1−1}/λ1
with (λ̃1, λ̃2) = (0.1397, 0.0176). They then considered the observed outcome variable,

Y ∗(T ) = Y = BoxCox(Contribution, λ̃1, λ̃2)−min
{

BoxCox(Contribution, λ̃1, λ̃2)
}
,

and the treatment variable, T = log(log(log(#ads + 1) + 1) + 2). Their estimated Tobit model
showed that campaign contributions increase rapidly when #ads ∈ [0, 20], with improvements
becoming marginal thereafter. However, Huang et al. (2022) did not give any inferential results
for the study.
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Table 1: 100 × mean (standard deviation) of the ASEs from 200 Monte-Carlo simulations

DGPC0 DGPC1L DGPC1NL
N Method g ∂tg g ∂tg g ∂tg

Average
200 ours 1.94 (1.02) 10.06 (14.70) 1.93 (1.03) 10.30 (15.70) 2.17 (1.08) 17.88 (14.93)

naive 2.17 (1.13) 14.08 (16.11) 2.23 (1.14) 14.23 (15.91) 2.40 (1.25) 21.57 (16.84)

400 ours 1.00 (0.51) 4.92 (10.09) 1.03 (0.50) 4.91 (10.10) 1.22 (0.59) 13.55 (10.67)
naive 1.25 (0.60) 8.30 (5.88) 1.24 (0.58) 8.33 (5.79) 1.49 (0.68) 16.42 (6.92)

600 ours 0.70 (0.35) 2.58 (2.13) 0.69 (0.34) 2.48 (2.06) 0.89 (0.45) 11.31 (7.10)
naive 0.97 (0.43) 6.56 (3.94) 0.98 (0.42) 6.66 (3.92) 1.18 (0.53) 14.68 (5.34)

Median
200 ours 2.72 (1.50) 22.01 (37.46) 2.73 (1.49) 22.05 (36.59) 2.94 (1.53) 28.81 (34.88)

naive 2.92 (1.47) 23.89 (29.43) 2.94 (1.52) 24.03 (30.03) 3.12 (1.51) 31.60 (29.11)

400 ours 1.46 (0.90) 13.07 (30.40) 1.47 (0.91) 12.98 (30.35) 1.67 (0.94) 20.80 (29.26)
naive 1.70 (0.95) 15.88 (27.78) 1.72 (0.96) 15.78 (27.87) 1.97 (1.02) 24.32 (26.59)

600 ours 1.02 (0.60) 8.52 (23.04) 1.01 (0.59) 8.50 (22.94) 1.20 (0.61) 16.36 (21.88)
naive 1.29 (0.63) 12.05 (22.23) 1.30 (0.61) 11.98 (23.13) 1.50 (0.68) 19.74 (23.28)

Table 2: Empirical coverage probability of confidence band for g calculated from 200 Monte-
Carlo simulations

DGPC0 DGPC1L DGPC1NL
N 99% 95% 90% 99% 95% 90% 99% 95% 90%

Average 200 1.000 0.970 0.930 1.000 0.975 0.935 0.995 0.955 0.900
400 0.990 0.965 0.905 0.995 0.955 0.900 0.995 0.930 0.870
600 0.995 0.955 0.895 0.995 0.950 0.875 0.985 0.935 0.865

Median 200 0.995 0.945 0.920 0.995 0.965 0.915 0.990 0.970 0.905
400 1.000 0.970 0.930 1.000 0.980 0.920 0.990 0.950 0.885
600 0.995 0.955 0.870 0.995 0.950 0.880 0.990 0.940 0.850

These conflicting findings from the previous studies suggest a complicated causal relation-
ship between advertising and campaign contributions. We use the same transformations on the
variables as Huang et al. (2022) and apply the proposed nonparametric method to estimate the
conditional average response, g0(t, z) = E{Y ∗(t)|Z = z}, where Z denotes either the Median
family Income or the percentage of the black population. We estimate g0 and ∂tg0, along with
95% uniform confidence bands.

We plot the estimated functions in Figure 4 using the median family income z ∈
${25, 30, 35, . . . , 120} thousands. For median family income above $50 thousand, the estimated
response function displays patterns resembling those of the unconditional average response func-
tion estimated by Huang et al. (2022). Specifically, advertising rapidly boosts campaign con-
tributions when #ads≤ 20, with only marginal improvements beyond that point. The estimated
derivatives and the associated 95% uniform confidence bands indicate significant causal effect
of advertising on the campaign contributions for 13 out 20 family median income levels, mainly
when the family median income is above $50 thousands and #ad < 50 (see e.g. the figure’s sec-
ond row). Furthermore, the figure’s top second plot demonstrates that the estimated contributions
tend to increase almost monotonically with the area’s median family income.

However, Figure 5 shows the causal link between advertising and campaign contributions is
not affected by the proportion of the black population.
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Figure 4: Plots of our estimators of g0(t, z) (top) for #ads ∈ [0, 100] and Median Income =
${25, 30, . . . , 120} thousands (top 1 and 2), and for Median Income = $45 thousands (solid)
and $95 thousands (dash-dotted), associated with 95% uniform confidence bands (UCB) (top 3);
Plots of our estimators of ∂tg0(t, z) with 95% UCB (bottom) for Median Income = ${45, 70, 95}
thousands (corresponding to bottom 1, 2 and 3).
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Figure 5: Plots of our estimators of g(t, z) (top) (top 1 and 2), and our estimator of
∂tg0(t, z) (top 3) for #ads ∈ [0, 100] and %Black = ${0.2, 0.225, . . . 0.65} (dotted) and
{0.675, 0.7, . . . , 0.8} (dashed); Plots of our estimators of ∂tg(t, z) with 95% UCB (bottom) for
%Black = ${0.3, 0.5, 0.7} (corresponding to bottom 1, 2 and 3).
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Table 3: Empirical rejection probability for H0 : ∂tg(t) = 0 for all t ∈ T ,calculated from 200
Monte-Carlo simulations

DGPC0 DGPC1L DGPC1NL
N 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

Average 200 0.005 0.015 0.060 0.780 0.945 0.975 0.075 0.245 0.395
400 0.015 0.065 0.120 0.965 0.990 1.000 0.190 0.505 0.700
600 0.010 0.045 0.095 0.995 1.000 1.000 0.410 0.695 0.850

Median 200 0.000 0.010 0.025 0.715 0.820 0.905 0.030 0.150 0.275
400 0.000 0.055 0.100 0.930 0.965 0.980 0.260 0.470 0.570
600 0.005 0.040 0.095 0.980 0.990 0.995 0.380 0.700 0.805

9 Concluding Remarks

To be added...
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Appendix

A Verification of Assumption 10

The existence of M is guaranteed by Assumption 2 combined with the continuity of g0(t,x)
and ∂tg0(t,x). When L(v) = v2, we verify the VC-type conditions for F1 and F2 imposed in
Assumption 10(i). For fixed a and b, the subgraph of the function (y, t) 7→ L(y−a− bt) satisfies

{(y, t, u) : u ≤ L(y − a− bt)} = {(y, t, u) : u ≤ (y − a− bt)2}
={(y, t, u) : y − a− bt ≥

√
u ∨ 0} ∪ {(y, t, u) : y − a− bt ≤ −

√
u ∨ 0} ∈ G ∪ G,

where G is the collection of the negativity set of the vector space spanned by the four measurable
functions (y, t, u) 7→ y, (y, t, u) 7→ t, (y, t, u) 7→

√
u ∨ 0 and (y, t, u) 7→ 1, i.e.

G = {{(y, t, u) : x1 · y + x2 · t+ x3 ·
√
u ∨ 0 + x4 ≤ 0} : x1, x2, x3, x4 ∈ R}.

By Van Der Vaart and Wellner (1996, Lemma 2.6.15, Lemma 2.6.18 (iii)), G is a VC class of set.
Then by Van Der Vaart and Wellner (1996, Lemma 2.6.17 (iii)), G ∪ G is also a VC class of set.
Hence, F1 in Assumption10(i) is a VC-subgraph class. By Van Der Vaart and Wellner (1996,
Theorem 2.6.7), the VC-type condition for F1 imposed in Assumption 10(i) holds. Similarly, the
VC-type condition for F2 imposed in Assumption 10(i) holds.

When L(v) = v{τ − 1(v ≤ 0)}, the VC-type conditions for F1 and F2 can be similarly
verified.
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B Key Lemmas

In this section, we list the key lemmas that will help establish our main theorems. The proofs of
these lemmas will be presented in the next section.

B.1 Notations

To aid the presentation of the lemmas, we define the following quantities and notations. Define

G∗
K(λ) := E

[
ĜK(λ)

]
= E

[
ρ
{
λ⊤uK(T,X)

}]
− E

[
λ⊤uK(T1,X2)

]
, λ∗

K := argmax
λ

G∗
K(λ),

π∗
K(T,X) := ρ′

(
{λ∗

K}⊤uK(T,X)
)
, πK(T,X) := ρ′

(
{λK}⊤uK(T,X)

)
,

where λK is given in Assumption 6.
Let ϕN(T,X, Y ; t) be a random variable and R(T,X, Y ;θ, t) := L′(Y −

θ⊤St)ϕN(T,X, Y ; t), for θ ∈ [−M,M ]2 and St = (1, T − t)⊤, such that

1. ϕN(T,X, Y ; t) is Lipschitz in t such that |ϕN(T,X, Y ; t) − ϕN(T,X, Y ; s)| ≤ |t −
s|ΦN(T,X, Y ) for some measurable function ΦN for every (T,X, Y ) ∈ T × X × R
and N ;

2. E{ϕN(T,X, Y ; t)|T = t′,X = x′} is continuously differentiable w.r.t. (t′,x′) ∈ T ×X ;

3. E {supt∈T |ϕN(T,X, Y ; t)|q} ∼ N qc0 for some 0 ≤ c0 < 1.

4. sup(θ,t,z) E
[
|R(T,X, Y ;θ, t)Kh(T − t, Z − z)|2

]
∼ hpro.

