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Abstract

In this article, we consider a generalized panel data transformation model with fixed effects
where the structural functions are assumed to be additive. Our model does not impose para-
metric assumptions on the transformation function, the structural function, or the distribution
of the idiosyncratic error term. We propose a multiple-stage Local Maximum Likelihood Esti-
mator (LMLE) for the structural functions. In the first stage, we apply the regularized logistic
sieve method to estimate the sieve coefficients associated with the approximation of a compos-
ite function and then apply a matching method to obtain initial consistent estimators of the
additive structural functions. In the second stage, we apply the local polynomial method to
estimate certain composite function and its derivatives to be used later on. In the third stage
we apply the local linear method to obtain the refined estimator of the additive structural
functions based on the estimators obtained in Steps 1 and 2. The greatest advantage is that
all minimization problems are convex and thus overcome the computational hurdle for existing
approaches to the generalized panel data transformation model. The final estimates of the ad-
ditive terms achieve the optimal one-dimensional convergence rate, asymptotic normality and
oracle efficiency. The Monte Carlo simulations demonstrate that our new estimator performs
well in finite samples.
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1 Introduction

Since the pioneering work of |Box and Cox (1964), transformation models have been widely studied.
They include many popular models, such as the accelerated failure time model, the Weibull hazard
model, the proportional hazard model and the mixed proportional hazard model. Due to their
popularity, transformation models have been widely applied to empirical work in various areas
of economics to study issues that include the length of unemployment spell, the time between
purchases of a particular good, the time intervals between two child births, and the insurance claim
durations, among others. See |[Van den Berg| (2001]) for a survey on the applications of duration
models. Meanwhile, the asymptotic properties of different forms of transformation models have
received a great deal of interest. For example, Horowitz (1996) focus on a transformation model
with a nonparametric transformation function and a parametric structural function. |Chiappori,
Komunjer and Kristensen! (2015) extend the method in Horowitz (1996) to a transformation model
with both nonparametric transformation functions and nonparametric structural functions under
endogeneity.

Even though a fully-nonparametric transformation model avoids various misspecification issues,
it suffers from the curse of dimensionality. For this reason, there has developed a large literature
that applies the additive structure in generalized additive models with an unknown link function;
see Horowitz (2001), Horowitz and Mammen, (2007)), Horowitz and Mammen| (2011)) and Lin, Pan,
Lv and Zhang| (2018)), among others. Recently, (Chen, Lu and Wang| (2022) have considered a fully
nonparametric transformation model with additive structural functions in a panel data model with
fixed effects. In contrast with the early works such as |Horowitz and Lee| (2004), |Chen, (2010) and
Wang and Chen| (2020) who also analyze panel transformation models but assume parametric
structural functions, Chen et al. (2022) is the only paper that considers a generalized transfor-
mation model with fixed effects under additivity and avoids imposing any parametric assumption.
The estimator of the structural function |Chen et al. (2022)) has a closed-form expression, which
makes it is easy to implement and to study the asymptotically normality. Nevertheless, the esti-
mation is done through the matching with other covariates locally and thus suffers from the curse
of dimensionality substantially.

To combat the curse of dimensionality, in this paper we propose a three-stage estimation pro-
cedure for the generalized transformation model with fixed effects and additive structures. We
assume that the nonparametric structural function g (-) exhibits an additive structure: ¢ (x) =
Zflzl g1 (z7) . Inspired by Horowitz and Mammen| (2004, [2011)) and |Ozabaci, Henderson and Su
(2014)), we aim to obtain estimators of the additive structural functions that enjoy the orcale effi-
ciency in the sense that they can be estimated as asymptotically efficiently as the oracle estimator
obtained when the other additive components are observed. In the first stage, we first consider
a regularized sieve method to estimate the logit sieve coefficients associated with the approxima-
tion of a composite function of the inverse L1 (-) of logit-CDF L (-), the CDF F (-) of the error

difference, and the structural function ¢ (-), and then generalize the “pairwise differencing” or



“matching” method of Blundell and Powell (2004) to obtain initial consistent estimators g; (-) of
the structural functions g; (). In the second stage, we consider the local polynomial estimation of
LF () = L7Y(F (-)) and its first order derivative based on the preliminary consistent estimates
g1 (). In the third stage, we apply the local linear method to estimate the one-dimensional ob-
ject g; (-) based on the consistent estimates {g; ()} of {g;(-)} and those of LF' (-) and its first
order derivative. Since only one-dimensional nonparametric objects are estimated in the second
and third stage and the additive structure of g () is imposed in the whole procedure, the whole
estimation procedure does not have the curse of dimensionality issue.

