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Abstract

Consider a sequential process where agents have individual benefits at every possible
step. A planner is in charge of choosing steps and distributing the accumulated aggregate
benefits among agents. We model such a process by a directed network where each
edge is associated with a vector of individual benefits. This model applies to several
new and old problems, e.g., developing a connected public facility (such as rail-roads)
and distributing total benefits received by surrounding districts, selecting a long-term
production plan and sharing final profits among partners of a firm, choosing a machine
schedule to serve different tasks and distributing total outputs among task owners.

We provide the first axiomatic study on path selection and benefit sharing in sequen-
tial processes. Surprisingly, we find that four sets of axioms from different perspectives
characterize similar classes of solutions — selecting efficient path(s) and assigning to
each agent a share of total benefits which is independent of the distribution of individ-
ual benefits. The four sets of axioms include those related to the additivity of agents’
assignments over subnetworks, to the monotonicity of their assignments with respect
to network expansion, to the independence of their assignments with respect to certain
network transformations, and to implementation in the case where the planner has no
information on the network and individual benefits. We also characterize more general
classes of solutions, including one where the sharing rule depends, in a “rationalizable”
way, on the distribution of individual benefits in a network.
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1 Introduction

Axiomatic division of costs and benefits have been extensively studied over the past 60 years,
Initiated from cooperative games (Shapley[35]) and followed by applications to problems
such as rationing and bankruptcy (O’Neill[34], Aumann and Maschler[2], Thomson[39],
Moulin[28, 29]), airport cost-sharing (Littlechild and Owen[24]), hierarchical ventures (Hou-
gaard et al. [12]), and more general cost-sharing problems (e.g., Sprumont[36, 37], Moulin
[30], Moulin and Friedman[10], Moulin and Shenker[31], Moulin and Sprumont[32]). Such
studies have characterized a wide variety of sharing rules using axioms motivated by positive
and normative perspectives. However, these studies are largely limited to a scenario where
a fixed resource must be distributed among agents. Little is known regarding scenarios that
are more general in two dimensions. First, the amount of the resource is no longer fixed but
instead can be chosen. Second, the amount of the resource might be generated in a sequence
of steps, where the availability of the resource in future steps depend on the choice in previ-
ous steps. The generalized problems require the selection of resource-generating steps to be
determined together with the sharing of the generated resource. This “two-tiered” approach
not only expands the types of problems to study, but also introduces a new question on the
interdependence of the step selection rule and sharing rule. This interaction of rules does not
exist when the resource is fixed, but naturally arises in our general framework.

To better illustrate our problem, consider a social planner in charge of developing a con-
nected public facility (such as highways, rail-roads or irrigation canals). The project might
be developed in different steps, each of which might benefit the agents in a society differently.
The planner is in charge of choosing the steps and redistributing the benefits of the project
among the agents. After proceeding along each step, a new problem is created. This new
problem is different from the original problem and might be different across steps proceeded
(Section1.1discusses several applications of this problem).

We represent the structure of our problem as a network, where each node in the net-
work faces a forward problem. More precisely, our problem consists of an acyclic-directed-
network with a common source and multiple sinks. Additionally, there is a finite number of
agents and each node in the network contains a vector which represents the marginal contri-
bution of these agents if this node is selected. A path connecting the source and a sink has to
be chosen and the value of the path must be distributed among the agents.

Herein, we provide the first systematic study of this problem using a novel axiomatic
approach. This approach encompasses axioms that are appropriate to a wide range of sce-
narios, including a complete information case (where the planner knows the network and
marginal contribution of the agents) to an incomplete information case (where the planner
might not know the marginal contribution of the agents). We impose new axioms as well
as adapt more traditional axioms from other studies to our problem. Such axioms include
those related to a fixed network (such as continuity or sequential composition), to a variable
network (such as technology monotonicity and parallel composition), and to implementation
(such ask−majority). Surprisingly, after a comprehensive analysis, we find that four sets
of axioms from different perspectives characterize similar classes of solutions — selecting
efficient path(s) and assigning to each agent a share of total benefits which is independent of
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the distribution of individual benefits.

1.1 Applications and Solutions

In order to illustrate the applicability of our problem and solutions consider the following
examples.

Profit Sharing in Companies. Consider the case of profit-sharing in companies (Juarez
and Nitta[21]). There are different production plans which might generate goods of different
quality and require agents to generate profits differently. The manager is in charge of se-
lecting a production plan (i.e. path), and make a redistribution of (a fixed percentage of) the
profit among the agents.1 Choosing an efficient path would be a natural solution for a com-
pany whose interest is to maximize its profit. The company might also elect not to perform
any transfers and assign the marginal profits only to the agents who contributed it. The rule
that selects the efficient path and assigns the marginal contribution to the agents is denoted
by EFF-MC .

Sharing of Benefits (Costs) of Connected Public Facilities.Consider the case of construc-
tion of highways, rail-roads or irrigation canals by the government. In the case of highway
construction, the government chooses from among several potential routes through which to
build a highway. Benefits of this highway to individuals will largely depend on their access
to it (i.e. route selected) and will vary accordingly. A typical solution for such a problem is
for the social planner of the government to choose the most efficient path and perform no re-
distributions across individuals (EFF-MC). Such a solution is often employed by government
officials and, while efficient, it is not necessarily equitable to all individuals.2 Alternatively, a
more fair solution that maintains efficiency could perform transfer between individuals. This
can be achieved via a lump-sum tax to the individuals that benefit the most by the construc-
tion of the highway. For instance, a traditional solution would select the efficient path and
equalize the benefits across the individuals (EFF-ES). EFF-ES is fair and has several other
interesting properties, as we see below.

Dynamic time-sharing allocation.Consider an acyclic directed network with a single sink
where each edge is associated with a time allocation of an object to different agents. More-
over, every two paths in the network connecting the source with the same terminal node have
an equal aggregate time allocation. Thus, nodes are associated with the time that has passed.
Each agent posses the capability to transfer the allocation of time into a given transferable

1Imagine that the company has committed to redistribute 10 % of the profit to his employees, as is the case
of Chobani and other companies. Alternatively, we can imagine that the company is a joint business venture,
such as a group of lawyers, which will re-distribute 100 % back to its employees.

2The failure of finding an equitable redistribution of the benefits can be seen in the construction of railways
around the world, including China and Hawaii. Protest of agents with vested interests on certain routes often
occur once the selected route does not meet the needs of such agents. For instance, in 2015, tens of thousands
of people in Linshui county (in eastern Sichuan province) protested for being ruled out of high speed railway,
such network is shown in Figure1.
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Dazhou
Dazhu Linshui

Chongqing

Dianjiang Changshou

Quxian Guangan

Figure 1: Network outlining the Chinese government plans to build a high-speed railway
connecting Dazhou and Chongqing through Dazhu and Linshui (central route) in 2002. Tens
of thousands of people from Linshui protested in 2015 when the government considers the
two alternative routes.

good, such as money. The goal of the planner is to choose the sequence of time-shares and
perform a redistribution of the resource. Examples of this problem include the allocation of
time-shares in a super computer among scientists. The queueing problem, where a machine
can only serve one agent at a time, is a particular case of this model (Chun [8]). A myopic
path (MYO) is such that the edge that produces the largest aggregate profit (efficient edge)
is selected at every node, disregarding the information about the profit produced at future
steps. While this selection of the path has the advantage of being simple to implement, it
does not necessarily select the efficient path.MYO-MC would select the myopic path and
perform no transfers between the agents.MYO-ES selects the myopic path and equalizes
the net benefits among agents.

Sequential Decision Making: Common pool resources management and related models.
In general, our model can be applied to the problem of sequential decision making where
the marginal benefits of every agent are observable at every step. The decisions chosen at
every step influence the options available in the next step. For instance, consider the case
where the government allocates temporary property rights of a natural resource to agents at
every step of a process, such as quotas for the extraction of oil, lumber, or fish. The quota
assigned to agents transform into direct benefits, and affect the stock of the resource available
in the future. The selection of the path can take different forms, and would depend on the
preferences of the planner, including a short term vision (MYO), long term vision (EFF) or
something in between. Similarly, the transfers of benefits across agents depend on the path
selected, and can be ES, MC or another of the multiple solutions discussed below.

1.2 Overview of the Results

We study two versions of the problem in relation to the information of the planner. For the
first part of the paper, we consider the problem with complete information, where the planner
knows the marginal contribution of the agents at every edge in the network and is interested
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in systematically selecting a path and share the profits meeting some axioms. We provide
the first study of this problem, especially by providing three characterizations using new and
old axioms that have been studied in other models.

Our first characterization uses three axioms that relate to a fix network. First, any prob-
lem that contains at least one path that has positive value should positively benefit at least
one agent (non-triviality ). Second, we require that small changes in the value of the vec-
tors of marginal contributions have small impact in the final redistribution of the agents
(continuity ). Finally, we impose an independence of intermediate distributions along a se-
lected path, where agent should be indifferent between receiving a lump-sum payment at
the end of the process or receiving instalment at any point in time (sequential composi-
tion). Sequential composition has the advantage of being computationally easy and rule-out
renegotiations of the agents at intermediate steps. The combination of these three axioms
characterizes a family of path selection rules that selects a path(s) that has (have) the max-
imum value (efficient path(s)). The sharing of the value is distributed among the agents in
fixed proportions that are independent of the network.

We also provide two alternative characterizations that relate to transformations of the net-
work. Our second characterization requires that no agent shall get hurt from the technology
improvement which brings a new edge and destination to the existing network (technology
monotonicity). This axiom itself characterizes the class of solutions that selects in each net-
work efficient path(s) and an allocation that depends only on the efficient value rather than
individual values in the network.

Our third characterization relates to some independence principles with respect to certain
network transformations. First, suppose that a step in process consists of two substeps. Then
we require that the allocation be independent of representing the step by either one edge
or two consecutive edges, as long as the value vectors of the two edges add up to the one
of the single edge (splitting invariance). Second, suppose that there is a “component” of
the network in which each path is Pareto dominated edge by edge compared with some
path outside the component. Then removing this component from the network should not
affect the allocation (irrelevance of dominated paths). Third, suppose that after solving a
problem, an additional set of steps from the source is found to be available. Then the initial
allocation can be cancelled and a new allocation calculated based on the augmented problem.
Alternatively, the initial allocation can be saved as a value vector, an edge attached with this
vector replace the initial problem in the augmented one, and a new allocation be calculated
for the revised problem. We require that the two approaches lead to the same final allocation
to avoid the dispute of agents on which way is better (parallel composition). The three
axioms, together with continuity, characterize a general class of solutions. Each solution
is associated with a redistribution function that assigns to each value vector a redistributed
allocation, and a partial order over the set of all redistributed allocations that makes it a
join-semilattice. It selects in a network efficient path(s) and the optimal allocation with
respect to the partial order over the redistributed accumulated value vectors of all paths in
the network. Further, we require the allocation in each “parallel network” depend only on
the accumulated aggregate value vector of one path rather than all in a network (irrelevance
of parallel outside options). This axiom, together with irrelevance of dominated paths and
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continuity, characterizes the subclass of solutions in which the sharing rules depend only on
the efficient value of a network, like the class characterized by technology monotonicity.