Furthermore, we let

GN = {(t′,x′, y) 7→ R(t′,x′, y;θ, t)Kh(t
′ − t, z′ − z) : (θ, t, z) ∈ [−M,M ]2 × T × Z} .

B.2 Lemmas

The following lemmas establish the convergence rates of π̂K(t,x) under L∞ and L2. This lemma
can be proved in the same way as Lemmas 2.1 and 2.2 in Ai et al. (2021) . Thus, the proof will
be omitted.

Lemma 1. Suppose Assumptions 2-8 hold. Then, as N → ∞, we have

∥λ∗
K − λK∥ = O

(
K−ω

)
, ∥λ̂(b)

K − λ∗
K∥ = Op

(√
K

N

)
;

sup
(t,x)∈T ×X

|π0(t,x)− π∗
K(t,x)| = O

(
ζ(K)K−ω

)
,∫

|π0(t,x)− π∗
K(t,x)|2dFT,X(t,x) = O

(
K−2ω

)
,

22



1

N

N∑
i=1

|π0(Ti,Xi)− π∗
K(Ti,Xi)|2 = Op

(
K−2ω

)
;

and

sup
(t,x)∈T ×X

|π̂(b)
K (t,x)− π∗

K(t,x)| = Op

(
ζ(K)

√
K

N

)
,∫

|π̂(b)
K (t,x)− π∗

K(t,x)|2dFT,X(t,x) = Op

(
K

N

)
,

1

N

N∑
i=1

|π̂(b)
K (Ti,Xi)− π∗

K(Ti,Xi)|2 = Op

(
K

N

)
,

for b = 0, 1, . . . , B, where λ̂(0)K := λ̂K and π̂(0)
K := π̂K .

Lemma 2. Under Assumptions 2-8, 10 and 11, GN is a VC-type class. More concretely, there
exist constants A and v ≥ e independent of N such that

sup
Q

N (GN , ∥ · ∥Q,2, τ∥FN∥Q,2) ≤
(
A

τ

)v

0 < τ < 1 ,

for b = 0, 1, . . . , B and supQ is taken over all finitely discrete probability measures on T ×X×R,
where FN is the envolpe function of GN :

FN(t
′,x′, y) = H · sup

θ∈[−M,M ]2
|L′(y − θ⊤(1, t′⊤)| · sup

t∈T
|ϕN(t

′,x′, y; t)| ,

where H is the supremum of Kh(t
′ − t, z′ − z) taken over all (t, t′, z, z′) ∈ T 2 ×Z2 and h > 0.

Lemma 3. Suppose that Assumptions 2-8, 10 and 11 hold and {ζ(K)2K1−2ω} ∨ (K2/N) ≺
N1−2/q−2c0hpro. Then for b = 0, 1, . . . , B, we have

1√
Nhpro

N∑
i=1

{
ξ
(b)
i π̂

(b)
K (Ti,Xi)R(Ti,Xi, Yi;θ, t)Kh(Ti − t, Zi − z)

− E[π0(T,X)R(Ti,Xi, Yi;θ, t)Kh(T − t, Z − z)]

}
=

1√
Nhpro

N∑
i=1

ξ
(b)
i π0(Ti,Xi)

[
R(Ti,Xi, Yi;θ, t)− E{R(T,X, Y ;θ, t)|Ti,Xi}

]
Kh(Ti − t, Zi − z)

+ op
{
(logN)−1/2

}
,

where op
{
(logN)−1/2

}
holds uniformly in (θ, t, z) ∈ [−M,M ]2 × T ×Z , and M is defined in

Assumption 10.

Lemma 4. Suppose that for every (t, z) ∈ T × Z , AN(θ, t, z) is a sequence of convex random
functions in θ defined on an open convex set S in Rp for p ∈ N. There exists a function A(θ, t, z)
that is convex in θ such that sup(t,z)∈T ×Z |AN(θ, t, z) − A(θ, t, z)| = oP (1) for every fixed θ.
Then for each compact set K ⊂ S, we have

sup
θ∈K

sup
(t,z)∈T ×Z

|AN(θ, t, z)− A(θ, t, z)| = oP (1).
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C Proof of Lemmas 2 to 4

C.1 Proof of Lemma 2

Applying Proposition 3.6.12 in Giné and Nickl (2021), we have the class of functions, HN =
{(t′, z′) 7→ Kh(t

′ − t, z′ − z) : (t, z) ∈ T × Z}, is a VC-type class and there exist constants A1

and v1 ≥ e such that

sup
Q

N (HN , ∥ · ∥Q,2, τH) ≤
(
A1

τ

)v1

0 < τ < 1 .

Applying Theorem 2.7.11 in Van Der Vaart and Wellner (1996), we have, for the class of func-
tions, FN = {(t′,x′, y) 7→ ϕN(t

′,x′, y; t) : t ∈ T }, the bracketing number

sup
Q

N[](FN , ∥ · ∥Q,2, 2τ∥ΦN∥Q,2) ≤ N (T , | · |, τ) = |T |
τ
,

where |T | is the length of the compact interval T . Then using the relationship between the
covering and the bracketing numbers (see e.g. page 84 of Van Der Vaart and Wellner (1996)), we
have

sup
Q

N (FN , ∥ · ∥Q,2, τ∥ΦN∥Q,2) ≤ sup
Q

N[](FN , ∥ · ∥Q,2, 2τ∥ΦN∥Q,2) ≤
|T |
τ
.

Thus, FN is a VC-type class. Then using Assumption 10 and Corollary A.1 of Chernozhukov
et al. (2014b), we have the results.

C.2 Proof of Lemma 3

Let ξ(0)i := 1 for i = 1, . . . , N and Ĝ(0)
K := ĜK . The first order condition ∇Ĝ(b)

K (λ̂
(b)
K ) = 0

implies

1

N

N∑
i=1

ξ
(b)
i ρ′

(
(λ̂

(b)
K )⊤uK(Ti,Xi)

)
uK(Ti,Xi) =

1

N(N − 1)

N∑
i=1,i ̸=j

N∑
j=1

uK(Ti,Xj).

Applying the mean value theorem, we have[
− 1

N

N∑
i=1

ξ
(b)
i ρ′′

(
(λ̃(b))⊤uK(Ti,Xi)

)
uK(Ti,Xi)u

⊤
K(Ti,Xi)

]
(λ̂

(b)
K − λ∗

K)

=
1

N

N∑
i=1

ξ
(b)
i ρ′

(
{λ∗

K}⊤uK(Ti,Xi)
)
uK(Ti,Xi)−

1

N(N − 1)

N∑
i=1,i ̸=j

N∑
j=1

uK(Ti,Xj),

where λ̃(b) lies on the line joining from λ̂
(b)
K to λ∗

K .
For presentatoin simplicity, we define the following notations any (θ, t, z) ∈ R2 × T × Z:

R(T,X, Y ;θ, t) := E [R(T,X, Y ;θ, t)|T,X] ,
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Σ̃
(b)
K := − 1

N

N∑
i=1

ξ
(b)
i ρ′′

{
(λ̃(b))⊤uK(Ti,Xi)

}
uK(Ti,Xi)u

⊤
K(Ti,Xi),

ΣK := −E
[
ρ′′
(
(λ∗

K)
⊤uK(T,X)

)
uK(T,X)u⊤K(T,X)

]
,

Ψ̃
(b)
K,h(θ, t, z) := −

∫
R(t′,x′;θ, t)Kh(t

′ − t, z′′′
{
(λ̃(b))⊤uK(t

′,x′)
}
uK(t

′,x′)dFX,T (x
′, t′),

ΨK,h(θ, t, z) := −
∫
R(t′,x′;θ, t)Kh(t

′ − t, z′′′
{
(λ∗

K)
⊤uK(t

′,x′)
}
uK(t

′,x)dFX,T (x
′, t′).

Then

λ̂
(b)
K − λ∗

K (C.1)

=Σ̃
(b)−1
K

 1

N

N∑
i=1

ξ
(b)
i ρ′

(
{λ∗

K}⊤uK(Ti,Xi)
)
uK(Ti,Xi)−

1

N(N − 1)

N∑
i=1,i ̸=j

N∑
j=1

uK(Ti,Xj)

 .
We make the following decomposition:

1√
Nhpro

N∑
i=1

{
ξ
(b)
i π̂

(b)
K (Ti,Xi)R(Ti,Xi, Yi;θ, t)Kh(Ti − t, Zi − z)

− E [π0(Ti,Xi)R(Ti,Xi, Yi;θ, t)Kh(Ti − t, Zi − z)]

}
=

1√
Nhpro

N∑
i=1

[
ξ
(b)
i

{
π̂
(b)
K (Ti,Xi)− π∗K(Ti,Xi)

}
R(Ti,Xi, Yi;θ, t)Kh(Ti − t, Zi − z)

−
∫
T

∫
X

{
π̂
(b)
K (t′,x′)− π∗K(t′,x′)

}
R(t′,x′;θ, t)Kh(t

′ − t, z′ − z)dFX,T (x
′, t′)

]
(C.2)

+
1√
Nhpro

N∑
i=1

[
ξ
(b)
i {π∗K(Ti,Xi)− π0(Ti,Xi)}R(Ti,Xi, Yi;θ, t)Kh(Ti − t, Zi − z)

−
∫
T

∫
X
R(t′,x′;θ, t)Kh(t

′ − t, z′ − z)
{
π∗K(t′,x′)− π0(t

′,x′)
}
dFX,T (x

′, t′)

]
(C.3)

+

√
N

hpro

∫
T

∫
X
R(t′,x′;θ, t)Kh(t

′ − t, z′ − z)
{
π∗K(t′,x′)− π0(t

′,x′)
}
dFX,T (x

′, t′) (C.4)

+

√
N

hpro

[∫
T

∫
X

{
π̂
(b)
K (t′,x′)− π∗K(t′,x′)

}
R(t′,x′;θ, t)Kh(t

′ − t, z′ − z)dFX,T (x
′, t′)

+ Ψ̃
(b)⊤
K,h (θ, t, z)(λ̂

(b)
K − λ∗

K)

]
(C.5)

−

√
N

hpro
Ψ̃

(b)⊤
K,h (θ, t, z)(λ̂

(b)
K − λ∗

K) (C.6)

+
1√
Nhpro

N∑
i=1

{
ξ
(b)
i π0(Ti,Xi)R(Ti,Xi;θ, t)Kh(Ti − t, Zi − z)
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− E [π0(Ti,Xi)R(Ti,Xi, Yi;θ, t)Kh(Ti − t, Zi − z)]

}
(C.7)

+
1√
Nhpro

N∑
i=1

ξ
(b)
i π0(Ti,Xi)

{
R(Ti,Xi, Yi;θ, t)−R(Ti,Xi;θ, t)

}
Kh(Ti − t, Zi − z).