Interestingly, all the minimization problems in our three-stage approach are convex problems.
This overcomes the computational hurdle in some existing procedure for transformation models.
Furthermore, our estimator achieve optimal convergence rate, asymptotic normality and oracle
efficiency.

The article is organized as follows. Section 2 describes our methodology. We present the asymp-
totic properties of our estimators in Section 3. Section 4 examines the finite sample performance
of our estimators via Monte Carlo simulations. We apply our method to an empirical dataset in
Section 5. Section 6 concludes. All the proofs of the main theorems are relegated to the appendix.

Notation. For a real matrix A, let A’ denote its transpose, and let || A]| and [|A[,, to denote its
Frobenius norm and operator norm, respectively: || Al = [tr (AA’)]I/2 and [|All,, = VAmaz (A’A),
where = signifies a definitional relationship, ¢r (-) is a trace operator, and Aq. () denotes the
maximum eigenvalue of a real symmetric matrix. Similarly, we use A\pin(-) to denote the minimum
eigenvalue of a real symmetric matrix. For any function f(-) defined on the real line, let f (), f(),
and f() be its first, second, and third order derivatives and let 9% f(-) be the ath order partial
derivative of f (-). Let B and B be convergence in distribution and convergence in probability.
Let 1{A} denote the usual indicator function which takes one 1 if A holds true and 0 otherwise.
For any positive integer ¢, we write [c] = {1,2,...,¢}. For a vector v, |v|, denotes the number of

nonzero elements in v.

2 Methodology

In this section we first present the panel data transformation model and then propose a multi-step

procedure to estimate it.

2.1 The Model

We consider the following transformation model:

d
A(Yi) = g (Xit) + i + € = Zgl (Xiit) + o6 + €, (2.1)
=1



wherei =1,--- ,n, t = 1,--- , T, Yy is the observed dependent/response variable, (X1 i, - , Xa.)'
is a d x 1 vector of observed covariates, g (X;;) = 27:1 g1 (X1it), oy is the individual fixed effect
that captures the unobserved individual heterogeneity, €;; is the idiosyncratic error term, and A (+)
is an unknown transformation function that is strictly increasing. Note that the model in
specifies a structural relationship between the response variable Y;; and the covariates in X;;. We
address the important issue of “curse of dimensionality” by imposing additive structures on the co-
variates. Also, for simplicity and clarity we assume that g;(-), ! = 1,--- ,d are all unknown smooth
functions defined on the real line so that each Xj; is a scalar random variable. Even though
g1(-)’s are only components of the structural relationship, they are often parameters of interest
in empirical applications and we shall refer to them as the structural functions in this paper. In
addition, the derivatives, ¢1(+),- -, gq(-), which measure the marginal effects, are also of interest
in practice. For example, ¢; (X; ;) can be interpreted as the marginal effect of X ;; on A (Y;). The
main goal of this paper is to estimate (g1(-),- -, gq(+)) and their derivatives (g1(-), -+, ga(-)). Let
g(x) = Zle g1(z;) where x = (21, ..., z;)".