For the second part of the paper, we study the problem with incomplete information,
where the planner might not know the information of the problem, including the structure
of the network or the values of the agents at every step. On the other hand, the agents have
full information about the problem, including the network and values of the agents at every
step. Contrary to the complete information case, we assume that the planer is interested in
systematically selecting the efficient path, but lacking such information, can only delegate
the agents to do so.3 We provide the class of sharing rules that incentivize the agents to select
the efficient path.

Our first axiom requires that for any two paths, the efficient path should give a larger
share to at leastk-agents (k-majority ), wherek is larger than half the number of agents.
This stability notion guarantees the existence of a Condorcet winner when making pairwise
comparison of paths. Thus, the efficient path will be selected when agents are allowed to
vote on the path using a Condorcet Voting rule. Second, we requires that the identity of the
agents should not matter (anonymity). The combination of these two axioms characterizes
a family of sharing rules such that the sharing of the value of a path has at leastk agents
getting the average value of the path. Furthermore, the equal sharing rule is characterized
by adding either of the following axioms: Sequential composition, Lorentz monotonicity or
transfer monotonicity.

1.3 Literature review

While the axiomatic study of sharing rules has been widely studied and applied in many set-
tings, our general two-tiered framework that selects the path along with the sharing rule has
not received much attention in the literature. Our framework can incorporate more stylistic
two step problems such as the queuing problem (Chun [8]), the minimal cost spanning tree
(Kar [23], Kar and Dutta[9], Bergantĩnos and Vidal-Puga[5], Hougaard and Moulin[13]) and
other cost-sharing models (Juarez[18], Juarez[19], Juarez and Kumar[20]). In such prob-
lems, an ordering of the agents (queuing), a network meeting certain conditions (such as
a spanning tree) or other decisions that affects the cost/benefits (such as the selection of a
‘group’ or a ‘path’) must be made and its cost divided among agents.4

The second part of the paper is related to the recent literature on implementation of the
efficient graphs in networks. For instance, Juarez and Kumar[20] implements the efficient
graph in connection networks, Hougaard and Tvede[14, 16] implement the minimal cost

3Different from the complete information case, the planner is information constrained such that only infor-
mation about the marginal contribution on the path chosen is revealed but information about other paths not
chosen remain unknown. Hence, it is only practical to consider sharing rule that disregard any information
outside the chosen path.

4For instance, the queueing problem can be incorporated into our analysis by considering a tree where every
node determines the agent who will be served next, and any two paths intersect after the same group of agents
have been served in different orders. The value at every edge represents the benefit of the agent being served at
that step and the cost incurred by the agents who have not been served.
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spanning tree and Juarez and Nitta[21] implement the efficient time allocation in production
economies. Hougaard, Moreno-Ternero, Tvede and Osterdal[12] study allocation rules of
benefits in hierarchical ventures.

Our model is the first to jointly address the issue of selecting paths and dividing the
benefits/cost axiomatically for sequential problems where the information of the marginal
contributions of every agent is available at every step.

2 The model under complete information

Let N = {1, ..., n} be a fixed finite set of agents, andG the set of finite directed multigraphs,5

or simply, network, with a unique source (possibly multiple sinks) and no cycles.6 For
example, an element ofG could represent the different steps in a production process. For
eachG ∈ G, letVG be the set of all functions that assign to each edge inG an element ofRn

+,
and we call elements ofVG value functionsassociated withG.7 In the previous example,
such a function represents the profit contributed by different agents at every step of such
production process. Aproblem is a pair (G, v) whereG ∈ G andv ∈ VG. For eachx ∈ Rn

+,
we simply use (e, x) to denote a problem where the network contains a single edgeeand the
value function assignsx to the edge. LetP be the set of all problems.

For each (G, v) ∈ P, each edgee and each pathL in G,8 let vN(e) :=
∑

i∈N vi(e) be the
value of e, vN(L) :=

∑

e∈L
vN(e) thevalue of L, vN(G) := max

L∈G
vN(L) thevalue of G, andL is

calledefficient if vN(L) = vN(G).
A solution is a pair (ϕ, µ) of functions onP such that for each (G, v) ∈ P, ϕ(G, v) is a

nonempty subset of paths inG with the same value, andµ(G, v) is an element ofRn
+ with∑

i∈N µi(G, v) being the value ofL ∈ ϕ(G, v).

Example 1 (Selection of Paths and Sharing-Rules). First, we discuss two general methods
for path selection.

1. [Additively separable rules]. For a given utility function u: RN
+ → R, an additively

separable rule selects path(s) that maximize the sum of the utilities of the value asso-
ciated to the edges,ϕu(G, v) ⊂ arg maxL∈(G,v)

∑
e∈L u(e). In particular, when the utility

function equals to the value of the path, u(e) = vN(e), this selection rule selects the
efficient path(s). We denote by EFF a rule that selects efficient path(s).

2. [Myopic separable rule] For a given u: RN
+ → R, a myopic rule selects the path(s)

that lexicographically maximizes the utility of the value associated to the edges in the
path. That is, for paths L= [e1, . . . , ek] and L′ = [ē1, . . . , ēk′ ] we say that L� L′ if and

5A multigraph is a graph where there can be multiple edges with the same end nodes.
6Throughout the paper, we assume that the labels of nodes and edges in each network do not have identity.
7For simplicity, we restrict to non-negative values to keep the interpretation of benefits throughout the rest

of the paper. This assumption is without loss of generality, as all results in the paper extend trivially to values
in R.

8In this paper, for each problem we only consider the paths from the source to a sink.
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only if u(e1) > u(ē1); or u(e1) = u(ē1) and u(e2) > u(ē2); u(e1) = u(ē1), u(e2) = u(ē2)
and u(e3) > u(ē3);. . . We denote by MYO the myopic solution under u(e) = vN(e).

Next, we discuss two traditional allocation rules for a given path selection ruleϕ(G, v):

3. [Equal-sharing] The equal-sharing ruleµES divides the value of the selected paths
equally. That is,µES

i (G, v) =
vN(L)

n 1 for some L∈ ϕ(G, v).

4. [Average of Marginal Contributions] The average of the marginal contributions sharing-
rule µMC assigns agents their marginal contribution over all selected paths.9 That is,
µMC(G, v) =

∑
L∈ϕ(G,v)

∑
e∈L v(e)

|ϕ(G,v)| .

A solution is determined by the combination of a path selection rule and a sharing rule.

2.1 Fixed Network Characterization

We consider the following axioms of a solution (ϕ, µ).
The first axiom requires that each problem that contains at least one path that has positive

value should positively benefit at least one agent. This is a basic efficiency property that rules
out that all agents get nothing when it is possible to distribute something.

Non-triviality : Given (G, v) ∈ P, if vN(G) > 0, thenµi(G, v) > 0 for somei ∈ N.

Non-triviality is satisfied by our four rules discussed above,EFF − ES, EFF − MC,
MYO− ES, and MYO− MC. Furthermore, it is also satisfied by any additively separable
path selection rule as long as the utility functionu(x) > 0 for x
 0. It is also satisfied by the
myopic path selection rule as long as the functionh selects a positive vector when available.
For example, under the selection ruleMYOwhich selects the maximal path.

Continuity states that in any network, small changes in the individual values have small
impact on the final division. Such small changes often happen due to measurement errors,
and we require that the division rule is robust with respect to such errors.

Continuity : Given (G, v) ∈ P and a sequence{vk} of elements ofVG, if for eache in G,
lim vk(e) = v(e), then limµ(G, vk) = µ(G, v).

Continuity is a standard topological property that has been assumed in other models.
In our setting it is a strong axiom that rules out a myopic path selection. It also rules out
an efficient path selection with marginal contribution sharing as illustrated in the following
example. There is, on the other hand, a large class of solutions meeting continuity.10

9Alternatively, we can interpret this rule as selecting a path with equal probability, and assigning the
marginal contribution every time a path is selected.

10 Continuity has meaningful implications on both the path selection and the sharing rule. For instance, for
path selection, consider solutions that pick paths continuously only depending in the value of the paths. That
is, for everyk ∈ N, consider the continuous functionf k : Rk

+ → R+ such thatf k(x) ∈ {x1, x2, . . . , xk} for all
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(2± ε, 0) (1,1)

(2,0)

(2± ε, 0)

(2,0)

Figure 2: Networks Illustrating that MYO-ES and EFF-MC are not continuous.

Example 2. In order to illustrate that MYO-ES does not meet continuity, we consider the
network in Figure2 (top). For anyε > 0, for consider the case where the first edge in the top
path has value(2+ ε, 0). In this case, the solution MYO-ES selects the top path and allocates
(2 + ε

2,2 + ε
2).

Alternative, consider the case where the first edge in the top path has a value(2− ε, 0).
In this case, the solution MYO-ES selects the bottom path and allocates(1,1).

In order to illustrate that EFF-MC does not meet continuity, we consider the network in
Figure 2 (bottom). When the top path has a value equal to(2 + ε, 0), the solution EFF-MC
selects the top path and allocates(2+ε, 0). However, when the top path has a value(2+ε, 0),
the solution EFF-MC selects the lower path and allocates(0,2).

Given (G, v) ∈ P and a noded in G which is neither the source nor a sink, letG|d (G|d)
be the maximum sub-network withd being the sink (source), i.e., the sub-network which
contains all the paths from the original source to noded (from noded to original sinks), and
let v|d (v|d) be the restriction ofv to the edges inG|d (G|d). We call such problems backward
and forward sub-networks. For instance, in the network depicted in Figure3 we illustrate
G|d (red subnetwork) andG|d (blue subnetwork) for the noded.

The spirit of sequential composition is that the final division for a problem should be
invariant with intermediate redistribution. Think about a process in which a selected plan
involves at least two steps, and due to accounting practice interim payment has to be made
in the middle of the conduction of the plan. CPN requires that the surplus sharing based on
the whole process is equivalent to a step-by-step sharing where at each step the intermediate
division is made for the restricted problem with the achieved node in the selected path as its
source and the targeted node as its sink.