We shall show that the terms (C.2)-(C.5) and (C.6)+ (C.7) are all of oP{(logN)−1/2} uniformly
over (θ, t, z) ∈ [−M,M ]2 × T × Z . Then, by rearranging the equation, we have the results.
For term (C.2): Recalling that π̂(b)

K (t,x) = ρ
′{(λ̂(b)K )⊤uK(t,x)}, by applying the mean value

theorem, we obtain obtain

(C.2) =
1√
Nhpro

N∑
i=1

[
ξ
(b)
i R(Ti,Xi, Yi;θ, t)Kh(Ti − t, Zi − z)ρ′′

{
(λ̃(b))⊤uK(Ti,Xi)

}
× {λ̂(b)

K − λ∗
K}⊤uK(Ti,Xi)

−
∫
T ×X

R(t,x;θ, t0)Kh(t
′ − t, z′′′

{
(λ̃(b))⊤uK(Ti,Xi)

}
{λ̂(b)

K − λ
∗(b)
K }⊤uK(t′,x′)dFX,T (x

′, t′)

]
=W1(θ, t, z) +W2(θ, t, z) +W3(θ, t, z),

where, by applying the mean value theorem again,

W1(θ, t, z)

:=
1√
Nhpro

N∑
i=1

[
ξ
(b)
i R(Ti,Xi, Yi;θ, t)Kh(Ti − t, Zi − z)ρ′′

(
{λ∗

K}⊤uK(Ti,Xi)
)

× {λ̂(b)
K − λ∗

K}⊤uK(Ti,Xi)

−
∫
T ×X

R(t,x;θ, t)Kh(t
′ − t, z′′′

(
{λ∗(b)

K }⊤uK(t′,x′)
)
{λ̂(b)

K − λ∗
K}⊤uK(t′,x′)dFX,T (x

′, t′)

]
,

W2(θ, t, z) :=
1√
Nhpro

N∑
i=1

[
ξ
(b)
i R(Ti,Xi, Yi;θ, t)Kh(Ti − t, Zi − z)ρ′′′ {ξ3(Ti,Xi)}

× {λ̃(b) − λ∗
K}⊤uK(Ti,Xi){λ̂(b)

K − λ∗
K}⊤uK(Ti,Xi)

]
,

W3(θ, t, z) := −

√
N

hpro

∫
T ×X

R(t′,x′;θ, t)Kh(t
′ − t, z′′′′

{
ξ3(t

′,x′)
}

× {λ̃(b) − λ∗
K}⊤uK(t′,x′){λ̂(b)

K − λ∗
K}⊤uK(t′,x′)dFX,T (x

′, t′),

and ξ3(t,x) lies between (λ̃(b))⊤uK(t,x) and {λ∗
K}⊤uK(t,x).

For the term W1(θ, t, z), we first note that

sup
(θ,t,z)

|W1(θ, t, z)|

= sup
(θ,t,z)

∣∣∣∣∣{λ̂(b)
K − λ∗

K}⊤
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× 1√
Nhpro

N∑
i=1

[
ξ
(b)
i R(Ti,Xi, Yi;θ, t)Kh(Ti − t, Zi − z)ρ′′

(
{λ∗

K}⊤uK(Ti,Xi)
)
uK(Ti,Xi)

−
∫
T

∫
X
R(t′,x′;θ, t)Kh(t

′ − t, z′′′
(
{λ∗

K}⊤uK(t′,x′)
)
uK(t′,x′)dFX,T (x

′, t′)

]∣∣∣∣∣
≤ ∥λ̂(b)

K − λ∗
K∥

× sup
θ,t,z

∥∥∥∥∥ 1√
Nhpro

N∑
i=1

[
ξ
(b)
i R(Ti,Xi, Yi;θ, t)Kh(Ti − t, Zi − z)ρ′′

(
{λ∗

K}⊤uK(Ti,Xi)
)
uK(Ti,Xi)

−
∫
T

∫
X
R(t′,x′;θ, t)Kh(t

′ − t, z′′′
(
{λ∗

K}⊤uK(t′,x′)
)
uK(t′,x′)dFX,T (x

′, t′)

]∥∥∥∥∥ .
For each b = 0, 1, . . . , B and ℓ = 1, . . . , K let

Fb,ℓ = {(ξ(b), t′,x′(b)R(t′,x′, y;θ, t)Kh(t
′ − t, z′ − z)

× ρ′′
[
{λ∗

K}⊤uK(t′,x′)
]
uK,ℓ(t

′,x′) : (θ, t, z) ∈ R2 × T × Z} ,

where uK,ℓ is the ℓ-th component of uK . We apply Corollary 5.1 of Chernozhukov et al.
(2014b) to each Fb,ℓ to obtain the uniform convergence rate of W1(θ, t, z). Using Lemma 2
and Lemma 2.6.18 (vi) of Van Der Vaart and Wellner (1996), we have Fb,ℓ is a VC-type class, for
b = 0, 1, . . . , B and ℓ = 1, . . . , K. Next, we calculate that

sup
(θ,t,z)

E
[∣∣ξ(b)R(T,X, Y ;θ, t)Kh(T − t, Z − z)ρ′′

{
(λ∗

K)
⊤uK(T,X)

}
uK,ℓ(T,X)

∣∣2]
≤2 sup

(t,x)∈T ×X

∣∣ρ′′ {(λ∗
K)

⊤uK(t,x)
}
uK,ℓ(t,x)

∣∣2 · C · hpro

=const × hpro .

We then let σ2 = const · hpro. By Assumption 10 (i), we know that Fb,ℓ admits an envelope
function

Fℓ(ξ
(b), t,x, y) :=2C · sup

α,β∈[−M,M ]

|L′(y − α− β · t)| ·
∣∣ρ′′ ({λ∗

K}⊤uK(t,x)
)∣∣ |uK,ℓ(t,x)|

× sup
t′∈T

|ϕN(t,x, y; t
′)|

for some sufficiently large C > 0. Hence, the conditions imposed in Chernozhukov et al. (2014b,
Corollary 5.1) are satisfied. Next, we calculate the quantities in Chernozhukov et al. (2014b,
Corollary 5.1). In their notations, A and v are both constants and we have

∥Fℓ∥P,2 ≤2C ×

∥∥∥∥∥ sup
α,β∈[−M,M ]

|L′(y − α− β · t)| sup
t′∈T

|ϕN(t,x, y; t
′)|

∥∥∥∥∥
P,2

× sup
(t,x)∈T ×X

∣∣ρ′′ ({λ∗
K}⊤uK(t,x)

)
uK,ℓ(t,x)

∣∣
=C ′ ·

∥∥∥∥sup
t′∈T

|ϕN(t,x, y; t
′)|
∥∥∥∥
P,2

= O(N c0) ,
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for some positive contstant C ′. Furthermore, for some q > 2, under Assumption 10 (ii), we have

∥Mℓ∥22 :=E
{

max
1≤i≤N

F 2
ℓ (Ti,Xi, Yi)

}
≤
[
E
{

max
1≤i≤N

F q
ℓ (Ti,Xi, Yi)

}]2/q
≤N2/q [E {F q

ℓ (Ti,Xi, Yi)}]2/q ≤ const ×N2/q+2c0 .

Then, by Chernozhukov et al. (2014b, Corollary 5.1), we have the first moment

E

(
sup
θ,t,z

∣∣∣∣∣ 1√
N

N∑
i=1

[
ξ
(b)
i R(Ti,Xi, Yi;θ, t)Kh(Ti − t, Zi − z)ρ′′

(
{λ∗(b)

K }⊤uK(Ti,Xi)
)
uK,ℓ(Ti,Xi)

−
∫
T

∫
X
R(t′,x′;θ, t)Kh(t

′ − t, z′′′
(
{λ∗(b)

K }⊤uK(t′,x′)
)
uK,ℓ(t

′,x′)dFX,T (x
′, t′)

]∣∣∣∣∣
)

= OP

{√
σ2 log

(
∥Fb,ℓ∥P,2

σ

)
+

∥Mb,ℓ∥2√
N

log

(
∥Fb,ℓ∥P,2

σ

)}
= OP

(√
N−c1 log(N c1+c0) +

N1/q+c0 log(N c1+c0)√
N

)
.