Throughout the paper we focus on a short panel with T being fixed but allow the individual
effect a; to be correlated with the covariates in arbitrarily unknown form. To deal with the fixed
effects «;, we rewrite the model in as follows:

d

Yie = A7 (g (Xit) + i +€) = A1 (Z 91 (Xi,it) + 0 + €it> ; (2.2)
=1

where A~1(-) is the inverse function of A(-). Clearly, the above expression indicates that the model

(2.1) is different from the classical panel data model of the following form:

d
Vi=A"(g(Xu)) +a;+ee=A" (Z a1 (Xl,it)> + a; + €. (2.3)
=1

For the model in , we can eliminate the fixed effects through various transformations such as
first-differing and within-group transformation. Nevertheless, for the model in or , we
cannot apply such transformations to remove a; due to the presence of the nonlinear function A=1.
Fortunately, Chen et al.| (2022)) find that the distribution of D; ;s = 1{Yj; > Y5} is free of «;. This
motivates the estimation of the structural functions based on such a non-smooth transformation

of the dependent variables.

2.2 Estimation Procedure

For clarity, we focus on the case where T' = 2 and then remark on the general case with 7' > 2
later on. To avoid complication that arises from the presence of discrete covariates, we assume
that all covariates are continuous variables.

Following the lead of Chen et al.|(2022), we compare Y;2 with Y;; by defining D; = 1{Yi2 > Y1 }.



Since A(+) is strictly increasing, we have

Di=1{A(Yiz) > A(Yi1)}
=1{g(Xi2) + €2 > g(Xi1) + €1}
=1{g (Xi2) — g (Xi1) > A}
d d
=1 {Zgz (Xii2) = > g (Xp1) > Ai} : (2.4)
1=1 =1
where A; = €;1 — €2. Obviously, the fixed effect a; has been removed via the above nonlinear
transformation so that the distribution of D; is free of ;. Let X; = (X1, Xj2) . Let f(-) and F'(+)

denote the probability density function (PDF) and cumulative distribution function (CDF) of A,
respectively. Then

E(Di|X;) = Pr (g (Xi2) — g (Xa) > A) = F (9 (Xi2) — 9 (Xi1)) - (2.5)

Inspired by Horowitz and Mammen (2004} [2011) and |Ozabaci et al| (2014), we propose a
three-step procedure to estimate the structural functions and their derivatives below. In the first
stage, we first consider a regularized sieve method to estimate the sieve coefficients associated
with the approximation of a composite function of the inverse L= (-) of logit-CDF L (-), the CDF
F () of A;, and the structural equation g (-), and then generalize the “pairwise differencing” or
“matching” method of Blundell and Powell (2004) to obtain initial consistent estimators g; (-) of
the structural functions g; () . In the second stage, we consider the local polynomial estimation of
LF (-) = L7Y(F (-)) and its first order derivative based on the preliminary consistent estimates
g1 (+) . Note that LF (-) is a one-dimensional smooth function and its estimation does not have the
curse of dimensionality issue. In the third stage, we apply the local linear method to estimate the
one-dimensional object g¢; (-) based on early consistent estimates {g; (-)} of {g;(-)} and those of

LF () and its first order derivative. Again, here there is no curse of dimensionality involved here.

2.2.1 First-stage estimation of {g;(-)}",

In the first stage, we consider initial consistent estimation of the structural functions {gl(-)}ld:1 in
model , which is done through two sub-steps.

In principle, we can estimate { gl(-)}ld:1 via least squares based on the model for the response
variable D; by using sieve approximation for the structural functions in . Nevertheless, the
least squares estimates do not perform well as it cannot ensure the resulting probability estimates
to lie between 0 and 1. To ensure the probability estimates to always lie between 0 and 1 during
the computation, we follow the lead of Hirano, Imbens and Ridder| (2003) and consider the method
of logit sieve.

To proceed, we introduce some notations. Let {p; (1), = 1,2, - - } denote a sequence of B-spline

basis functions. Let K = K(n) be some integer such that K(n) — co as n — oo.



Let PX(z;) = [p™ (@1,4)',- -+ . p™ (xq)'] where pX (z;) = [p1 (1), ,pK (w)] forl =1, ..., d.
Then under suitable smooth conditions, we can approximate g;(-) by p ()4 where 3% =
(B, -+, BR) is a K x 1 vector of parameters. Let 8 = (3% ---,3%/)' . In the sequel, we
propose to use B-spline estimation as it has faster uniform convergence rate than the estimation
based on the power splines. In addition, it is well known that B-splines have low multicollinearity
and recursive formula for calculation, which provides great computational advantages in practice.
See Chapter 19 of Powell (1981) and Chapter 4 of Schumaker| (2007) for more details on B-splines.