Sequential composition: Given (G, v) ∈ P and a pathL ∈ ϕ(G, v) with at least two edges.
Let d be a node inL which is neither the source nor a sink. Thenµ(G, v) = µ(G|d, v|d) +

x ∈ Rk
+. For a network with value of paths (v1, . . . , vk), choose the path with valuef k(v1, . . . , vk). Examples of

such continuous path selection rules include the path the the highest value, second highest value, median value
or lowest value. Once a continuous path is chosen, divide its value among the agents in a continuous way using
the information of the network, for instance, in proportion to the sum of the marginal contribution of the agents
in the network.
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d

Figure 3: The Red and Blue subnetworks illustrate the backward sub-networkG|d and for-
ward sub-networkG|d for the noded, respectively.

µ(G|d, v|d).

There is a large class of rules meeting sequential composition. Any of the rules intro-
duced in Example1, including MYO-ES, MYO-MC, EFF-ES and EFF-MC satisfy sequen-
tial composition.

We now characterize the solutions that satisfy the combination of the three axioms above.

Theorem 1. A solution(ϕ, µ) satisfiesnon-triviality, continuity, andsequential composition
if and only ifϕ only selects efficient path(s), and there isα ∈ Rn

+ with
∑
αi = 1 such that for

each(G, v) ∈ P, µ(G, v) = vN(G)α.

One implication of this result, perhaps surprising, is that the efficient path selection is
guaranteed with three axioms that are seemingly unrelated to efficiency. Another implica-
tions of this result is that the way to share the value of a path is independent of the network
configuration and their individual values. Sequential composition implies that the division
is done edge by edge, thus disregarding any information about the network beyond the value
of the chosen path.

The characterization above is tight. A class of solutions meeting non-triviality and con-
tinuity but not consistency will be discussed in Theorem 2 (see below). Some solutions
meeting non-triviality and consistency but not continuity are EFF-MC, MYO-MC or MYO-
EFF. One solution meeting continuity and consistency but not non-triviality is the solution
that selects the path(s) with the smallest sum and divide the value equally among the agents.

It follows readily from Theorem1 that if in addition the solution satisfies a basic symme-
try requirement below, thenµ assigns to each agent an equal share of the value of a problem.

Equal treatment of equals: For each (G, v) ∈ P and each pairi, j ∈ {1, ..., n}, if for eache
in G, vi(e) = vj(e), µi(G, v) = µ j(G, v).

Corollary 1. A solution(ϕ, µ) satisfiesnon-triviality, continuity, sequential composition, and
anonymityif and only ifϕ only selects efficient path(s), and∀(G, v) ∈ P, µ(G, v) =

vN(G)
n 1.
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2.2 Changing Network Characterizations

2.2.1 Technology Monotonicity

Given (G, v) ∈ P, we say that (G′, v′) ∈ P is aone-step technology improvementof (G, v)
if (i) G′ is constructed either by adding a parallel edge connecting two nodes inG or by
adding a sink and an edge going out from a node inG to this sink, and (ii) for eache in G,
v′(e) = v(e).

Technology monotonicity: For each (G, v), (G′, v′) ∈ P, if (G′, v′) is a one-step technology
improvement of (G, v), thenµ(G′, v′) ≥ µ(G, v).

Technology monotonicitysays that no agent shall get hurt from the technology improve-
ment which brings new paths and destinations to the existing network. Note that it is equiv-
alent to assume intechnology monotonicitythat (G′, v′) is an one-step technology develop-
ment of (G, v).

Theorem 2. A solution(ϕ, µ) satisfiestechnology monotonicityif and only ifϕ only selects
efficient path(s), and there is a non-decreasing function f: R+ → Rn

+ such that for each
(G, v) ∈ P, µ(G, v) = f (vN(G)).

Note that ifcontinuity is also imposed, then the functionf in Theorem2 must be contin-
uous. In addition, if we requireequal treatment of equals, thenµ must give equal division.

Corollary 2. A solution (ϕ, µ) satisfiestechnology monotonicityand equal treatment of
equalsif and only ifϕ only selects efficient path(s), and for each(G, v) ∈ P, µ(G, v) =

vN(G)
n 1.

2.2.2 Independence with respect to network transformation

Suppose that the benefits of a step in a process is generated by several substeps. In the
network representation of this process, such a step can either be represented by a single
edge attached with the aggregate benefits, or by several consecutive edges attached with the
substep benefits. We require that the two ways of formulating this problem have no impact
on agents’ assignments.

Splitting invariance: Let G,G′ ∈ G be such thatG′ is constructed by splitting an edgee
in G into two consecutive edgese1 ande2. If v ∈ VG andv′ ∈ VG′ are such thatv(e) =

v′(e1) + v′(e2), and for eache′ in G other thane, v(e′) = v′(e′), thenµ(G, v) = µ(G′, v′).

Equivalently, this requirement can be formulated as amerging invarianceaxiom: in each
problem, the allocation should not change after two consecutive edges, with no ingoing and
outgoing edges at the node connecting them, are merged into one edge which is attached
with the sum of the benefit vectors of both edges.

Splitting or merging invarianceis familiar in the rationing problem (Banker [3], Mou-
lin [26], De Frutos [11], Ju [? ]), the cost sharing problem (Sprumont [38]), and the social
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v′(e′1)

v′(e′2)

v′(e′3)

v′(e′4)

(G, v) ∪ (G′, v′)

v(e1)

v(e2)

v(e3)

v(e4)
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v′(e′2)
v′(e′3)

v′(e′4)

Figure 4: Union of two problems

choice problem (Moulin [26], Chun [7]).11 In these problems, it is required that an allocation
rule be immune to splitting an agent into several participation units in a problem or merging
several agents into one participation unit. In comparison, we consider splitting and merg-
ing maneuvers not over agents, but over consecutive steps in a process. In our sequential
setting, it could be desirable for a sharing rule to disregard how the individual benefits are
accumulated through potential substeps in one step of a process.

Suppose that in a problem, each path in one “component” of the network generates for
each agent a smaller benefit in each edge of the path compared with another path, outside this
component, with the same number of edges. Out of an efficiency concern, one simplification
of the problem is to remove the “dominated” component. The following axiom requires
that the sharing rule gives the same allocation in the simplified problem as in the original
problem.

Given (G, v), (G′, v′) ∈ P, a pathL in (G, v) is said to bestepwise dominatedby a path
L′ in (G′, v′) if L andL′ have the same number of edges, sayn ∈ N, and for eachk-th edge
ek in L ande′k in L′, k ∈ {1, ..., n}, v(ek) 
 v′(e′k).

Given (G, v), (G′, v′) ∈ P, let (G, v) ∪ (G′, v′) denote another problem given by merging
the sources ofG andG′, and assigning the edges in the combined network the same benefit
vectors as in the respective problems. An example is given in Figure4.

Irrelevance of dominated paths: For each pair (G, v), (G′, v′) ∈ P, if each path in (G, v) is
stepwise dominated by a path in (G′, v′), thenµ((G, v) ∪ (G′, v′)) = µ(G′, v′).

Suppose that after an allocation being selected for a problem, a set of alternative paths,

11Splitting or merging invarianceis investigated in a unified framework of allocation problems by Ju, Miya-
gawa and Sakai [17].
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which have no intersection with the initial ones, is found to be available. Then the initial
allocation can be cancelled and a new allocation be computed for the enlarged problem.
Otherwise, the initial allocation can be taken as a benefit vector, an edge attached with this
vector replace the initial part in the enlarged problem, and an allocation be computed for
the revised problem. We require that both ways of dealing with the issue lead to the same
allocations, so that agents will have no dispute on which way is better.

Parallel composition: For each pair (G, v), (G′, v′) ∈ P, µ((G, v)∪ (G′, v′)) = µ((e, µ(G, v))∪
(G′, v′)).

Parallel compositionformulates the principle that a problem can be solved part by part.
It is reminiscent of the “lower composition” axiom in the rationing model (Young [41]) and
the “step by step negotiation” property in the axiomatic bargaining model (Kalai [22]).

These three axioms together withcontinuity characterize a class of “rationalizable” so-
lutions defined as follows.

We call r : Rn
+ → Rn

+ a redistribution function if for each x ∈ Rn
+,

∑
ri(x) =

∑
xi,

and r(r(x)) = r(x). Given a partial order% on a setS ⊆ Rn
+ and a subsetS′ of S, we

denote by max
%

S′ the join ofS when it exists. Given a redistribution functionr and a partial

order % on r(Rn
+), a solution (ϕ, µ) is said to be(r, % ) - rationalizable if (1) for each

pair x, y ∈ Rn
+ with x ≥ y, r(x) % r(y), (2) (r(Rn

+), % ) is a join-semilattice, and (3) for
each (G, v) ∈ P, µ(G, v) = x∗ := max

%
{r(

∑

e in L
v(e)) : L in G}, and

∑
x∗i = vN(L) where

L ∈ ϕ(G, v). Moreover, (ϕ, µ) is said to becontinuously (r, % ) - rationalizable if (ϕ, µ) is
(r, % ) - rationalizable, r is continuous andg : r(Rn

+)2→ r(Rn
+), defined by setting for each

(x, y) ∈ r(Rn
+)2, g(x, y) = max

%
{x, y}, is continuous. Note that if (ϕ, µ) is continuously (r, % )

- rationalizable, then% is continuous.

Theorem 3. A solution(ϕ, µ) satisfiessplitting invariance, irrelevance of dominated paths,
independence, andcontinuity if and only ifϕ only selects efficient path(s), and there exist
a redistribution function r and a partial order% on r(Rn

+) such thatϕ only select efficient
path(s) and(ϕ, µ) is continuously(r, % ) - rationalizable.

Example 3 (Locally egalitarian solution with transfers). Imagine that the set of agents are
divided into two groups according to their exogenous types, and a redistribution function
divides equally within each group the sum of benefits of the group members. For instance,
a partnership firm that runs two kinds of business may adopt the equal sharing rule respec-
tively for its partners involved in each business (Burrows and Black [? ], Baskenille-Morley
and Beechey [? ]). Note that when there are two agents in total, this redistribution function
is simply the identity mapping that assigns each agent his individual benefits.

A problem generates a set of allocations by applying this redistribution function to the
aggregate benefit vector given by each path. A planner selects an allocation based on this
set according to three criteria. First, if one allocation dominates another in the vector dom-
inance sense, then the former should be selected over the latter. Second, if the sums of
individual benefits of two allocations are the same while one is more egalitarian in the sense
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that it is a convex combination of the other allocation and the equal-sharing allocation, then
it should be selected over the other. Third, if one allocation is preferred to another and the
second is preferred to a third allocation by either of the two previous criteria, then to be
consistent, the first allocation should be chosen over the third one.