Note that the second moment is bounded above by σ2 = O(hpro). Combining the results above
and given that hpro ∼ N−c1 and K ∼ N c2 for some constant c1, c2 > 0, we have

sup
(θ,t,z)

|W1(θ, t, z)|

≤ ∥λ̂K − λ∗
K∥OP

(√
log(N c1+c0)K +

N1/q+c0 log(N c1+c0)
√
K√

Nhpro

)
= Op

(√
K/N

)
OP

(√
log(N c1+c0)K +

N1/q+c0 log(N c1+c0)
√
K√

Nhpro

)
= op{(logN)−1/2} ,

where the last equality holds provided that Assumption 11 holds.
For the term W3(θ, t, z), by Lemma 1, we get

sup
(θ,t,z)

|W3(θ, t, z)|

= sup
(θ,t,z)

∣∣∣∣
√

N

hpro

∫
T

∫
X
R(t′,x′;θ, t)Kh(t

′ − t, z′′′′ {ξ3(t′,x′)} {λ̃(b) − λ∗
K}⊤uK(t′,x′)

× {λ̂(b)
K − λ∗

K}⊤uK(t′,x′)dFX,T (x
′, t′)

∣∣∣∣
≤
√
N · sup

(t,x)∈T × X
|ρ′′′ (ξ3(t,x))| sup

(θ,t,z)

{
1

hpro

∫
T

∫
X
|R(t′,x′;θ, t)|2K2

h(t
′ − t, z′ − z)dFX,T (x

′, t′)

}1/2

·
{∫

T

∫
X

∣∣∣{λ̃(b) − λ∗
K}⊤uK(t,x)

∣∣∣2 dFX,T (x, t)

}1/2

·
∥∥∥λ̂(b)

K − λ∗
K

∥∥∥ · sup
(t,x)∈T ×X

∥uK(t,x)∥
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=
√
N ·OP (1) ·O(1) ·Op

(√
K/N

)
·OP

(√
K/N

)
· ζ(K) = Op

(
ζ(K)K/

√
N
)
. (C.8)

For the term W2(θ, t, z), we have

sup
(θ,t,z)

|W2(θ, t, z)|

≤2 sup
(t,x)∈T ×X

|ρ′′′ (ξ3(t,x))| · sup
(θ,t,z)

{
1

Nhpro

N∑
i=1

R(Ti,Xi, Yi;θ, t)
2K2

h(t
′ − t, z′ − z)

}1/2

×
√
N ·

{
1

N

N∑
i=1

∣∣∣{λ̃(b) − λ∗
K}⊤uK(Ti,Xi)

∣∣∣2}1/2

·
∥∥∥λ̂(b)

K − λ∗
K

∥∥∥ · sup
(t′,x′)∈T ×X

∥uK(t′,x′)∥

≤Op(1) ·Op(1) ·
√
N ·Op

(√
K/N

)
·Op

(
ζ(K)

√
K/N

)
= Op

(
ζ(K)K/

√
N
)
.

Combining all results, we get

|(C.2)| ≤ sup
(θ,t,z)

|W1(θ, t, z)|+ sup
(θ,t,z)

|W2(θ, t, z)|+ sup
(θ,t,z)

|W3(θ, t, z)|

=op{(logN)−1/2}+Op

(
ζ(K)K/

√
N
)
= oP{(logN)−1/2} ,

where the rate holds uniform over (θ, t, z) ∈ [−M,M ]2 × T × Z .

For term (C.3): We apply again Chernozhukov et al. (2014b, Corollary 5.1) to obtain the uniform
convergence rate. For b = 0, 1, . . . , B, let

Fb,N ={(ξ(b), t′,x′(b)R(t′,x′, y;θ, t)Kh(t
′ − t, z′ − z){π∗

K(t
′,x′)− π0(t

′,x′)}
: (θ, t, z) ∈ [−M,M ]2 × T × Z} .

Using Lemma 2 and Lemma 2.6.18 (vi) of Van Der Vaart and Wellner (1996), we have Fb,N is a
VC-type class, for b = 0, 1, . . . , B. Moreover, we have

σ2 := sup
(θ,t,z)

E
[
|ξ(b)R(T,X, Y ;θ, t)Kh(T − t, Z − z){π∗

K(T,X)− π0(T,X)}|2
]

≤2 sup
(t,x)∈T ×X

|π∗
K(t,x)− π0(t,x)|2 · sup

(θ,t,z)

E
[
|R(T,X, Y ;θ, t)Kh(T − t, Z − z)|2

]
≤2 sup

(t,x)∈T ×X
|π∗

K(t,x)− π0(t,x)|2 × C · hpro

=const × hpro · ζ(K)2 ·K−2ω.

By Assumption 10 (i), we know that F admits an envelope function

FN(t,x, y) = 2C · sup
a,b∈[−M,M ]

|L′(y − a− b · t)| · sup
t′∈T

|ϕN(t,x, y; t
′)||π∗

K(t,x)− π0(t,x)|

for some sufficiently large C > 0 and F is a VC-type class. Hence, the condition of the Corollary
5.1 in Chernozhukov et al. (2014b) is satisfied. Next, we calculate the quantities in Corollary 5.1
of Chernozhukov et al. (2014b). In their notations, A and v are both constants and we have

∥F∥P,2 ≤const ×

∥∥∥∥∥ sup
a,b∈[−M,M ]

∣∣∣∣L′(y − a− b · t) sup
t′
ϕN(t,x, y; t

′)

∣∣∣∣
∥∥∥∥∥
P,2
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× sup
(t,x)∈T ×X

|π∗
K(t,x)− π0(t,x)|

=const ·N c0 × ζ(K)K−ω.

Furthermore,

∥M∥22 :=E
{
max
1≤i≤n

F 2(Ti,Xi, Yi)

}
≤
[
E
{
max
1≤i≤n

F q(Ti,Xi, Yi)

}]2/q
≤N2/q [E {F q(Ti,Xi, Yi)}]2/q ≤ const ×N2/q+2c0 × ζ(K)2K−2ω.

Then, simliar to the arguments for term sup(θ,t,z) |W1(θ, t, z)|, we have

sup
(θ,t,z)

∣∣∣∣ 1√
Nhpro

N∑
i=1

{
ξ
(b)
i (π∗

K(Ti,Xi)− π0(Ti,Xi))R(Ti,Xi, Yi;θ, t)Kh(Ti − t, Zi − z)

− E
[
R(T,X;θ, t)Kh(T − t, Z − z) {π∗

K(T,X)− π0(T,X)}
]}∣∣∣∣

= oP{(logN)−1/2} ,

where the second last equality holds provided that Assumption 11 holds.
For term (C.4): By Lemma 1, we can deduce that

sup
(θ,t,z)

∣∣∣∣∣
√

N

hpro
· E
[
R(T,X;θ, t)Kh(T − t, Z − z) {π∗

K(T,X)− π0(T,X)}
]∣∣∣∣∣

≤

√
N

hpro
· sup
(θ,t,z)

E[{R(T,X;θ, t, z)}2K2
h(T − t, Z − z)]

1
2

× E
[
|π∗

K(T,X)− π0(T,X)|2
] 1

2

=O
(√

NK−ω
)
= o{(logN)−1/2}.

For term (C.5): By the mean value theorem, the term (C.5) is exactly equal to zero.
For term (C.6): For the term (C.6), using (C.1), we have

− (C.6) =

√
N

hpro
Ψ⊤

K,h(θ, t, z)Σ
−1
K ·

[
1

N

N∑
i=1

ξ
(b)
i π∗

K(Ti,Xi)uK(Ti,Xi)

− 1

N(N − 1)

N∑
i=1,i ̸=j

N∑
j=1

uK(Ti,Xj)

]
(C.9)

+

√
N

hpro

{
Ψ̃

(b)
K,h(θ, t, z)−ΨK,h(θ, t, z)

}⊤
Σ−1

K

·
[
1

N

N∑
i=1

ξ
(b)
i π∗

K(Ti,Xi)uK(Ti,Xi)−
1

N(N − 1)

N∑
i=1,i ̸=j

N∑
j=1

uK(Ti,Xj)

]
(C.10)
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+

√
N

hpro
Ψ̃

(b)⊤
K,h (θ, t, z)Σ̃

(b)−1
K

{
ΣK − Σ̃

(b)
K

}
Σ−1

K ·
[
1

N

N∑
i=1

ξ
(b)
i π∗

K(Ti,Xi)uK(Ti,Xi)

− 1

N(N − 1)

N∑
i=1,i ̸=j

N∑
j=1

uK(Ti,Xj)

]
. (C.11)

Consider the term (C.10) first. Let

EN :=
1

N

N∑
i=1

ξ
(b)
i π∗

K(Ti,Xi)uK(Ti,Xi)−
1

N(N − 1)

N∑
i=1,i ̸=j

N∑
j=1

uK(Ti,Xj),

and E[EN ] = 0. We have ∥EN∥ = OP (
√
K/N) from Chebyshev’s inequality. Note that

|(C.10)|2 ≤ sup
(θ,t,z)

∣∣∣∣∣
√

N

hpro
{Ψ̃(b)

K,h(θ, t, z)−ΨK,h(θ, t, z)}⊤Σ−1
K · EN

∣∣∣∣∣
2

≤ N

hpro
· sup
(θ,t,z)

∥Ψ̃(b)
K,h(θ, t, z)−ΨK,h(θ, t, z)∥2 ·

∥∥Σ−1
K · EN

∥∥2
≤N · λ−2

min(ΣK) · sup
(θ,t,z)

1

hpro
∥Ψ̃K,h(θ, t, z)−ΨK,h(θ, t, z)∥2 · ∥EN∥2

=N ·O(1) ·OP

(
hpro · ζ(K)2 · K

N

)
·OP

(
K

N

)
=OP

(
hpro · ζ(K)2

K2

N

)
= oP{(logN)−1},

where the third equality holds because

sup
(θ,t,z)

∥Ψ̃(b)
K,h(θ, t, z)−ΨK,h(θ, t, z)∥2

= sup
(θ,t,z)

∥∥∥∥∫
T

∫
X
R(t′,x′;θ, t)Kh(t

′ − t, z′ − z)

×
(
ρ′′
{
λ̃(b)⊤uK(t

′,x′)
}
− ρ′′

{
(λ∗

K)
⊤uK(T,X)

})
uK(t

′,x′)dFX,T (x
′, t′)

∥∥∥∥2
=O(1) · sup

(θ,t,z)

∫
T

∫
X
|R(t′,x′;θ, t)|2 · |Kh(t

′ − t, z′2

×
∣∣∣ρ′′ {λ̃(b)⊤uK(t

′,x′)
}
− ρ′′

{
(λ∗

K)
⊤uK(t

′,x′)
}∣∣∣2 dFX,T (x

′, t′) (Assumption 7)

=O(1) · sup
(θ,t,z)

∫
T

∫
X
|R(t′,x′;θ, t)|2 · |Kh(t

′ − t, z′2dFX,T (x
′, t′)

× sup
(t,x)∈T ×X

∣∣∣ρ′′ {λ̃(b)⊤uK(t,x)
}
− ρ′′

{
(λ∗

K)
⊤uK(t,x)

}∣∣∣2
=O(1) · sup

(θ,t,z)

∫
T

∫
X
|R(t′,x′;θ, t)|2 · |Kh(t

′ − t, z′2dFX,T (x
′, t′)
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× sup
(t,x)∈T ×X

(
|ρ′′′{ξ(t,x)}|2

∣∣∣(λ̃(b) − λ∗
K)

⊤uK(t,x)
∣∣∣2) (Mean value theorem)

=OP

(
hpro · ζ(K)2 · K

N

)
.