Let Ag (X;) = g(Xi2)—g (Xs1),and LF (-) = L= (F (-)) . In the first substep, we try to approx-
imate the composite function LF (Ag (+)) . Even though the additive structure in g (-) implies that
that of Ag: Ag(X;) = S (g1 (X1i2) — 91 (Xia)], LF (Ag (Xi)) can not be written as additive
functions of (X7 41, ..., Xd,i1, X1,i2, ..., Xai2) - This implies that if one uses {pK(xl,it),l €ld],te2]}
to approximate this composite function, one has to use their 2d-dimensional tensor product to form
the basis functions, resulting in the “curse of dimensionality”. Fortunately, noting that Ag(-) is
additive and LF (-) is a one-dimensional function, we can avoid the “curse of dimensionality” via

two sieve approximations to the composite function. First, we approximate Ag (X;) as follows:
Ag (XZ) = (PK(XZ'Q) — PK(XH)),,BO + [7"1 (Xz ) -7 (XPZ )]
= APK(X;) By + Ari (Xi) (2.6)
where r1 (X;) is the approximation error in the sieve approximation of Ag (X;). Then under certain
smooth conditions on F' (-), we can approximate LF (Ag (X;)) as follows
LF (Ag(X:) = LF(APK(X:) 6o+ Ari (X))
= LF (APX(X;)'Bo) + LF (Agy) Ary (X;)

R
= Yoo (APR(X0) o) + [r2 (X2) + LF (Ag}) Ary (X))
/=0

R
= 3 ano (APK(X)80) 7 (X)), (2.7)

=0
where Ag? lies between Ag; (X;) and APK(X;) By, r2 (X;) can be regarded as the remainder term in
the Rth order Taylor expansion of LF (-), and r (X;) = [r2 (X;) + LF (Ag)) Ary (X;)] . Intuitively,
as long as both g¢; (+)’s and F'(-) are sufficiently smooth, and both K and R diverge to infinity, we
can control the overall approximation error r (X;) uniformly well. In practice, we propose to use

the following functions as the vector of base functions to approximate LF' (Ag (X;)) :
1, APE(X;), the tensor product of AP¥(X;) up to order R. (2.8)

For notational simplicity, we denote the above vector of base functions simply as R (X;) = R¥% (X;)
where Kp signifies the dimension of the vector R (X;). Clearly, K is a deterministic function of
K and R. Then we have

LF (Ag(X;)) =~ R(X;) mo for some my € REE,



Note that the true values of the elements of my depend on the coefficients oy ’s and 5y nonlin-
early, but it is hard to incorporate such restrictions in the following estimation procedure. Instead,
we will consider a regularized procedure to estimate my. Specifically, we propose to estimate my by

the regularized logit sieve (RLS) method:

N
1
7 =argmin —— Y [Di-In (L (R(X;)w)) + (1= Di) - In (1 - L(RX;)))] + A=y, (2.9)
i=1
where L (-) is the Logit CDF: L(z) = _exp(r) I]l; is the L; norm, and A = A (n) is a tunin
& ’  I4exp(z) "M ! ’ B &

parameter that shrinks to zero as n — oco. In comparison with the standard logit sieve estima-
tion, we use regularization in the above minimization problem. Following Belloni, Chernozhukov,

Fernandez-Val and Hansen| (2017), we can set
A=cen"V207 (1 — ey, / {2KR)}) (2.10)

where ¢ > 1 is slack constant (e.g., 1.1), ¢z, = 0.1/log (n) and &~ (-) is the inverse function of the
standard norm CDF ®. Let m; = E (D;|X;) = L (R(X;)'7), which serves as an initial consistent
estimator for m; = F (D;|X;) . Note that even though the true link function F'(-) is not a Logistic
function, we can use Logistic function inside the function In(-) in (2.9). Following [Hirano et al.
(2003)) and [Belloni et al| (2017)), we can establish the convergence rate for the above regularized
logit sieve estimator under some suitable conditions.