Formally, let S1,S2 ⊆ {1, ..., n} be such that S1,S2 , ∅, S1 ∩ S2 = ∅, and S1 ∪ S2 =

{1, ..., n}. Define r : Rn
+ → Rn

+ by setting for each x∈ Rn
+, each k= {1,2} and each i∈ Sk,

ri(x) =
∑

i∈Sk
xi

|Sk|
. Define a binary relation% on r(Rn

+) by setting for each pair x, y ∈ r(Rn
+),

x% y if there is z∈ r(Rn
+) such that x≥ z,

∑
zi =

∑
yi, and there isλ ∈ [0,1] with z =

λy + (1 − λ)
∑

yi

n 1. Note that for each pair x, y ∈ r(Rn
+), if x ≥ y, then x% y. Moreover, if

∑
xi =

∑
yi, then x% y if and only if x is a convex combination of y and

∑
xi

n 1. In fact, % is
the transitive closure of the binary relation that satisfies these two criteria.12

Let (ϕ, µ) be such that for each(G, v) ∈ P, ϕ selects all efficient path(s) in(G, v), and
µ(G, v) = max

%
{r(

∑

e in L
v(e)) : L in G}. It can be shown that(ϕ, µ) is continuously(r, % )

- rationalizable.13 By Theorem3, it satisfiessplitting invariance, irrelevance of dominated
paths, parallel composition, andcontinuity.

Unlike the previous solutions that we have characterized, an allocation given by this so-
lution may depend on all paths in a problem, even the inefficient ones. For example, suppose
that there are two agents. Consider a problem consisting of two parallel paths that induce
the aggregate benefit vectors(1,5) and (3,1). Our solution will select the unique efficient
path in this problem and choose the allocation(2,4). To see this, note that(2,4)% (1,5)
by criterion two,(2,4)% (2,2) and (2,2)% (3,1) respectively by criteria one and two, and
finally by transitivity,(2,4)% (3,1). Figure 3 shows the intersection of the upper contour
sets of(1,5) and (3,1) is the upper contour set of(2,4). Thus,(2,4) = max

%
{(1,5), (3,1)}.

Such an allocation serves as a comprise between the two allocations given by each path and
favoring different agents.

The previous example shows how all the paths (including inefficient ones) in a problem
may together determine the final allocation. In real life, especially when facing a large
number of options of feasible paths, for simplicity it could be desirable to determine the
final allocation by just one option rather than many of them. The next axiom imposes this
requirement for simple problems where the networks consist of parallel paths. It turns out
that this axiom single outs the solutions that generate allocations based on only the value of
the problem, like we obtain from the previous sections. Moreover,splitting invarianceand
parallel compositionare endogenously implied.

Irrelevance of parallel outside options: For eachm ∈ N and each set{(Gk, vk) ∈ P :

Gk consists of a single path,k = 1, ...,m}, there is j ∈ {1, ...,m} such thatµ(
m⋃

k=1
(Gk, vk)) =

µ(Gj , vj).

12See the proof in Appendix.
13See the proof in Appendix.
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(1,5)

(3,1)

(2,4)

(2,2)

x1

x2

{x : x% (2,4)}

{x : x% (1,5)}

{x : x% (3,1)}

Figure 5: The upper contour sets of (1,5), (3,1), and (2,4)

Theorem 4. A solution(ϕ, µ) satisfiesirrelevance of dominated paths, irrelevance of parallel
outside options, andcontinuity if and only ifϕ only selects efficient path(s), and there is a
continuous function f: R+ → Rn

+ such that for each c∈ R+,
∑

fi(c) = c, and for each
(G, v) ∈ P, µ(G, v) = f (vN(G)).

The characterizations in both Theorem3 and4 are tight. Droppingsplitting invariance,
consider the solution in example3 with a “redistribution function”r p that depends on not
only the benefit vector but also on the number of edges in the path that generate the bene-
fit vector. That is, for each (G, v) ∈ P and eachL in G, if the number of edges inL is 2,
then r p divides equally among agents inS1 the aggregate benefits generated by agents of
S2 along the path, and among agents inS2 those generated by agents ofS1; if the number
of edges inL is other than 2, thenr p agrees withr in example3. The solution with mod-
ified redistribution function satisfiesirrelevance of dominated paths, parallel composition,
andcontinuity. Droppingirrelevance of dominated paths, the solution that selects all the
paths with the smallest benefits and divides the benefits equally among the agents satisfies
splitting invariance, parallel composition, irrelevance of parallel outside options, andconti-
nuity. Droppingparallel composition, consider the solution that selects all the efficient paths
and divides the value to each agent in proportion to the maximum aggregate benefits he can
generate over all the paths in a problem. This solution satisfiessplitting invariance, irrel-
evance of dominated paths, andcontinuity. Droppingcontinuity, consider a path selection
rule that picks in the first round the paths among all the efficient ones that maximizes agent
1’s individual aggregate benefits. Then, it picks among the selected ones in the first round
those maximizing agent 2’s individual aggregate benefits, and so on and so forth, to then-th
round. The solution that adopts this path selection rule and assigns to the agents their indi-
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vidual aggregate benefits along the selected path(s) satisfiessplitting invariance, irrelevance
of dominated paths, parallel composition, andirrelevance of parallel outside options. Drop-
ping irrelevance of parallel outside options, the solution in example3 satisfiesirrelevance of
dominated pathsandcontinuity.

Lastly, as in the previous sections,equal treatment of equalssingle outs the equal sharing
rule.

Corollary 3. A solution(ϕ, µ) satisfiesirrelevance of dominated paths, irrelevance of parallel
outside options, continuity, andequal treatment of equalsif and only ifϕ only selects efficient
path(s), and for each(G, v) ∈ P, µ(G, v) =

vN(G)
n 1.

3 The model under incomplete information

We turn our attention to the case where the planner has incomplete information about the
problem while the agents have perfect information, including the network and the marginal
contributions about themselves and other agents. In this scenario, the planner might want to
delegatethe agents to collectively decide the direction to continue the project on a day-to-
day basis.14 Imagine a scenario where the board of a company (owner) sets the compensation
rule for the agents (sharing rule) before knowing the profits in the tree.15 Thus, the planner
observes the realized path and uses this information to assign the shares to the agents. On the
other hand, the agents make a decision to choose a path that maximizes their payoff taking
into account the information about the problem and the sharing rule.16

We focus in the case where the objective of the planner is to select the path that produces
the largest profit.17 When delegation is possible, the planner should find a compensation
scheme that aligns his objective with the final payoffs of the agents who make the decision.

Our work in this section differ from classical implementation problems since we do not
specify a game. We follow an axiomatization of the sharing rules, and thus our analysis
works for a large class of games. We impose two simple and seemingly natural properties
regarding the stability of our rule.

First, we want our rule to be anonymous, which is a natural axiom in companies and
other public decision to build facilities.18 Second, we want a notion of stability, where at

14A more traditional way to select a path is by eliciting the information from the agents. We focus in a more
decentralized setting, where the planner does not have the ability to get such information from the agents, or
even if he gets this information, the decision about the paths is made by the agents. However, Section3.2
briefly discusses this issue and ways to solve it.

15E.g. The board of a company would set the overall payment structure of the agents before actually hiring
the agents. This compensation scheme might depend on the actual value brought by the agents but needs to be
set in advance for all potential scenarios.

16An alternative interpretation occurs in the case of a social planner in charge of building a connected public
facilities. The planner would delegate the agents to collectively choose (e.g. by voting) the direction of the
public facility after knowing the cost/benefit re-distribution function. While in this scenario the planner might
not have incomplete information, our analysis in this section is robust to the information context of the planner.

17As this is a desirable path, from both the positive and normative sides (Theorems 1-2).
18Nonetheless, there is a large class of asymmetric rules that will fit our problem. The remarks about in-
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least a majority of agents (we fixed a thresholdk > n
2 of agents) should always prefer the

efficient path to any other path. This stability notion guarantees the existence of a Condorcet
winner when making pairwise comparison of paths. Thus, any Condorcet Voting rule would
pick the efficient path.

3.1 The result under incomplete information

To formalize the problem, apath is a finite sequence of elements ofRn
+. We denote a typical

path byl, and the set of all paths byL. For each pathl = {xk}Kk=1 in L, whereK ∈ N, let
lN :=

∑

k

∑

i
xk

i be thevalue of l. A sharing rule is a functionµ : L → Rn
+ such that for each

l ∈ L,
∑
µi(l) = lN.

Our first axiom requires that for every pair of paths, at leastk agents prefer the more
efficient path. This axiom is necessary to guarantee the selection of the efficient path when
agents are delegated to make a decision using a Condorcet Voting rule and otherk-majoritarian
rules, as we will see in Applications1 and2.

k-majority ( k >
n
2

): For each pairl, l′ ∈ L, if lN ≥ l′N, then there isN′ ⊂ N such that|N′| ≥ k

and for eachi ∈ N′, µi(l) ≥ µi(l′).

A solution meeting this axiom will be referred to ask-majoritarian. Whenk = [n/2] + 1
then a majority of people always prefer the efficient path. Whenk = n, all agents prefer the
efficient path.19

Application 1 (Path Selection using a Condorcet Social Choice Function). Consider a sit-
uation where the path is selected using a Social Choice Function (SCF) that satisfies the
Condorcet Property. That is, the SCF elects a Condorcet winner when available.20

For each agent, a sharing rule determines a cardinal assignment for each path, which
induces an ordinal ranking over paths. Any k−majoritarian sharing rule guarantees that
the efficient path is a Condorcet winner at any problem. Therefore, any SCF that meets the
Condorcet property picks the efficient path.

Conversely, if the rule is not k−majoritarian for any k> n
2, then the efficient path is not

guaranteed to be selected by any voting function that meets the Condorcet Property.

Application 2 (Sequential voting for a public facility). Consider the dynamic game of com-
plete information where agents vote to decide a path in a given problem. For instance, agents
might vote on the route used by a railway or other connected public facilities. More precisely,

formation in Section3.2 uncovers a class of asymmetric delegation rules that would implement the efficient
equilibrium.

19In the case ofk = n this property is reminiscent to Juarez and Kumar[20]. This property characterizes the
sharing rules that only use the value of the path to divide the proceeds, as in Theorem 2.