Consider the term (C.11), we have

|(C.11)|2 ≤ sup
(θ,t,z)

∣∣∣∣∣
√

N

hpro
Ψ̃

(b)⊤
K,h (θ, t, z)Σ̃

(b)−1
K

{
ΣK − Σ̃

(b)
K

}
Σ−1

K EN

∣∣∣∣∣
2

≤ N

hpro
· sup
(θ,t,z)

∥Ψ̃(b)
K,h(θ, t, z)∥

2 ·
∥∥∥Σ̃(b)−1

K

{
ΣK − Σ̃

(b)
K

}
Σ−1

K

∥∥∥2 · ∥EN∥2

=
N

hpro
·OP (hpro) ·OP

(
ζ4(K) · K

N

)
·OP

(
K

N

)
=OP

(
ζ4(K) · K

2

N

)
= oP{(logN)−1},

where the first equality holds because∥∥∥Σ̃(b)−1
K

{
ΣK − Σ̃

(b)
K

}
Σ−1

K

∥∥∥2
=tr
(
Σ̃

(b)−2
K

{
ΣK − Σ̃

(b)
K

}
Σ−2

K

{
ΣK − Σ̃

(b)
K

})
≤λ−2

min

(
Σ̃

(b)
K

)
· tr
({

ΣK − Σ̃
(b)
K

}
Σ−2

K

{
ΣK − Σ̃

(b)
K

})
≤λ−2

min

(
Σ̃

(b)
K

)
λ−2
min (ΣK) · tr

({
ΣK − Σ̃

(b)
K

}{
ΣK − Σ̃

(b)
K

})
=OP (1) · ∥ΣK − Σ̃

(b)
K ∥2,

and

∥ΣK − Σ̃
(b)
K ∥2

≤

∥∥∥∥∥ 1

N

N∑
i=1

ξ
(b)
i ρ′′

(
(λ∗

K)
⊤uK(Ti,Xi)

)
uK(Ti,Xi)u

⊤
K(Ti,Xi)

− E
[
ρ′′
(
(λ∗

K)
⊤uK(T,X)

)
uK(T,X)u⊤K(T,X)

] ∥∥∥∥∥
2

(mean value theorem)

+

∥∥∥∥∥ 1

N

N∑
i=1

ξ
(b)
i ρ′′′

(
λ̃(b)⊤uK(Ti,Xi)

)
uK(Ti,Xi)u

⊤
K(Ti,Xi){λ̃(b) − λ∗

K}⊤uK(Ti,Xi)

∥∥∥∥∥
2

=OP

{
ζ2(K) · K

N

}
+OP

(
K

N

)
·O{ζ(K)4} = OP

(
K

N

)
·O{ζ(K)4}.

For the term (C.9), note that Ψ⊤
K,h(θ, t, z)Σ

−1
K uK(t

′,x′) is the weighted L2-projection of
R(t′,x′;θ, t)Kh(t

′−t, z′−z) on the space linearly spanned by uK(t′,x′) with weighted measure
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being −ρ′′{(λ∗
K)

⊤uK(t
′,x′)}dFX,T (t

′,x′), i.e.

Σ−1
K ΨK,h(θ, t, z)

= argmin
γ

E
(
[−ρ′′{(β∗

K)
⊤uK(T,X)}]

{
R(T,X;θ, t)Kh(T − t, Z − z)− γ⊤uK(T,X)

}2)
,

where the projection error is of O(K−α) for some α > 0. Combining this and Lemma 1, we have

(C.9) =

√
N

hpro
Ψ⊤

K,h(θ, t, z)Σ
−1
K ·

[
1

N

N∑
i=1

ξ
(b)
i π∗

K(Ti,Xi)uK(Ti,Xi)

− 1

N(N − 1)

N∑
i=1,i ̸=j

N∑
j=1

uK(Ti,Xj)

]

=

√
N

hpro
·
[
1

N

N∑
i=1

ξ
(b)
i π0(Ti,Xi)R(Ti,Xi;θ, t)Kh(Ti − t, Zi − z)

− 1

N(N − 1)

N∑
i=1,i ̸=j

N∑
j=1

R(Ti,Xj;θ, t)Kh(Ti − t, Zj − z)

]
+ oP{(logN)−1/2}

=

√
N

hpro
·
[
1

N

N∑
i=1

ξ
(b)
i π0(Ti,Xi)R(Ti,Xi;θ, t)Kh(Ti − t, Zi − z)

− E
{
R(T1,X2;θ, t)Kh(T1 − t, Z2 − z)

}]
+ oP{(logN)−1/2}

=
1√
Nhpro

N∑
i=1

[
ξ
(b)
i π0(Ti,Xi)R(Ti,Xi;θ, t)Kh(Ti − t, Zi − z)

− E
{
π0(Ti,Xi)R(Ti,Xi;θ, t)Kh(Ti − t, Zi − z)

}]
+ oP{(logN)−1/2},

where the third equality holds by using the asymptotic properties of U -statistic. Thus, we obtain
that (C.6)+(C.7) is of oP{(logN)−1/2}.

C.3 Proof of Lemma 4

For simplicity, we only proof the case p = 1, which is also the case we will use. For general
p ≥ 1, we refer the proof of convexity lemma in Pollard (1991) for a detailed statement.

Fix ϵ > 0. Since convexity implies continuity, there exists δ > 0 such that
sup(t,z)∈T ×Z |A(θ1, t, z) − A(θ2, t, z)| ≤ ϵ when |θ1 − θ2| ≤ δ. Then we partition K into a
union of interval with length δ and denote the finite set of endpoints as V . Then by the condition,
we know that

sup
θ∈V

sup
(t,z)∈T ×Z

|An(θ, t, z)− A(θ, t, z)| = oP (1).
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For each θ in K, there exists θ1, θ2 ∈ V such that θ ∈ [θ1, θ2]. Then we can write θ as
θ = αθ1 + (1− α)θ2 for some α ∈ [0, 1]. Then the convexity of An gives

An(θ, t, z) ≤αAn(θ1, t, z) + (1− α)An(θ2, t, z)

≤αA(θ1, t, z) + (1− α)A(θ2, t, z) + sup
θ∈V

sup
(t,z)∈T ×Z

|An(θ, t, z)− A(θ, t, z)|

≤A(θ, t, z) + ϵ+ sup
θ∈V

sup
(t,z)∈T ×Z

|An(θ, t, z)− A(θ, t, z)|.

Suppose that θ3 = θ1 − δ ∈ V . Then θ1 can be written as θ1 = βθ + (1 − β)θ3 with
β = δ/(δ + θ − θ1) ≥ 1/2. Then by the convexity of An, we have

βAn(θ, t, z) ≥An(θ1, t, z)− (1− β)An(θ3, t, z)

≥A(θ1, t, z)− (1− β)A(θ3, t, z)− 2 sup
θ∈V

sup
(t,z)∈T ×Z

|An(θ, t, z)− A(θ, t, z)|

≥A(θ, t, z)− ϵ− (1− β){A(θ, t, z) + ϵ} − 2 sup
θ∈V

sup
(t,z)∈T ×Z

|An(θ, t, z)− A(θ, t, z)|}

≥βA(θ, t, z)− 2ϵ− 2 sup
θ∈V

sup
(t,z)∈T ×Z

|An(θ, t, z)− A(θ, t, z)|

Above all, we have

−4ϵ− 4 sup
θ∈V

sup
(t,z)∈T ×Z

|An(θ, t, z)− A(θ, t, z)| ≤ An(θ, t, z)− A(θ, t, z)

≤ ϵ+ sup
θ∈V

sup
(t,z)∈T ×Z

|An(θ, t, z)− A(θ, t, z)|

which means

sup
θ∈K

sup
t,z

|An(θ, t, z)− A(θ, t, z)| ≤ 4ϵ+ 4 sup
θ∈V

sup
(t,z)∈T ×Z

|An(θ, t, z)− A(θ, t, z)|

The implies the desired result holds.
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D Proof of Theorem 2 and 4

In this section, we proof Theorem 2 and 4. Since the loss function L(·) may not be smooth (e.g.
L(v) = v{τ − 1(v ≤ 0)} in quantile regression), the Delta method for deriving the large sample
property is not applicable in our case. To circumvent this problem, we apply the nearness of arg
mins argument in Hjort and Pollard (2011).

Let ĝ(0)(t, z) := ĝ(t, z) and ∂̂tg
(0)
(t, z) := ∂̂tg(t, z),

θ̂(b)(t, z) :=
√
Nhpro/ logN ·

(
ĝ(b)(t, z)− g0(t, z), h0 · {∂̂tg

(b)
(t, z)− ∂tg0(t, z)}

)⊤

,

θ0(t, z) :=
√
Nhpro/ logN · (g0(t, z), h0 · ∂tg0(t, z))⊤, Si = (1, (Ti − t)/h0)

⊤,

and

LN,h(θ, t, z; π̂
(b)
K ) :=

N∑
i=1

ξ
(b)
i π̂

(b)
K (Ti,Xi)L

(
Yi −

(θ + θ0(t, z))
⊤Si√

Nhpro/ logN

)
Kh(Ti − t, Zi − z),

for b = 0, 1, . . . , B. By definition, for every (t, z) ∈ T × Z and b = 0, 1, . . . , B,

θ̂(b)(t, z) = argmin
θ

LN,h(θ, t, z; π̂
(b)
K ) .