In the second substep, we consider the use of a matching method to estimate the structural

functions. To see how the idea of “matching” works, note that
m; = E(D;|X;) = F (Ag (X5)) .
By the strict monotonicity property of the CDF function F'(-),
m; ~ my; if and only if Ag (X;) = Ag (X;).

So in principle, one can consider minimizing the average squared distance between Ag (X;) and
Ag (X;) when we control m; to lie close to m;. In practice, both Ag (X;) and m;’s are not observed,
we need to use sieve approximation to obtain the former one and replace the latter one by its

preliminary consistent estimate. Note that
- . ) ~ K(vy. K/y. \]/10
m; = F (g9 (Xi2) —9(Xa)) = F ([P (Xig) = P (Xﬂ)] B ) .
For i e {1,--- ,n}, let

APE = P (X)) - PK (X)),

arig = Pk (X12) —pr (X1a) fork=1,. K,
Qui = ™ (Xig) — ™ (Xpi1) forl=1,....d.



Fori#j€{l,---,n}, let

1,K
AP = OPK-OPF AP =i -y,
Ko1K / K-1,K K-1,K K-1K
AP@ ’ — (q2,i7"'7QK,’i7Ql27i7"'7Q2l,i) and AP@,] ’ :AP’L ’ —APJ e

’ /
Note that APfg = AP;J’.K, (APgil’K) > . To estimate $°, we normalize its first element to be

1 and rewrite it as 8° = (1,6")’. The matching estimator of 6% is obtained as follows:

_ 1 2
0 = agmin—s > |[APSS 0 APV Hy, (my — my) (2.11)
1<i#j<n
-1

1 K—1,K n pK—1,K 1 K r K1 K =
=~z X ARTRARTTNHuy i — Y APRGEARGV iy, f2.12)
1<i#j<n 1<i#j<n

where Hyp, ji = Hin, (M —m;), Hip,(-) = hy Hy (-/h1), Hi(+) is a one-dimensional kernel func-
tion, and hy is a bandwidth. Let 8 = (1,6') = (3, ...,Bxd’)/, where 3% serves as an estimator of
p% for I = 1,...,d. Then we obtain the estimate of g; (z;) by gi(x;) = pX(z;) % for Il = 1,--- ,d
and that of g (z) by g(z) = sz:1 gi(z;), where x = (21, ..., zq)" .

2.2.2 Second-stage estimation

To motivate the second-stage estimation, we add some notation. Let
Agi = g(Xi2) — g(Xi1) and Ag;; = Agi — Ag;.

Let LF(-) = L~'(F())), LF; = LF (Ag;) and LF; = LF (Ag;). Note that
N
Z {Diln[F (Ag)] + (1 — Di)In[1 — F (Ag;)]}
=1
N
=Y {Diln[L(LF (Ag:)] + (1 - Di)In [l — L(LF (Agy))]}- (2.13)
=1

By Taylor expansions, for any ¢ # j € {1,--- ,n},

| =

LF(Agi) = LF(Ag; + (Agi — Ag;)) ~ LF(Agj) + ) 0" LF (Ag;)
=1

] (Dgiy)

o~

where Ayg; ; is close to zero and LF (-) is ag-order continuously differentiable.
Let Ag; :g(XZQ) —-g (le) and Agi,j = NAg; — Ag] Define

Qn (Agja {bl}?io)

_1 N
= nz;ffzhg (Agij)
1=



—+ (1 — Dz)ln

a2 1 a2 1
I=1"2" =1 2t

where Hop,, (-) = hy "Ha (-/hs), Ha(-) is a one-dimensional kernel function, and hy is a bandwidth.

Obviously, bo+> 2, ﬁ (Ag;, j)l b; serves as an ag-order Taylor series approximation of LF' (Ag;) in
Lo

the neighborhood of Ag;. Then we can estimate <LFJ-, thFj) by the minimizing Q,, (Agj, {bl}?io)
with respect to {b;};2, :
(fFj,hQa/L?j,--. ,thaaz/ﬁy) — arg min Q, (A@,{bﬁfﬁ@) .