20Formally, given the set of objectsM, let R be the set of ordinal preferences overM. A social choice
functionΨ : RN → M meets the Condorcet property if for the preference profile�= (�1, . . . ,�n) ∈ RN there
existsl∗ ∈ M such that for anyl ∈ M, |{i ∈ N|l∗ � l}| > n

2, thenΨ(�) = {l∗}. A large class of SCFs that satisfy
this property are discussed in Moulin[27].
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in this game agents vote on the direction to continue at every node. A path is selected using
a k-majoritarian voting rule at every node (i.e., if an outcome receives at least k-votes, then
is chosen). The payoff of the agents is given byµ(l), where l is the realized path.

A k-majoritarian sharing rule will always have an efficient path as a strong subgame
perfect Nash equilibrium, however, this equilibrium might not be unique due to indifferences.
For problems where there does not exist two paths with the same value, k-majoritarian rules
will have a unique strictly strong subgame perfect Nash equilibrium.21 Corollary5pins down
the only anonymous k-majoritarian rule that generates a strictly strong subgame perfect
Nash equilibrium for any problem.

Finally, the selection of the efficient path(s) is robust to voting at only a subset of decision
nodes. It is also robust to incomplete information about which are the decision nodes.22

Example 4(Examples ofk-majority rules). The following rules satisfy the k-majority axiom:

1. Consider a subset S of agents with at least k elements and consider a sharing ruleξ
that awards the average value of the path to the agents in S , that isµi(l) =

vN(l)
n for

i ∈ S .

2. Consider the rulesξ such that for a path l, where vi1(l) ≥ · · · ≥ vin(l), it awards
µi(l) =

vN(l)
k for i = i1, . . . , ik (break indifferences arbitrarily), andµ j(l) = 0 for j > ik.

The first class of rules illustrate the case where a fixed group of agents with at least k
elements always get a fixed proportion of the share of the path. Thus clearly satisfying the
k-majoritarian axiom.

The second example shows that the k-majority axiom can be adapted to fixing the top k
agents. In general, there exists a large class of k-majoritarian sharing-rules. We will discuss
more in the examples below.

For permutationπ of N and each pathl = {xk}Kk=1 in L, whereK ∈ N, let lπ ∈ L be such
that for eachk ∈ {1, ...,K} and eachi ∈ N, xk

i = xk
π(i).

We focus in compensation schemes that are independent of the names of the agents. For
instance, on public facilities, agents often vote to potentially re-distribute their share.

Anonymity : For each permutationπ of N andl ∈ L, µ(l) = µ(lπ).

Anonymity is a desirable property, as the model assumes that agents have symmetric
information. Thus, agents are not discriminated solely on the base on the names. On the other
hand, this does not prevent agents from being discriminated based on their contributions.

21Recall that under strictly strong subgame perfect Nash equilibrium a deviating coalition is feasible if at
least one agent strictly improves and the rest are not worse-off, whereas under the strong Nash equilibrium all
agents in the deviation coalition should strictly improve.

22This problem often occur when voters want to re-evaluate a chosen route after it has been partially built,
for instance in projects that take several years to construct, like the rail in Honolulu, from Ewa side to Waikiki
via Downtown. While the decision to build the rail from Honolulu to Ewa was approved by voters, their
construction stopped in the middle to re-evaluate the route chosen and be confirmed by the voters before further
spending in the project occurs.
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We now move to the main result of this section. The combination of the above two
axioms characterizes a fairly large class of sharing rules.

Proposition 1. If µ satisfies k-majority andanonymity, then for each l∈ L, there is N′ ⊆ N
such that|N′| ≥ k and for each i∈ N′, µi(l) =

vn(l)
n .

For small number of agents, the rules found in the above theorem can be described easily.

Example 5. • When n= 3 or n = 4, ES is the only solution meeting meeting k-majority
and anonymity.

• When n= 5 or n = 6, for any solution meeting k-majority and anonymity there exists
a function g: [0,1] → [0, 2

n] such that g(0) = g(1) = 1
n and for x1 ≥ x2 ≥ · · · ≥ xn

we have thatξ(x) = [g(x1), 1
n, . . . ,

1
n,

2
n − g(x1)]. In particular, ES is determined for

g(z) = 1
n for all z ∈ [0,1].

Finally, we provide several characterizations of the equal sharing solution by adding a
third axiom to our Theorem above.

Theorem 5. A ruleµ is the equal sharing rule if and only if it satisfies k-majority, anonymity,
and either of the following axioms:

i. Sequential composition: For each l= {xk}Kk=1 in L, where K∈ N, µ(l) =
∑
µ({xk}).

ii. Lorenz monotonicity: For each pair l= {xk}Kk=1 and l′ = {x
′k}Kk=1 in L, where K∈ N, if

for each k∈ {1, ...,K}, xk �Lorenz x
′k, thenµ(l′) �Lorenzµ(l).

iii. Transfer monotonicity: For each pair i, i′ ∈ N, and each pair l= {xk}Kk=1 and l′ =

{x
′k}Kk=1 in L, where K∈ N, if for each k∈ {1, ...,K}, x

′k
i − xk

i = xk
i′ − x

′k
i′ ≥ 0, and for

each j∈ N \ {i, i′}, xk
j = x

′k
j , thenµi(l′) ≥ µi(l).

iv. The efficient Path is a Strictly Strong Nash equilibrium in the voting gameΓ(G, v)
(Example2).

3.2 Remarks about Information

Given the symmetric information among the agents, our analysis in delegation focuses in
groups making decisions. We can alternatively consider the issue of delegation of individual
agents that make the decision about the continuation at individual nodes (or collections of
nodes). It is easy to show that a rule that incentivize the delegate to make the efficient
decision at every problem should allocate the agent a share of the total contribution using a
monotone rule, while non-delegated agents can be given an arbitrary share of the value. The
equal division rule is the only symmetric rule in this class.

Finally, we have considered the case where agents have symmetric information among
them. We can alternatively consider the problem of asymmetric information among agents
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(e.g. for the case where agents know their own contribution). In this setting, a more tradi-
tional approach from the mechanism design literature would require agents to report their
information to the planner, who will use this information to make an estimation of the value
of the network and select a path —See Hougaard and Tvede [14, 16] for a related study of
implementation of the efficient path in minimal cost spanning trees. A natural question in
this setting is to find the mechanisms that incentivize agents to report their true information.
When agents are critical, that is, when they have information about some nodes that no one
else has, it is easy to prove that every estimation rule is manipulable. On the other hand,
when agents are not critical, in particular when at least three agents have information about
the value at a given edge, several sharing rules, such as rules that use the median of the
reports to select the path, can achieve truth telling as an equilibrium.

4 Conclusion

We have introduced the problem of division of sequential benefits and provided a compre-
hensive study of it. In particular, we have addressed the problem from different angles,
including the complete and incomplete information case, and used old and new axioms from
other strands of literature to characterize a large class of solutions not uncovered elsewhere.
Our paper highlights the robustness of the EFF-ES solution, in both the complete and in-
complete information settings. This rule, however, is by no means the only rule when less
stringent axioms are imposed.

The continuity axiom, while seemingly weak in other settings, was surprisingly strong
in our setting. There is still a large class of solutions that are continuous, and we conjecture
that the solutions described in Footnote10would lead to the description of most of them.

Sequential composition is also a very powerful axiom, with normative and positive con-
sequences in the sharing of benefits. Several solutions meet this axiom, including all the
solutions discussed in Example1.

Our axiomatic analysis of the incomplete information case highlights the need to char-
acterize all sharing rule meeting thek-majoritarian axiom without anonymity. It also shows
that our analysis might be extended to other information settings where more traditional tools
from mechanism design might be applied.
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5 Appendix

Proof of Theorem1. The necessity is readily seen. We only check the sufficiency. Let (ϕ, µ)
satisfy non-triviality, continuity, and sequential composition. Let (G, v) ∈ P. Suppose
that there is a unique efficient pathL in (G, v) and for each edgee in L, vN(e) > 0. Let
d1,e1, ..., dm,em,dm+1 be the consecutive nodes and edges inL.

We claim thatϕ(G, v) = {L}. To see it, letv1 ∈ VG be such thatv1(e1) = v(e1), and for
eache ∈ G with e , e1, v1(e) = 0. By non-triviality,

∑
µi(G, v1) > 0, and thus for eachL′ ∈

ϕ(G, v1), e1 ∈ L′. For eachλ ∈ (0,1], let v2λ ∈ VG be such thatv2λ(e2) = λv(e2) + (1− λ)0,23

and for eache ∈ G with e , e2, v2λ(e) = v1(e). Thus, for eache ∈ G, lim
λ→0

v2λ(e) = v1(e).

By continuity, lim
λ→0

∑
µi(G, v2λ) =

∑
µi(G, v1(e)). Thus, whenλ is sufficiently small, for each

L′ ∈ ϕ(G, v2λ), e1 ∈ L′, and bysequential compositionandnon-triviality,
∑
µi(G, v2λ) =∑

µi(G|d2, v
2λ|d2) +

∑
µi(G|d2, v2λ|d2) > vN(e1), so e2 ∈ L′. Let λ̄ := sup{λ′ ∈ (0,1] : for

eachλ ∈ (0, λ′] and eachL′ ∈ ϕ(G, v2λ), e1,e2 ∈ L′}. Then, λ̄ > 0, and bycontinuity,∑
µi(G, v2λ̄) = vN(e1) + λ̄vN(e2). If λ̄ < 1, then there is a sequence{λk} of elements of (̄λ, 1]

such that limλk = λ̄, and for eachk, there isL′ ∈ ϕ(G, v2λk) such that eithere1 < L′ or
e2 < L′. Thus, lim sup

∑
µi(G, v2λk) < vN(e1) + λ̄vN(e2) =

∑
µi(G, v2λ̄), which is a violation

of continuity. Hence,λ̄ = 1, and
∑
µi(G, v2) = vN(e1) + vN(e2). Thus, for eachL′ ∈ ϕ(G, v2),

e1,e2 ∈ L′.