Note that ξ(b) is independent of (X, T, Y ). Hence we give the proof of two theorems simultane-
ously. Note that

θ̂(b)(t, z) = argmin
θ

{
LN,h(θ, t, z; π̂

(b)
K )− LN,h(0, t, z; π̂

(b)
K )
}

=argmin
θ

N∑
i=1

ξ
(b)
i π̂

(b)
K (Ti,Xi)

{
L

(
Yi −

(θ + θ0(t, z))
⊤Si√

Nhpro/ logN

)

− L

(
Yi −

θ⊤
0 (t, z)Si√

Nhpro/ logN

)}
Kh(Ti − t, Zi − z)

= argmin
θ

[
− 1√

Nhpro/ logN

N∑
i=1

ξ
(b)
i π̂

(b)
K (Ti,Xi)L′

(
Yi −

θ⊤
0 (t, z)Si√

Nhpro/ logN

)
θ⊤Si · Kh(Ti − t, Zi − z)

+
N∑
i=1

ξ
(b)
i π̂

(b)
K (Ti,Xi)

{
L

(
Yi −

(θ + θ0(t, z))
⊤Si√

Nhpro/ logN

)
− L

(
Yi −

θ⊤
0 (t, z)Si√

Nhpro/ logN

)

+ L′

(
Yi −

θ⊤
0 (t, z)Si√

Nhpro/ logN

)
θ⊤Si√

Nhpro/ logN

}
Kh(Ti − t, Zi − z)

]
.

Define the following functions:

D(Si, Yi,θ, t, z) :=L

(
Yi −

(θ + θ0(t, z))
⊤Si√

Nhpro/ logN

)
− L

(
Yi −

θ⊤
0 (t, z)Si√

Nhpro/ logN

)
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+ L′

(
Yi −

θ⊤
0 (t, z)Si√

Nhpro/ logN

)
θ⊤Si√

Nhpro/ logN
,

HN,h(θ, t, z, π̂
(b)
K ) :=LN,h(θ, t, z; π̂

(b)
K )− LN,h(0, t, z; π̂

(b)
K )

=− 1√
Nhpro/ logN

N∑
i=1

ξ
(b)
i π̂

(b)
K (Ti,Xi)L′

(
Yi −

θ⊤
0 (t, z)Si√

Nhpro/ logN

)
× θ⊤Si · Kh(Ti − t, Zi − z)

+
N∑
i=1

ξ
(b)
i π̂

(b)
K (Ti,Xi)D(Si, Yi,θ, t, z)Kh(Ti − t, Zi − z).

Further, we define the following quadratic function

H̃N,h(θ, t, z) = −
√
logN · θ⊤UN +

logN

2
θ⊤V θ,

where UN = (UN,1, UN,2)
⊤ with

UN,1 =
1√
Nhpro

N∑
i=1

ξ
(b)
i

(
π0(Ti,Xi)L′{Yi − g0(t, z)− ∂tg0(t, z)(Ti − t)}

− E[π0(Ti,Xi)L′{Yi − g0(t, z)− ∂tg0(t, z)(Ti − t)}|Ti,Xi]

)
Kh(Ti − t, Zi − z),

UN,2 =
1√

Nhproh0

N∑
i=1

ξ
(b)
i

(
π0(Ti,Xi)L′{Yi − g0(t, z)− ∂tg0(t, z)(Ti − t)}

− E[π0(Ti,Xi)L′{Yi − g0(t, z)− ∂tg0(t, z)(Ti − t)}|Ti,Xi]

)
(Ti − t)Kh(Ti − t, Zi − z),

V := ∂2aϕ̃(g0(t, z)|t, z)fT,Z(t, z)
(
1 0
0 κ21

)
,

where ϕ̃(a|t, z) is defined before Assumption 9. Note that H̃N,h(θ, t, z) does not depend on π̂(b)
K ,

and its minimizer is defined by

θ̃(t, z) := argmin
θ

H̃N,h(θ, t, z) =
V −1UN√
logN

.

We complete the proof via the following steps: for b = 0, 1, . . . , B,

•

• Step I: for every fixed θ, show that ξN,h(θ, π̂
(b)
K ) := H̃N,h(θ, t, z) − HN,h(θ, t, z, π̂

(b)
K ) =

oP (1) uniformly over (t, z) ∈ T × Z;

• Step II: show that sup(t,z)∈T ×Z ∥θ̂(b)(t, z)− θ̃(t, z)∥ = oP{(logN)−1};
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• Step III: obtain the following results:

√
Nhpro{ĝ(b)(t, z)− g0(t, z)} =

1√
Nhpro

N∑
i=1

ξ
(b)
i ψ0,h(Ti,Xi, Yi; t, z) + oP

(
1√

logN

)
,

and

√
Nhproh0

{
∂̂tg

(b)
(t, z)− ∂tg0(t, z)

}
=

1√
Nhproh0

N∑
i=1

ξ
(b)
i ψ1,h(Ti,Xi, Yi; t, z) + oP

(
1√

logN

)
,

where all the oP (·) holds uniformly over (t, z) ∈ T × Z , ψ0,h and ψ1,h are defined in
Theorem 2.

• Step IV: taking the differences:√
Nhpro{ĝ(b)(t, z)− g0(t, z)} −

√
Nhpro{ĝ(0)(t, z)− g0(t, z)}

and √
Nhproh0

{
∂̂tg

(b)
(t, z)− ∂tg0(t, z)

}
−
√
Nhproh0

{
∂̂tg

(0)
(t, z)− ∂tg0(t, z)

}
,

for b = 1, . . . , B, gives the desired result in Theorem 4.

We start Step I by showing that H̃N,h(θ, t, z) is a quadratic approximation to the objective
function HN,h(θ, t, z, π̂

(b)
K ). Note that θ = (α, β)⊤, we have∣∣∣H̃N,h(θ, t, z)−HN,h(θ, t, z, π̂

(b)
K )
∣∣∣

≤

∣∣∣∣∣ 1√
Nhpro/ logN

N∑
i=1

ξ
(b)
i π̂

(b)
K (Ti,Xi)L′

(
Yi −

θ⊤
0 (t, z)Si√

Nhpro/ logN

)

× θ⊤SiKh(Ti − t, Zi − z)−
√

logNθ⊤UN

∣∣∣∣∣
+

∣∣∣∣∣ logN2 θ⊤V θ −
N∑
i=1

ξbi π̂
(b)
K (Ti,Xi)D(Si, Yi,θ, t, z)Kh(Ti − t, Zi − z)

∣∣∣∣∣
≤|α| ·

√
logN

∣∣∣∣ 1√
Nhpro

N∑
i=1

ξ
(b)
i

[
π̂
(b)
K (Ti,Xi)L′{Yi − g0(t, z)− ∂tg0(t, z)(Ti − t)}

− π0(Ti,Xi)L′{Yi − g0(t, z)− ∂tg0(t, z)(Ti − t)}

+ E[π0(Ti,Xi)L′{Yi − g0(t, z)− ∂tg0(t, z)(Ti − t)}|Ti,Xi]

]
Kh(Ti − t, Zi − z)

∣∣∣∣
+ |β| ·

√
logN

∣∣∣∣ 1√
Nhpro

N∑
i=1

ξ
(b)
i

(
π̂
(b)
K (Ti,Xi)L′{Yi − g0(t, z)− ∂tg0(t, z)(Ti − t)}
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− π0(Ti,Xi)L′(Yi − g0(t, z)− ∂tg0(t, z)(Ti − t))

+ E{π0(Ti,Xi)L′(Yi − g0(t, z)− ∂tg0(t, z)(Ti − t))|Ti,Xi}

)
Ti − t

h0
Kh(Ti − t, Zi − z)

∣∣∣∣∣
+

∣∣∣∣∣ logN2 θ⊤V θ −
N∑
i=1

ξ
(b)
i π̂

(b)
K (Ti,Xi)D(Si, Yi,θ, t, z)Kh(Ti − t, Zi − z)

∣∣∣∣∣
=|α| ·

√
logN |ξ1,N |+ |β| ·

√
logN |ξ2,N |+ |ξ3,N | ,

where the definitions of ξ1N , ξ2N and ξ3N are obvious. Hence, Step I holds if we can prove that
for every fixed θ ∈ [−M,M ]2, the following result holds:

ξ1,N = oP ({logN}−1/2), ξ2,N = oP ({logN}−1/2), ξ3,N = oP (1). (D.1)

Taking ϕN(T,X, Y ; t) in the definition of R(T,X, Y ;θ, t) in Lemma 3 to be 1 or (T − t)/h0,

and using Assumption 11 that
(∑dz

s=0 h
2
s

)2
≺ (Nhpro)

−1, we have ξ1,N = oP ({logN}−1/2) and

ξ2,N = oP ({logN}−1/2). We next prove ξ3,N = oP (1). Note that

|ξ3,N | ≤

∣∣∣∣∣
N∑
i=1

ξ
(b)
i

{
π̂
(b)
K (Ti,Xi)− π0(Ti,Xi)

}
D(Si, Yi,θ, t, z)Kh(Ti − t, Zi − z)

∣∣∣∣∣ (D.2)

+

∣∣∣∣ N∑
i=1

ξ
(b)
i π0(Ti,Xi)D(Si, Yi,θ, t, z)Kh(Ti − t, Zi − z)

−N · E
[
ξ
(b)
i π0(T,X)R(S, Y,θ, t, z)Kh(T − t, Z − z)

] ∣∣∣∣ (D.3)

+

∣∣∣∣∣N · E
[
ξ
(b)
i π0(T,X)R(S, Y,θ, t, z)Kh(T − t, Z − z)

]
− logN

2
θ⊤V θ

∣∣∣∣∣. (D.4)

For (D.2), we first note that a differentiable function f is convex on an interval if and only if its
graph lies above all its tangents: f(x) ≥ f(y)+f

′
(y)(x−y) for all x, y on the interval. Thus, the

convexity of L(·) implies D(S, Y,θ, t, z) ≥ 0 almost surely. Then, using the fact that ξ(b) ≥ 0
and Lemma 1, we have