{bl}go
Let LFJ = (9/11?13'.

2.2.3 Third-stage estimation

In this stage, we refine the early estimates of the structural functions. Our objective is to obtain
an estimator of g; (+) that is as asymptotically efficient as that obtained when the other (d — 1) the
structural functions {g;« (-)}ld*:Ll*# were known.

Note that Ag; = Z;-lzl (95 (Xj42) — g5 (Xj1)] enters the Logit sieve objective function. For
the moment, suppose that {g; (-)}ﬁzl’l*# is known, we aim at estimating g; (-) alone by the local
linear method. Noting that g; (-) appears twice in Ag;, one may be tempted to conduct the local
linear approximation of g; (Xj;2) and g; (X; ;1) simultaneously around a point ;. But to control
the approximation well, one would need to ensure both Xj;» and X;;; are around x;. This will
yield a local linear estimator with a slower convergence rate than the usual one-dimensional local
linear estimate. To avoid such slow convergence, we consider Taylor expansion of g; (Xj;2) and
g1 (Xi,i1) separately around a point x; below.

First, by the Taylor expansion of g; (X ;1) around z;, we have g; (X;51) ~ g1 (x1)+a (z1) (X101 — 1) -
It follows that

d
> g (Xja2) — 95 (Xga)] + g0 (K1) — o () — g (1) (Xpn — 1)
j=1,#1

=Agi + g (Xia) — g (1) — g () (Xpin — 21) = Grag,
and
LF (G ;) ~ LF(Ag;) — LF(Ag:) [g1 (v1) + a1 (21) (X110 — 1) — gt (Xpi1)] = LFir (7). (2.14)

Similarly, using g; (X1.i2) = g1 (z1) + @1 (21) (X152 — 21) by Taylor expansion of g; (X;;2) around x;,
we have

d

Z 9 (Xji2) — 95 (Xja1)] + gu (@) + g (1) (Xpi2 — 21) — g1 (Xiin)
J=1,5#l



= Agi + g1 (z1) + g1 (21) (X2 — 1) — g1 (X1i2) = G
and
LF (Gp;) = LF(Ag;) + LF(Ag:) (g1 (21) + a1 (v1) (Xpa2 — 1) — g1 (X1i0)] = LEFy(xy).  (2.15)

Obviously, Gy ; is an approximation version of Ag; in which only g; (X; ;1) is replaced by its first
order Taylor expansion at x;, and Gja; is that of Ag; in which only g; (Xj,12) is replaced by its
first order Taylor expansion at z;. Then we may consider the following local likelihood function to

estimate (g; (z7), g1 (x1))

N
> Hang (Xige — @) {Diln [L (LF (Gi)] + (1 = Dy) In [L = L (LF (Gu))]}
1i=1

]

~~
Il

=~ Z Th3 (Xl,it — .’13[) {Dz In [L (LEt(xl))] + (1 - Dz) In [1 —L (Lth([I}l))]} s (216)

t=1 1=

—_
—

where Hzp,(-) = hy ' Hj (-/hs), Hs(-) is a one-dimensional kernel function, and hj is a bandwidth.
Of course, we cannot minimize the negative of (2.16|) with respect to (g; (1), g (1)) given the
unknown nature of LF(Ag;) and LF(Ag;) in the definitions of LF;(z;) and LFjp(x;). A feasible

objective function is given by

Wiy (€) = — XT: i Hyny (X1it — 1) [Di In (L (P (c))) +(1—D;)ln (1 - L (ﬁit,xl(c)))] :
t=1 1=1
(2.17)

where ¢ = (co, c1)’,
— — = 1
LFﬂ,xl(C) = LFl - LFz . |:CO + Clhf3 (Xl,il - xl) - gl (Xl,z‘l):| s and
— — = 1
LFi34,(¢c) = LF;+LF;- {Co + C1h*3 (X2 — 1) — G (Xz,iz)] .

By minimizing the objective function in (2.17)) with respect to (co, ¢1) yields the following estimates

(ﬁz(ﬂﬁl), h3§l($l)) = arg min W, 4, (co, c1).