23We denote byt, t ∈ R, then-dimensional vector in which each coordinate equalst.
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For eachλ ∈ [0,1], let v̂λ ∈ VG be such that for eache ∈ L, v̂λ(e) = v(e), and for
eache < L, v̂λ(e) = λv(e) + (1 − λ)0. By applying the above argument repeatedly,L ∈
ϕ(G, v̂0). By continuity, whenλ is sufficiently small,L ∈ ϕ(G, v̂λ). Let λ̂ := {λ′ ∈ [0,1] :
for eachλ ∈ [0, λ′], L ∈ ϕ(G, v̂λ)}. By continuity, L ∈ ϕ(G, v̂λ̂). If λ̂ < 1, then there is a
sequence{λk} of elements of (̂λ, 1] such that limλk = λ̂ and for eachk, L < ϕ(G, v̂λk). Since
lim max

L′∈G,L′,L
v̂λk

N (L′) = max
L′∈G,L′,L

v̂λ̂N(L′) ≤ max
L′∈G,L′,L

v̂1
N(L′) < vN(L), then lim sup

∑
µi(G, v̂λk) <

vN(L) =
∑
µi(G, v̂λ̂), which is a violation ofcontinuity. Hence,̂λ = 1, andL ∈ ϕ(G, v). Since

L is the unique efficient path in (G, v), thenϕ(G, v) = {L}.
To see that there isα ∈ Rn

+ with
∑
αi = 1 such thatµ(G, v) = vN(G)α, let G′ ∈ G

be as in Figure5. That is,G′ is obtained by adding an outgoing edgeem+1 to the node
dm+1 with a new sinkdm+2, and adding a parallel pathL′ with d1,e′1,d

′
2,e
′
2,dm+2 being the

consecutive nodes and edges inL′. For eachλ < vN(G)
n , let v′λ ∈ VG′ be such that for

G

d1 d2 dm dm+1 dm+2

d′2

e1 e2 em em+1

e′1 e′2

Figure 6: Incremented networkG′ based onG

eache ∈ G, v′λ(e) = v(e), v′λ(em+1) = v′λ(e′1) = 0, andv′λ(e′2) = (vN(G)
n − λ)1. Note that

wheneverλ > 0, L incremented byem+1 anddm+2 is the unique efficient path in (G′, v′λ). By
sequential composition, µ(G′, v′λ) = µ(G, v). By continuity, µ(G′, v′0) = µ(G, v). Whenever
λ < 0, L′ is the unique efficient path inG′. By continuity and sequential composition,
µ(G′, v′0) = µ(e, vN(G)

n 1). Thus,µ(G, v) = µ(e, vN(G)
n 1).

Let c, c′ ∈ R+, Ḡ ∈ G be as in Figure5, and v̄ ∈ VḠ be such that ¯v(e1) = c+c′

n 1,
v̄(e2) = 0, v̄(e′1) = c

n1, andv̄(e′2) = c′

n 1. By continuityandsequential composition, µ(Ḡ, v̄) =

µ(e, c+c′

n 1) = µ(e, c
n1) + µ(e, c′

n 1). Thus, for eachi ∈ N, fi : R+ → R+ defined by setting
for eachc ∈ R+, fi(c) = µi(e, c

n1) is additive, and bycontinuity, it is continuous. Hence,
there isαi ∈ R such that for eachc ∈ R+, fi(c) = αic. Since for eachc > 0 andi ∈ N,
fi(c) ≥ 0, and

∑
fi(c) = c, then for eachi ∈ N, αi ≥ 0, and

∑
αi = 1. Hence, for eachi ∈ N,

µi(G, v) = fi(
vN(G)

n ) = αivN(G).
Lastly, suppose that there are multiple efficient paths in (G, v) or there are some edges

of zero value in an efficient path. Let{vk} be a sequence of elements ofVG such that for
eachk, (G, v) has a unique efficient path, each edge of which has a positive value, and for
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d1 d2 d3

d′2

e1

c+c′

n 1

e2

0

e′1
c
n1

e′2

c′

n 1

Figure 7: Problem (̄G, v̄)

each edgee in G, lim vk(e) = v(e). Thus, for eachk, µ(G, vk) = vk
N(G)α. By continuity,

µ(G, v) = vN(G)α. This also shows that each path inϕ(G, v) is efficient.

Proof of Theorem2. We shall only check the sufficiency. Suppose that (ϕ, µ) satisfiestech-
nology improvement. Define f : R+ → Rn

+ by setting for eachc ∈ R+, f (c) = µ(e, c
n1). Let

(G, v) ∈ P. We claim thatµ(G, v) = f (vN(G)).
Let (G′, v′) ∈ P be a one-step technology improvement of (G, v) whereG′ is constructed

by adding an edgee′ going out from the source to a sink inG, andv′(e′) =
vN(G)

n 1. By
technology monotonicity, µ(G′, v′) ≥ µ(G, v). Sincev′N(G) = vN(G), then µ(G′, v′) =

µ(G, v). Note that there is a finite sequence{(Gk, vk)}Kk=1, K ∈ N, of elements ofP such
that (G1, v1) = (e, vN(G)

n 1), (GK , vK) = (G′, v′), and for eachk = 2, ...,K, (Gk, vk) is a one-step
technological improvement of (Gk−1, vk−1). By applyingtechnology monotonicityrepeat-
edly, µ(G′, v′) ≥ µ(e, vN(G)

n 1). Sincev′N(G) = vN(G), thenµ(G′, v′) = µ(e, vN(G)
n 1). Hence,

µ(G, v) = µ(e, vN(G)
n 1) = f (vN(G)). This also shows that each path inϕ(G, v) is efficient.

Proof of Theorem3. We shall only prove the “only if” direction. Definer : Rn
+ → Rn

+ by
setting for eachx ∈ Rn

+, r(x) = y if µ(e, x) = y. Clearly,
∑

xi =
∑

yi. By continuity,
r is continuous. Suppose thatr(x) = y for somex ∈ Rn

+. Then byparallel composition
µ((e, x) ∪ (e′, x)) = µ((e, y) ∪ (e′, x)) = µ((e, y) ∪ (e′, y)). By irrelevance of dominated paths
andcontinuity, µ((e, x) ∪ (e′, x)) = µ(e, x) andµ((e, y) ∪ (e′, y)) = µ(e, y). Thusµ(e, y) =

µ(e, x) = y. Hence,r(y) = y.
Define % on r(Rn

+) by setting for each pairx, y ∈ r(Rn
+), y% x if µ((e, x) ∪ (e′, y)) = y.

We claim that% is a partial order. Since for eachy ∈ r(Rn
+), µ((e, y) ∪ (e′, y)) = y, then %

is reflexive. By definition,% is antisymmetric. To see% is transitive, letx, y, z ∈ r(Rn
+) be

such thaty% x andz% y, and letz′ := µ((e, x)∪ (e′, z)). By parallel composition, irrelevance
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of dominated pathsandcontinuity,

µ((e1, z) ∪ (e2, x) ∪ (e3, y) ∪ (e4, z))

=µ((e1, z) ∪ (e2, x) ∪ (e3, z))

=µ((e1, z) ∪ (e2, x)) = z′,

and

µ((e1, z) ∪ (e2, x) ∪ (e3, y) ∪ (e4, z))

=µ((e1, z) ∪ (e2, x) ∪ (e3, y))

=µ((e1, z) ∪ (e2, y)) = z.

Hence,z′ = z. Thus,z% x as desired. Byparallel compositionandirrelevance of dominated
paths, for each pairx, y ∈ Rn

+ such thatx > y, µ((e, r(x)) ∪ (e′, r(y))) = µ((e, x) ∪ (e′, y)) =

µ(e, x) = r(x), sor(x) % r(y). Since% is continuous, for each pairx, y ∈ Rn
+ such thatx ≥ y,

r(x) % r(y).
To see that (r(Rn

+), % ) is a join-semilattice, letx, y ∈ r(Rn
+) andz := µ((e, x) ∪ (e′, y)).

We claim thatz = max
%
{x, y}. By parallel composition, irrelevance of dominated paths, and

continuity,

µ((e1, z)) = µ((e1, z) ∪ (e2, z))

=µ((e1, x) ∪ (e2, y) ∪ (e3, x) ∪ (e4, y))

=µ((e1, x) ∪ (e2, y)) = z,

and

µ((e1, x) ∪ (e2, z))

=µ((e1, x) ∪ (e2, y) ∪ (e3, x))

=µ((e1, x) ∪ (e2, y)) = z.

Hence,z ∈ r(Rn
+) andz% x. Similarly, z% y. If there isz′ ∈ r(Rn

+) such thatz′ % x and
z′ % y, then byparallel composition,

µ((e1, z
′) ∪ (e2, z))

=µ((e1, z
′) ∪ (e2, x) ∪ (e3, y))

=µ((e1, z
′) ∪ (e3, y)) = z′.

Hence,z′ % z. Thus,z = max
%
{x, y} ∈ r(Rn

+) as desired.

Let (G, v) ∈ P. We claim thatϕ only selects efficient path(s). IfvN(G) = 0, then we
are done. Suppose thatvN(G) > 0. Let {L1, ..., Lm}, m ∈ N, be the set of paths in (G, v).
For eachk ∈ {1, ...,m}, we denote by (Lk, vk) the problem consisted of a single pathLk such
that for each edgee in L, vk(e) = v(e). By irrelevance of dominated pathsandcontinuity,

µ(G, v) = µ(
m⋃

k=1
(Lk, vk) ∪ (G, v)) = µ(

m⋃

k=1
(Lk, vk)).
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For eachλ ∈ [0,1] and eachk ∈ {1, ...,m}, let xλk :=
∑

e in Lk

v(e) if vN(Lk) = vN(G), and

xλk := λ
∑

e in Lk

v(e))) + (1 − λ)0 if vN(Lk) < vN(G). Whenλ = 1, we simply writexk for

x1k. By splitting invariance, µ(G, v) = µ(
m⋃

k=1
(ek, xk)). By irrelevance of dominated paths,

the
∑
µi(

m⋃

k=1
(ek, x0k)) = vN(G). Let λ̄ := sup{λ ∈ [0,1] :

∑
µi(

m⋃

k=1
(ek, xλk)) = vN(G)}. By

continuity,
∑
µi(

m⋃

k=1
(ek, xλ̄k)) = vN(G). Suppose that̄λ < 1. Then there isε > 0 such that for

eachλ > λ̄,
∑
µi(

m⋃

k=1
(ek, xλk)) ≤ vN(G) − ε, which is a violation ofcontinuity. Hence,λ̄ = 1,

andµi(G, v) = µi(
m⋃

k=1
(ek, xk)) = vN(G).

Next, we claimµ(G, v) = max
%
{r(xk) : k = 1, ...,m}. Let z := µ(∪m

k=1(ek, xk)). It suffices to

show thatz = max
%
{r(xk) : k = 1, ...,m}. By parallel composition, irrelevance of dominated

paths, andcontinuity, µ(e, z) = z, and for eachj ∈ {1, ...,m},

µ((e, z) ∪ (e′, r(xj)))

=µ(
m⋃

k=1

(ek, x
k) ∪ (e′, xj))

=µ(
m⋃

k=1

(ek, x
k)) = z.