(D.2) =

∣∣∣∣∣
N∑
i=1

ξ
(b)
i

{
π̂
(b)
K (Ti,Xi)− π0(Ti,Xi)

}
D(Si, Yi,θ, t, z)Kh(Ti − t, Zi − z)

∣∣∣∣∣
≤ sup

(t,x)∈T ×X
|π̂(b)

K (t,x)− π0(t,x)| ·
N∑
i=1

ξ
(b)
i D(Si, Yi,θ, t, z)Kh(Ti − t, Zi − z)

= oP{(logN)−1} ·
N∑
i=1

ξ
(b)
i D(Si, Yi,θ, t, z)Kh(Ti − t, Zi − z) . (D.5)

We decompose (D.5) as follows:

(D.5) =oP{(logN)−1} ·
N∑
i=1

[
ξ
(b)
i D(Si, Yi,θ, t, z)Kh(Ti − t, Zi − z)
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− E{D(Si, Yi,θ, t, z)Kh(Ti − t, Zi − z)}
]

(D.6)

+oP{(logN)−1} ·N · E{D(Si, Yi,θ, t, z)Kh(Ti − t, Zi − z)} . (D.7)

To show that (D.5) is of op(1) uniformly in (t, z) ∈ T × Z , we will calculate the uniform rate of
the first moment of D(S, Y,θ, t, z)Kh(T − t, Z − z) for (D.7), and apply the empirical process
theories on (D.6), which will require the rate of the second moment of D(S, Y,θ, t, z)Kh(T −
t, Z − z).

Thereby, we next compute the first and second moments of D(S, Y,θ, t, z)Kh(T − t, Z− z).
Recalling the definition of ϕ before Assumption 9, the first moment of D(S, Y,θ, t, z)Kh(T −
t, Z − z) is given by

E [D(S, Y,θ, t, z)Kh(T − t, Z − z)] = E [E{D(S, Y,θ, t, z)|T,Z}Kh(T − t, Z − z)]

=E
[{
ϕ

(
(θ + θ0(t, z))

⊤S√
Nhpro / logN

∣∣∣∣T,Z
)

− ϕ

(
θ⊤
0 (t, z)S√

Nhpro / logN

∣∣∣∣T,Z
)

− ∂aϕ

(
θ⊤
0 (t, z)S√

Nhpro / logN

∣∣∣∣T,Z
)

· θ⊤S√
Nhpro/ logN

}
· Kh(T − t, Z − z)

]

=
logN

2N
· E

[
∂2aϕ

(
θ⊤
0 (t, z)S√

Nhpro/ logN

∣∣∣∣T,Z
)

· {θ⊤S}2 · 1

hpro
Kh(T − t, Z − z)

]
· {1 + o(1)} = O

(
logN

N

)
,

where the o(·) and O(·) are uniformly in (t, z) ∈ T × Z , the second equality holds by the
Taylor’s theorem and the smoothness of ϕ(·|T, Z) and the last equality follows from the fact that
for any integer ℓ = 1, 2 and 0 ≤ j ≤ 4,

E

{∂2aϕ
(

θ⊤
0 (t, z)Si√

Nhpro / logN

∣∣∣∣T,Z
)}ℓ(

T − t

h0

)j 1

hpro
Kh(T − t, Z − z)

 (D.8)

=E

[
[∂2aϕ{g0(t, z) + ∂tg0(t, z)(T − t)|T,Z}]ℓ

(
T − t

h0

)j 1

hpro
Kh(T − t, Z − z)

]

=

∫
[∂2aϕ

{
g0(t, z) + ∂tg0(t, z)(t̃− t)|t̃, z̃

}
]ℓfT,Z(t̃, z̃)

(
t̃− t

h0

)j
1

hpro
Kh(t̃− t, z̃ − z)dt̃dz̃

=

∫
[∂2aϕ

{
g0(t, z) + h0∂tg0(t, z)t̃

∣∣t+ h0t̃, z + hZ · z̃
}
]ℓfT,Z(t+ ht̃, z + hZ · z̃)t̃jK(t̃)K(z̃1)...K(z̃dZ )dt̃dz̃

=[∂2aϕ{g0(t, z)|t, z}]ℓfT,Z(t, z)
∫
t̃jK(t̃)K(z̃1)...K(z̃dZ )dt̃dz̃ ·

{
1 +O

(
dZ∑
s=0

h2s

)}
=[∂2aϕ{g0(t, z)|t, z}]ℓfT,Z(t, z)κj1 + o{(logN)−1} ,

where the o(·) is uniformly in (t, z) ∈ T × Z . Similarly, the second moment of
D(S, Y,θ, t, z)Kh(T − t, Z − z) is given by

E
[
D(S, Y,θ, t, z)2K2

h(T − t, Z − z)
]

(D.9)

=E
(
E
[
D(S, Y,θ, t, z)2|T,Z

]
K2

h(T − t, Z − z)
)

=
(logN)2

(2N)2
· E

{∂2aϕ
(

θ⊤
0 (t, z)S√

Nhpro/ logN

∣∣∣∣T,Z
)}2

· {θ⊤S}4 · 1

h2pro
K2

h(T − t, Z − z)

 · {1 + o(1)}
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=O

(
log2N

N2hpro

)
,

where the O(·) is uniformly in (t, z) ∈ T × Z . With the result of the first moment of
D(S, Y,θ, t, z)Kh(T − t, Z − z), we have

(D.7) = O

(
N · logN

N

)
· oP ({logN}−1) = oP (1)

uniformly over (t, z) ∈ T × Z .
We are now ready to apply the empirical process theories on (D.6). Define the function class

FDK = {(ξ(b), y, t, z) 7→ ξ(b)D(s, y,θ, t̃, z̃)Kh(t− t̃, z − z̃) : (t̃, z̃) ∈ T × Z}.

By the definition of D(s, y,θ, t̃, z̃), for sufficiently large N , using the mean value theorem, we
have

sup
(t̃,z̃)∈T ×Z

|ξ(b) ·D(s, y,θ, t̃, z̃)Kh(t− t̃, z − z̃)|

=2 sup
(t̃,z̃)∈T ×Z

∣∣∣L′

(
y − g0(t̃, z̃)− ∂tg0(t̃, z̃)(t− t̃)− ϵ(t̃, z̃)

θ⊤s√
Nhpro/ logN

)

− L′ (y − g0(t̃, z̃)− ∂tg0(t̃, z̃)(t− t̃)
) ∣∣∣ · |θ⊤s|√

Nhpro/ logN
Kh(t− t̃, z − z̃)

≤4 · sup
ã,̃b∈[−M,M ]

|L′(y − ã− b̃t)| · |θ⊤s|√
Nhpro/ logN

Kh(t− t̃, z − z̃) := FDK(s, y,θ),

where M is defined in Assumption 10(i) and ϵ(t, z) ∈ [0, 1] comes from the mean value theorem.
By Proposition 3.6.12 in Giné and Nickl (2021), we know that

sup
Q

logN
({

K
(
· − u

h

)
: u ∈ R

}
, ∥ · ∥Q,2, τ

)
≲ log(1/τ) .

Noting that the VC type property is “stable”under summation, product and even Lipschlitz-type
transformation of VC-type function class (see e.g. Chapter 2 in Van Der Vaart and Wellner, 1996).
Then, denoting F1(s, y) = supã,̃b∈[−M,M ] |L(y − ã − b̃t)| and F2(s, y) = supã,̃b∈[−M,M ] |L′(y −
ã− b̃t)|, by Assumption 10(i), we have that

sup
Q

logN

({
L

(
Y − (θ + θ(t, z))⊤S√

Nhpro/ logN

)
: (t, z) ∈ T × Z

}
, ∥ · ∥Q,2, τ∥F1∥Q,2

)
≲ log(1/τ)

and

sup
Q

logN

({
L′

(
Y − (θ + θ(t, z))⊤S√

Nhpro/ logN

)
: (t, z) ∈ T × Z

}
, ∥ · ∥Q,2, τ∥F2∥Q,2

)
≲ log(1/τ) .
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Since the VC type property is stable under summation and product, by the facts above, we can
conclude that

sup
Q

logN (FDK , ∥ · ∥Q,2, τ∥FDK∥Q,2) ≲ log(1/τ).

Then, to apply Chernozhukov et al. (2014b, Corollary 5.1), we calculate some quantities in their
notations. By the result of the second moment of D(S, Y,θ, t, z)Kh(T − t, Z − z) in (D.9)
and the fact that ξ(b) is independent of the data and with a second moment of 1 (b = 0) or 2
(b = 1, . . . , B), we have

σ2 := sup
(t̃,z̃)

E[|ξ(b)D(S, Y,θ, t̃, z̃)Kh(T − t̃, Z − z̃)|2] ≲ log2N

N2hpro
,

∥FDK∥2P,2 ≲
logN

N
(From (D.8))

∥M∥22 := E
{
max
1≤i≤n

F 2
DK(Ti,Xi, Yi)

}
≤
[
E
{
max
1≤i≤n

F q
DK(Ti,Xi, Yi)

}]2/q
≤ N2/q [E {F q

DK(Ti,Xi, Yi)}]2/q ≤ const ×N2/q/
(
Nhproh

2
0/ logN

)
.

Then, denoting the controlling term of (D.6) by GN , by Chernozhukov et al. (2014b, Corollary
5.1), we have

∥GN∥FDK
= OP


√ log2N

Nhpro
+
N1/q

√
logN√

Nhproh0

 · (logN)

 .

Then, we can conclude that

(D.6) = oP (1)

holds uniformly over (t, z) ∈ T ×Z . Combining (D.6) and (D.7), we have that (D.2) is of oP (1)
uniformly over (t, z) ∈ T × Z .

For (D.3), repeating the arguments using in controlling term (D.6), we have

(D.3) = OP

√ log2N

Nhpro
+
N1/q

√
logN√

Nhproh0

 = oP (1) .