Hence,z ∈ r(Rn
+) and for eachj ∈ {1, ...,m}, z% r(xj). If there isz′ ∈ r(Rn

+) such that for
eachj ∈ {1, ...,m}, z′ % r(xj), then byparallel composition,

µ((e, z) ∪ (e′, z′)) = µ(
m⋃

k=1

(ek, x
k) ∪ (e′, z′))

=µ(
m⋃

k=1

(ek, r(x
k)) ∪ (e′, z′)) = z′,

so z′ % z as desired. Therefore, (ϕ, µ) is (r, % ) - rationalizable. Bycontinuity, (ϕ, µ) is
continuously (r, % ) - rationalizable.

Proof for Example3. To show the properties of% , it is useful to observe that for each pair
x, y ∈ r(Rn

+), x% y if and only if x1 + x2 ≥ y1 + y2, x1 ≥ min{y1,
∑

yi

n } andx2 ≥ min{y2,
∑

yi

n }.
The “only if” direction is easy to check. To see the “if” direction, suppose thaty1 ≤

∑
yi

n .
Then,y2 ≥

∑
yi

n , x1 ≥ y1, x2 ≥
∑

yi

n , andx1 ≤
∑

yi

n . If x2 ≥ y2, thenx ≥ y, and thusx% y.
Suppose thatx2 < y2. Sincex1 + (n − 1)

∑
yi

n ≤
∑

yi ≤ x1 + (n − 1)x2 =
∑

xi, then there is
c ∈ [

∑
yi

n , x2] such thatx1 + (n− 1)c =
∑

yi. Let z ∈ r(Rn
+) be such thatz = (x1, c, ..., c). Then,
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x ≥ z,
∑

zi =
∑

yi, andy1 ≤ z1 ≤
∑

yi

n . Hence,x% y. Similar arguments apply to the case of
y1 >

∑
yi

n .
We claim that% is a partial order. By definition,% is reflexive. To see% is an-

tisymmetric, letx, y ∈ r(Rn
+) be such thatx% y and y% x. Suppose thaty1 ≤

∑
yi

n . By
the above observation,

∑
xi =

∑
yi. Moreover, sincex% y, then x1 ≥ y1 and x1 ≤

∑
yi

n .
Sincey% x, theny1 ≥ x1. Hence,x1 = y1, and thusx = y. Similar arguments hold when
y1 >

∑
yi

n . For transitivity, letx, y, z ∈ r(Rn
+) be such thatx% y andy% z. By the above

observation,
∑

xi ≥
∑

yi ≥
∑

zi, x1 ≥ min{y1,
∑

yi

n } ≥ min{min{z1,
∑

zi

n },
∑

yi

n } = min{z1,
∑

zi

n },
andx2 ≥ min{y2,

∑
yi

n } ≥ min{min{z2,
∑

zi

n },
∑

yi

n } = min{z2,
∑

zi

n }. Hence,x% z.
To see that (r(Rn

+), % ) is a join-semilattice, letx, y ∈ r(Rn
+). Suppose without loss of

generality that
∑

xi ≥
∑

yi. We denote the median operator bymed. Let z∗ ∈ Rn
+ be such that

z∗1 = med{min{y1,
∑

yi

n }, x1,
∑

xi − (n− 1) min{y2,
∑

yi

n }} andz∗2 = ... = z∗n =
∑

xi−z∗1
n−1 .

We claim thatz∗ = max
%
{x, y}. Let z ∈ r(Rn

+) be such thatz% x andz% y. Observe that
∑

zi ≥
∑

z∗i =
∑

xi ≥
∑

yi, min{y2,
∑

yi

n } ≤
∑

yi

n ≤
∑

xi

n , and

∑
xi − (n− 1) min{y2,

∑
yi

n
} ≥

∑
xi

n
≥ min{y1,

∑
yi

n
}. (1)

Thus,z∗ ∈ r(Rn
+). Moreover, by (1), z∗1 ≥ min{y1,

∑
yi

n } andz∗2 =
∑

xi−z∗1
n−1 ≥

(n−1) min{y2,
∑

yi
n }

n−1 =

min{y2,
∑

yi

n }. Hence,z∗ % y. If z∗1 = x1, thenz∗ = x, and thusz% z∗ % x. Suppose that
z∗1 = min{y1,

∑
yi

n }. Then by (1),
∑

xi

n ≥ min{y1,
∑

yi

n } ≥ x1. Thus,z∗1 ≥ x1 = min{x1,
∑

xi

n } and

z∗2 =
∑

xi−z∗1
n−1 ≥

∑
xi−

∑
xi

n

n−1 =
∑

xi

n ≥ min{x2,
∑

xi

n }. Moreover, min{z∗1,
∑

zi

n } = min{y1,
∑

yi

n }, and

min{z∗2,
∑

zi

n } = min{
∑

xi−z∗1
n−1 ,

∑
xi

n } ≤ min{
∑

xi−x1

n−1 ,
∑

xi

n } = min{x2,
∑

xi

n }. Hence,z% z∗ % x. Sup-
pose thatz∗1 =

∑
xi− (n−1) min{y2,

∑
yi

n }. By (1), x1 ≥
∑

xi− (n−1) min{y2,
∑

yi

n } ≥
∑

xi

n . Thus,

z∗1 ≥ min{x1,
∑

xi

n } andz∗2 =
∑

xi−z∗1
n−1 ≥

∑
xi−x1

n−1 = x2 ≥ min{x2,
∑

xi

n }. Moreover, min{z∗1,
∑

zi

n } =
∑

xi

n = min{x1,
∑

xi

n }, and min{z∗2,
∑

zi

n } = min{
∑

xi−z∗1
n−1 ,

∑
xi

n } = min{min{y2,
∑

yi

n },
∑

xi

n } = min{y2,
∑

yi

n }.
Hence,z% z∗ % x.

Let (ϕ, µ) be such that for each (G, v) ∈ P, ϕ selects all efficient path(s) in (G, v), and
µ(G, v) = max

%
{r(

∑

e in L
v(e)) : L in G}. Note that for each pairx ≥ y, r(x) ≥ r(y), and thus

r(x) % r(y). Hence, (ϕ, µ) is (r, % ) - rationalizable. To see that the solution is continuously
(r, % ) - rationalizable, letg : r(Rn

+)2 → r(Rn
+), x, y ∈ r(Rn

+) and{xn}, {yn} be two sequences
of elements ofr(Rn

+) such that limxn = x and limyn = y. Let z := max{x, y} and for each
n ∈ N, zn = max{xn, yn}. Suppose without loss of generality that

∑
xi ≥

∑
yi. If

∑
xi >

∑
yi,

then for sufficiently largen ∈ N,
∑

xn
i <

∑
yn

i , and thus limzn = z. If
∑

xi =
∑

yi, then
z1 = med{min{y1,

∑
yi

n }, x1,
∑

xi − (n − 1) min{y2,
∑

yi

n }} = med{min{x1,
∑

xi

n }, y1,
∑

yi − (n −
1) min{x2,

∑
xi

n }}. Hence, limzn = z.

Proof of Theorem4. We shall only check the sufficiency. Let (ϕ, µ) satisfy irrelevance of
dominated paths, irrelevance of parallel outside options, andcontinuity. For each (G, v) ∈ P
and eachL in G, we denote by (L, vL) the problem consisting of the single pathL andvL
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such that for each edgee in L, vL(e) = v(e). By irrelevance of dominated pathsandcon-
tinuity, for each (G, v) ∈ P, µ(G, v) = µ(

⋃

L in G
(L, vL)). Moreover, by a similar argument as

in the the proof of Theorem3, ϕ selects only efficient path(s). Let (G, v), (G′, v′) ∈ P. Let
L∗ be an efficient path in (G′, v′) ∪ (G, v) and for eachε > 0, vε ∈ VL∗ be such that for
eache in L∗, vε(e) = v(e) + ε1 if L∗ is in G, andvε(e) = v′(e) + ε1 if L∗ is in G′. Suppose
thatL∗ is in G′. By continuity, µ((G, v)∪ (G′, v′)) = lim

ε↓0
µ((

⋃

L in G
(L, vL))∪ (

⋃

L in G′,L,L∗
(L, v′L))∪

(L∗, vε)). Sinceϕ selects only efficient path(s), then byirrelevance of parallel outside options,
µ((G, v)∪(G′, v′)) = lim

ε↓0
µ(L∗, vε) = µ(L∗, vL∗). Similarly,µ((e, µ(G, v))∪(G′, v′)) = µ(L∗, vL∗),

and thusµ((G, v) ∪ (G′, v′)) = µ((e, µ(G, v)) ∪ (G′, v′)). Suppose thatL∗ is in G. Then
µ((G, v) ∪ (G′, v′)) = lim

ε↓0
µ((

⋃

L in G,L,L∗
(L, vL)) ∪ (

⋃

L in G′
(L, v′L)) ∪ (L∗, vε)) = µ(L∗, vL∗). More-

over,µ((e, µ(G, v)) ∪ (G′, v′)) = lim
ε↓0

µ((e, µ(G, v) + ε1) ∪ (G′, v′)) = lim
ε↓0

µ((e, µ(G, v) + ε1) ∪

(
⋃

L in G′
(L, v′L))) = lim

ε↓0
µ(e, µ(G, v) + ε1) = µ(e, µ(G, v)). For eachε > 0, µ((e, µ(G, v) +

ε1) ∪ (L∗, vL∗)) = µ(e, µ(G, v) + ε1) and µ((e, µ(G, v)) ∪ (L∗, vε)) = µ(L∗, vε). By conti-
nuity, µ((e, µ(G, v)) ∪ (L∗, vL∗)) = µ(e, µ(G, v)) = µ(L∗, vL∗). Hence,µ((G, v) ∪ (G′, v′)) =

µ((e, µ(G, v)) ∪ (G′, v′)). Thus, (ϕ, µ) satisfiesparallel composition.
Moreover, we claim that (ϕ, µ) satisfiessplitting invariance. It suffices to show that for

each (G, v) ∈ P, µ(
⋃

L in G
(L, vL)) = µ(

⋃

L in G
(eL,

∑

e in L
v(e))). Let (G, v) ∈ P andL be a path in

G. By parallel composition, it suffices to show thatµ(L, vL) = µ(eL,
∑

e in L
v(e)). For each

ε > 0, let vε ∈ VL be such that for eache in L, vε(e) = vL(e) + ε1. Then, for eachε > 0,
µ((L, vε)∪ (eL,

∑

e in L
v(e))) = µ(L, vε) andµ((L, vL)∪ (eL,

∑

e in L
v(e) + ε1)) = µ(eL,

∑

e in L
v(e) + ε1).