For (D.4), note that

N · E [π0(T,X)D(S, Y,θ, t, z)Kh(T − t, Z − z)]

=N · E [E [π0(T,X)D(S, Y,θ, t, z)|T, Z]Kh(T − t, Z − z)]

=N · E

{[
ϕ̃

(
(θ + θ0(t, z))

⊤S√
Nhpro/ logN

∣∣∣∣T, Z
)

− ϕ̃

(
θ⊤
0 (t, z)S√

Nhpro / logN

∣∣∣∣T, Z
)

− ∂aϕ̃

(
θ⊤
0 (t, z)S√

Nhpro/ logN

∣∣∣∣T, Z
)

· θ⊤(t, z)S√
Nhpro/ logN

]
· Kh(T − t, Z − z)

}
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=
N

2
· E

{
∂2aϕ̃

(
θ⊤
0 (t, z)S√

Nhpro/ logN

∣∣∣∣T, Z
)

(θ⊤S)2

Nhpro/ logN
Kh(T − t, Z − z)

}
· {1 + o(1)}

=
logN

2
· θ⊤E

[
∂2aϕ̃

(
θ⊤
0 (t, z)S√
Nhpro

∣∣∣∣T, Z
)
SS⊤ 1

hpro
Kh(T − t, Z − z)

]
θ · {1 + o(1)}. (D.10)

Then, using (D.8), we have

(D.10) =
logN

2
· θ⊤V θ + o(1)

which implies (D.4) = o(1) uniformly over (t, z) ∈ T × Z . So for every fixed θ,

ξN,h(θ, π̂
(b)
K ) = H̃N,h(θ, t, z)−HN,h(θ, t, z, π̂

(b)
K ) = oP (1), (D.11)

uniformly over (t, z) ∈ T × Z and the proof of Step I is completed.
To prove Step II, we first show that sup(t,z)∈T ×Z |θ̃(t, z)| is asymptotically stochastic

bounded. By definition of sup(t,z)∈T ×Z θ̃(t, z), it’s sufficient to prove that

sup
(t,z)∈T ×Z

|UN,1| = OP

(√
logN

)
and sup

(t,z)∈T ×Z
|UN,2| = OP

(√
logN

)
.

To show that, we apply Chernozhukov et al. (2014b, Corollary 5.1) again. We denote

FU1 =

{
(ξ(b), Y, T,X) 7→ 1√

hpro

[
ξ(b)π0(T,X)L′(Y − g0(t, z)− ∂tg0(t, z)(T − t))

− E{π0(T,X)L′(Y − g0(t, z)− ∂tg0(t, z)(T − t))|T,X}
]
Kh(T − t, Z − z) : (t, z) ∈ T × Z

}
By Assumption 10, we know that FU1 is a VC-type class. By applying Chernozhukov et al.

(2014b, Corollary 5.1), we can conclude that

sup
(t,z)∈T ×Z

|UN,1| = O
(√

logN
)
+O

(√
logN · N1/q√

Nhpro

)
= O

(√
logN

)
By similar argument, we can conclude that

sup
(t,z)∈T ×Z

|UN,2| = O
(√

logN
)

Then, by Markov’s inequality, there exists constant C > 0 such that

P

(
sup

(t,z)∈T ×Z
|θ̃(t, z)| ≤ C · (1, 1)⊤

)
→ 1

In the following, we consider the event set EN , defined as

EN :=

{
sup

(t,z)∈T ×Z
|θ̃(t, z)| ≤ C · (1, 1)⊤

}
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We finish step II by showing (D.12) and (D.13) below, for every ε > 0,

P

({
sup

(t,z)∈T ×Z
logN · ∥θ̂(b)(t, z)− θ̃(t, z)∥ ≥ ε

}⋂
EN

)

≤P

(
sup

∥θ−θ0∥≤ε

sup
(t,z)∈T ×Z

|ξN,h(θ, t, z, π̂K)| ≥ inf
(t,z)∈T ×Z

1

4
· ∂2aϕ̃(g0(t, z))fT,Z(t, z) · (κ21 ∧ 1) · ε2

)
(D.12)

=o(1). (D.13)

For (D.12), note that LN,h(θ, t, z; π̂K) =
∑N

i=1 π̂K(Ti,Wi, Zi)L(Yi − α − β(Ti − t))Kh(Ti −
t, Zi − z) is convex in θ = (α, β) for every N . As a result, HN,h(θ, t, z, π̂

(b)
K ) is convex in θ

for every N . In light of the convexity of HN,h(θ, t, z, π̂
(b)
K ), for any fixed d > ϵ/ logN and any

(t, z) ∈ T × Z , we have that for any θ(t, z) such that ∥θ(t, z)− θ̃(t, z)∥ = d,(
1− ε

d logN

)
·HN,h{θ̃(t, z), t, z, π̂K}+

ε

d logN
·HN,h{θ(t, z), t, z, π̂(b)

K }

≥ HN,h

[
θ̃(t, z)− ε

d logN
{θ̃(t, z)− θ(t, z)}, t, z, π̂(b)

K

]
.

Then under EN , we have that
ε

d logN

[
HN,h{θ(t, z), t, z, π̂

(b)
K } −HN,h{θ̃(t, z), t, z, π̂

(b)
K }
]

≥H̃N,h

[
θ̃(t, z)− ε

d logN
{θ̃(t, z)− θ(t, z)}, t, z

]
− ξN,h

[
θ̃(t, z)− ε

d logN
{θ̃(t, z)− θ(t, z)}, t, z, π̂(b)K

]
−
[
H̃N,h{θ̃(t, z), t, z} − ξN,h{θ̃(t, z), t, z, π̂

(b)
K }
]

≥− sup
t,z

|ξN,h[θ̃(t, z)−
ε

d logN
{θ̃(t, z)− θ(t, z)}, t, z, π̂(b)K ]| − sup

t,z
|ξN,h{θ̃(t, z), t, z, π̂

(b)
K }|

+ inf
t,z

inf
∥θ−θ̃(t,z)∥=ε/ logN

[
H̃N,h(θ, t, z)− H̃N,h{θ̃(t, z), t, z}

]
≥ −2 sup

θ:|θ|≤(C+ε/ logN)·(1,1)⊤
sup
t,z

∣∣∣ξN,h(θ, t, z, π̂
(b)
K )
∣∣∣+ inf

t,z
inf

∥θ−θ̃(t,z)∥=ε/ logN

[
H̃N,h(θ, t, z)− H̃N,h{θ̃(t, z), t, z}

]
,

where the second inequality holds because ∥θ(t, z) − θ̃(t, z)∥ = d. Recall that θ̃(t, z) is the
minimizer of the quadratic function H̃N,h(θ, t, z), expanding H̃N,h(θ, t, z) around θ̃, we have

inf
∥θ−θ̃(t,z)∥=ε/ logN

[
H̃N,h(θ, t, z)− H̃N,h{θ̃(t, z), t, z}

]
=

1

2
∂2aϕ̃(g0(t, z))fT,Z(t, z) · (κ21 ∧ 1) · ε2

Therefore, if

sup
θ:|θ|≤(C+ε/ logN)·(1,1)⊤

sup
(t,z)∈T ×Z

|ξN,h(θ, t, z, π̂
(b)
K )| ≤ inf

(t,z)∈T ×Z

1

4
∂2aϕ̃(g0(t, z))fT,Z(t, z) · (κ21 ∧ 1) · ε2

then for any (t, z) and θ such that ∥θ − θ̃(t, z)∥ > ε/ logN , we have

HN,h(θ, t, z, π̂
(b)
K ) > HN,h(θ̃(t, z), t, z, π̂

(b)
K ) ,
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which implies that ∥θ̂(b)(t, z) − θ̃(t, z)∥ ≤ ε/ logN , because θ̂(b)(t, z) is the minimizer of
HN,h(θ, t, z, π̂

(b)
K ) so that HN,h(θ̃(t, z), t, z, π̂

(b)
K ) ≥ HN,h(θ̂

(b)(t, z), t, z, π̂
(b)
K ). We thus have

(D.12).
For (D.13), considering sufficiently large N , {θ : |θ| ≤ (C + ε/ logN) ·

(1, 1)⊤} is compact in R2. Then, by Lemma 4 and the result of Step I, we have
supθ:|θ|≤(C+ε/ logN)·(1,1)⊤ supt,z |ξN,h(θ, π̂

(b)
K )| = oP (1), which gives that for every ε > 0,

P

(
sup

θ:|θ|≤(C+ε/ logN)·(1,1)⊤
sup
t,z

|ξN,h(θ, t, z, π̂
(b)
K )| ≥ inf

t,z

1

4
· ∂2aϕ̃(g0(t, z))fT,Z(t, z) · (κ21 ∧ 1) · ε2

)
= o(1),

as inft,z ∂2aϕ̃(g0(t, z))fT,Z(t, z) > 0 by Assumption 10(v). Hence, (D.13) holds and the proof of
Step II is done.

For Step III, it’s can be concluded directly from the result of Step II by noting the definition
of θ̃(t, z).
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E Proof of Theorem 5

Theorem 5 is a direct consequence of Corollary 3.1 in Chernozhukov et al. (2014a). In order
to apply Corollary in Chernozhukov et al. (2014a), we need to verify their Conditions H1–H4.
Our Theorem 4 have already established that the original and multiplier bootstrap estimators
can be approximated by local empirical processes with a kernel function and the approximation
error are oP ({log(N)}−1/2) uniformly over (t, z) ∈ T × Z . Then, following Proposition 3.2
and Remark 3.2 in Chernozhukov et al. (2014b), the approximation errors are asymptotically
negligible. Focusing on the local empirical process part, Conditions H1–H4 can be verified by
Theorem 3.2 in Chernozhukov et al. (2014a). Specifically, Condition VC in Chernozhukov et al.
(2014a) holds where, in their notation, an and vn are constants, bn = h

−1/2
pro h−1

0 , Kn = log(n), σ2
n

is bounded and
log4(N)/Nhproh

2
0 = o(N−c)

for some constant c > 0 as we assume.
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