By continuity, µ((L, vL) ∪ (eL,
∑

e in L
v(e))) = µ(L, vL) = µ(eL,

∑

e in L
v(e)), as desired.

Since (ϕ, µ) satisfies bothsplitting invarianceandparallel composition, then by Theorem
3, there exist a redistribution functionr and a partial order% on r(Rn

+) such that for each
pair x, y ∈ Rn

+ with x ≥ y, r(x) % r(y), and (ϕ, µ) is continuously (r, % ) - rationalizable. By
irrelevance of parallel outside options, for each pairx, y ∈ r(Rn

+), eitherµ((e, x) ∪ (e′, y)) =

µ(e, x) = x or µ((e, x)∪ (e′, y)) = µ(e′, y) = y. Sincer is continuous, thenr(Rn
+) is connected.

Then by Eilenberg (1941),24 there is a one-to-one and continuous mappingg : r(Rn
+)→ R.

We claim that for each pairx, y ∈ Rn
+ such that

∑
xi =

∑
yi, r(x) = r(y). Suppose to the

contrary thatx, y ∈ Rn
+,

∑
xi =

∑
yi, andr(x) , r(y). Thus,

∑
xi > 0. Let z ∈ Rn

+ be such
that

∑
zi <

∑
xi, sor(z) , r(x) andr(z) , r(y). For each pair (x′, x′′) ∈ {(x, y), (y, z), (z, x)},

let D(x′,x′′) := {λx′ + (1 − λ)x′′ : λ ∈ [0,1]}. Sincer is continuous andD(x′,x′′) is convex,
then r(D(x′,x′′)) is path-connected. Sincer(D(x′,x′′)) is a Hausdorff space, thenr(D(x′,x′′)) is
arc-connected. Thus, there is a functionh(x′,x′′) : [0,1] → r(D(x′,x′′)) such thath(x′,x′′)(0) =

r(x′), h(x′,x′′)(1) = r(x′′), andh(x′,x′′) is a homeomorphism between [0,1] andh(x′,x′′)([0,1]).
Note thath(x,y)([0,1]) ∩ h(y,z)([0,1]) = {r(y)}, h(x,y)([0,1]) ∩ h(z,x)([0,1]) = {r(x)}, andA :=
h(x,y)([0,1]) ∪ h(y,z)([0,1]) ∪ h(z,x)([0,1]) is connected. Sinceg is continuous, theng(A) is an
interval. Sinceg is one-to-one, then there isc◦ ∈ (0,1) such thatg(h(x,y)(c◦)) is an interior

24See his Theorem I and (6.1).
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point ofg(A), and thusg(A \ h(x,y)(c◦)) is not connected. SinceA \ h(x,y)(c◦) is connected and
g is continuous, theng(A \ h(x,y)(c◦)) is connected, which is a contradiction.

Define f : R+ → Rn
+ by setting for eachc ∈ R+, f (c) = r( c

n1). For each (G, v) ∈ P, since
µ(G, v) = max

%
{r(

∑

e in L
v(e)) : L in G}, then by the result proved in the previous paragraph,

µ(G, v) = max
%
{ f (vN(L)) : L in G}. Recall that for each pairx, y ∈ Rn

+ with x ≥ y, r(x) % r(y).

Thus,µ(G, v) = f (vN(G)).

Lemma 1. Let c > 0 and X ⊆ ∆ = {x ∈ Rn
+ :

∑
xi = c}. Suppose that (i)cn1 ∈ X, (ii) for

each pair x, y ∈ X, there is N′ ⊆ N such that|N′| ≥ k and for each i∈ N′, xi ≥ yi, and (iii)
for each permutationπ of N and each x∈ X, xπ defined by setting for each i∈ N, xπi = xπ(i)

belongs to X. Then, for each x∈ X, there is N′ ⊆ N such that|N′| ≥ k and for each i∈ N′,
xi = c

n.

Proof of Lemma1. By assumption (ii), for each pairx, y ∈ X, |{i ∈ N : xi > yi}| ≤ n − k,
|{i ∈ N : xi < yi}| ≤ n− k, and thus

|{i ∈ N : xi = yi}| ≥ 2k− n. (2)

For eachx ∈ X, Nx
> := {i ∈ N : xi >

c
n}, Nx

< := {i ∈ N : xi <
c
n}, andNx

= := {i ∈ N : xi = c
n}.

Let x ∈ X. By assumption (i),|Nx
>| ≤ n− k, |Nx

<| ≤ n− k, and|Nx
=| ≥ 2k − n. Suppose to the

contrary that|Nx
=| < k.

If |Nx
=| ≥

n
2, then letπ be a permutation onN such that for eachi ∈ Nx

> ∪ Nx
<, π(i) ∈ Nx

=.
By assumption (iii),xπ ∈ X. Note thatNx

> ∪ Nx
< ⊆ Nxπ

= andNxπ
> ∪ Nxπ

< ⊆ Nx
= (see Figure5).

N {i ∈ N : xi = xπi }

Nx
= Nx

> ∪ Nx
<

Nxπ
< ∪ Nxπ

> Nxπ
=

Figure 8: Permutationπ of N

Thus,|{i ∈ N : xi = xπi }| = |N
x
=| − |N

x
>| − |N

x
<| = |N

x
=| − (n− |Nx

=|) < 2k− n, which violates
(2).

If |Nx
=| <

n
2, assume that|Nx

>| ≤ |N
x
<| ≤ |N

x
=|. Let π be a permutation ofN such that

for eachi ∈ Nx
=, π(i) ∈ Nx

> ∪ Nx
<, and for eachi ∈ Nx

<, π(i) ∈ Nx
= (see Figure5). Since

|Nx
>| ≤ |N

x
=| <

n
2 < |N

x
> ∪ Nx

<|, then for eachi ∈ Nx
>, π(i) ∈ Nx

< ∪ Nx
=. Hence, for eachi ∈ N,

xi , xπi , which violates (2). Similar contradiction can be obtained when|Nx
<| ≤ |N

x
>| ≤ |N

x
=|,

and when|Nx
=| < |N

x
>| or |Nx

=| < |N
x
<|, since both|Nx

>| and|Nx
<| are less thann2.
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N

Nx
> Nx

< Nx
=

Nxπ
= Nxπ

> Nxπ
<

Figure 9: Permutationπ of N

Proof of Proposition1. Let l ∈ L and c := lN. Let X = {µ(l′) : l′ ∈ L, l′N = c}. By
anonymity, assumptions (i) and (iii) of Lemma1 are satisfied. Byk-majority, assumption
(ii) is also satisfied. By Lemma1, there isN′ ⊆ N such that|N′| ≥ k and for eachi ∈ N′,
µi(l) = c

n.

Proof of Theorem5. We only check the sufficiency. Letµ satisfyk-majority andanonymity.
Suppose thatµ satisfiessequential composition. For eachl ∈ L, let Nl

= := {i ∈ N : µi(l) =
lN
n } andNl

, := N \ Nl
=. Suppose to the contrary that there isl′ ∈ L such thatNl′

, , ∅. By
Theorem1, |Nl′

= | ≥ k ≥ |Nl′
, |. Letπ be a permutation onN such that for eachi ∈ Nl′

,, π(i) ∈ Nl′
=.

Let l̄ ∈ L be a path that connectsl′ andl
′π. By sequential composition, µ(l̄) = µ(l′) + µ(l

′π).
Thus,Nl̄

= = Nl′
= ∩ Nl

′π

= , soNl̄
, , ∅ and|Nl̄

=| = |N
l′
= | − |N

l′
, | < |N

l′
= | (see Figure5). Repeating the

argument, there isl′′ ∈ L such thatNl′′
, , ∅ and|Nl′′

= | < |N
l′
= |. Within finitely many steps, we

can findl̂ ∈ L such that|Nl̂
=| < k, which is a violation of Theorem1.

Suppose thatµ satisfiesLorenz monotonicity. Let l = {xk}Kk=1, whereK ∈ N. Let l′ =

{x
′k}Kk=1 be such that for eachk ∈ {1, ...,K} and eachi ∈ {1, ..., n− 1}, x

′k
i = 0 andx

′k
n =

∑

i∈N
x
′k
i .

By construction, for eachk ∈ {1, ...,K}, xk �Lorenz x
′k. By anonymity, for each pairi, j ∈

{1, ..., n − 1}, µi(l′) = µ j(l′). By Theorem1, for eachi ∈ {1, ..., n − 1}, µi(l′) =
l′N
n = lN

n , and
thusµn(l′) = lN

n . By Lorenz monotonicity, lN
n 1�Lorenzµ(l). Hence,µ(l) = lN

n 1.
Suppose thatµ satisfiestransfer monotonicity. Let l = {xk}Kk=1, whereK ∈ N. For each

j ∈ N, let l j = {x
′k}Kk=1 be such that for eachk ∈ {1, ...,K} and eachi ∈ N \ { j}, x

′k
i = 0 and

x
′k
j =

∑

i∈N
x
′k
i . By anonymityand Theorem1, µ j(l j) = lN

n . By transfer monotonicity, for each

j ∈ N, µ j(l) ≤ µ j(l j). Thus,µ(l) = lN
n 1.

Suppose thatµ the efficient route is aStrong Nash. Suppose for a problem (G, v) that a
path l = {xk}Kk=1 is chosen and it is not equal sharing among all agents. DenoteNl

<, Nl
= and

Nl
> be the set of agents get less than, equal to and more than the average for value of the path

l. First, we have|Nl
<| > 0 and|Nl

>| > 0. Second, by Theorem 1, we have|Nl
<|+ |N

l
=| ≥ k. Now

consider a problem (G, v) consist of two parallel pathsl and l̂ where l̂ = {x̂k}Kk=1 such that
x̂k

i = xk
π(i) andπ is a permutation ofN such thatπ(i) = i for all i ∈ Nl

=, and for somei ∈ Nl
<,
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N {i ∈ N : µi(l′) = µl′π
i =

l′N
n }

Nl′
= Nl′

,

Nl′π
, Nl′π

=

N {i ∈ N : µi(l̄) =
2l′N
n }

Nl̄
=

Figure 10: Permutationπ of N

we haveπ(i) = j where j ∈ Nl
>. Supposel is chosen. By construction,|Nl̂

<| + |N
l̂
=| ≥ k. This

group of agent is weakly better off (with one strict) under̂l, which contradicts group value
monotonicity. We have the similar argument ifl̂ is chosen.
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