(cosc1)

In the next section we will show that the estimators gj(z;) and §;(z;) are oracle efficient.

3 Assumptions and Asymptotic Results

In this section, we first present the assumptions and then study the asymptotic properties of the

estimators of the structural functions.

10



3.1 Assumptions

To proceed, we introduce some notation. A real-valued m-times continuously differentiable func-
tion g(u) on U C R is said to be a y-smooth function if, for some r = v —m € (0,1], J¢q,
|0™q(u) — 0™q(u*)| < ¢q |u—u*|" holds for all u,u* € U. It is well known that y-smooth functions
can be approximated well by various linear B-splines (e.g., Chen (2007)). So we will assume that
{gl(-)}fz1 are y-smooth functions below.

We will use X = ®fl:1?c'l to denote the support of X;; = (X i, ...deit)’. Let XY®?2 = X x X
denote the support of (X;1, X;2). We make the following assumptions.

Assumption 1 1. {Y;, X;}" | are i.i.d.;
2. The support X = ®f:1Xl of Xit = (Xu1it, ...Xd’l-t)/ 18 compact;
3. €; 18 strictly stationary over time.
4. (€i1,¢€i2) is independent of (X1, Xi2);
5. There exist positive constants c., ¢e and c. such that ¢, < B (e?t) < ¢ and E ]eit]j <

C’Z_Qj!E (e?t) < oo forall j > 2.

Assumption [1| imposes some conditions on {Y;, X;, €;:} . Assumption (1) assumes the obser-
vations are i.i.d.; Assumption (2) assumes the exogenous independent variables have compact
supports. Assumptions (3) is made to simplify the notation. Assumption 4) is commonly as-
sumed in the nonparametric transformation models to avoid the estimation of certain conditional
distributions. Assumption (5) imposes some moment conditions on the error terms to simplify

the derivation.
Assumption 2 1. The link function A(-) is strictly increasing;
2. Bo=(1,6)).

Assumption [2]is an identification condition. Note that we impose a strictly monotone condition
on the link function in Assumption (1) and normalize the first element of Sy to be 1 in Assumption
(2). Without the scale normalization, the structural functions {gl(‘)}ld:1 cannot be separately
identified from A(-).

Assumption 3 1. The CDF F (-) of A; = €1 — €9 is strictly monotone and (R + 1)th order

continuously differentiable.

2. There exists a small positive constant ¢ such that 0 < ¢ <inf,_(, s yexe2 B (Di|X; = x) <
inf$:($17$2)ex®2 E (Dz’Xz = JI) < 1—c

3. The set of basis functions {pi(-)}rey are twice continuously differentiable on their supports;

MAaxX<py<r MAX] <]<d SUDPy, c v, H@thK(:Bl)H < Ol forr=0,1,2 for some large constant C.
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4. The functions {gl(-)}?:1 are bounded and ~y-smooth function with v > 2 on their supports;

there exist a vector By = ( 8‘”1’, oo gd')/ such that 53" € intem’or( ) for some compact set
BinRE and alll =1,...,d, and max<j<d SUPy e x, |gl(:1:l) K(2:) "By ‘ = 7) for some
v > 2.

5. There exist a vector m° € interior (I) for some compact set I1 in RE® such that sup_ — (o af) cx®2
|LF(Ag (x))— R(z)'7n°| = O(K~7+ R+ we can decompose R(x) = (Ry(x ) R(x)’) and
70 = (a¥, Wg’) accordingly such that s log? (Kfvn) < K n, and SUD,_ (41, ) e o2 |R2 ) 0‘

= O(K™7) where sz, = ‘71'(1){0.

Assumption (1) imposes some smooth conditions on F'(-) to ensure the second sieve approxi-
mation considered in the first stage estimation. Assumption (2) ensures the desirable asymptotic

properties of the sieve logit estimator in the first stage. Assumption (3)—(4) quantify the prop-

erties of the base functions {py(-)};—, and the approximation error for one-dimensional y-smooth

functions. Note that many basis functions such as polynomials, splines and wavelets satisfy these

conditions with various controls on ¢, x. For splines, it is well known that ¢, = KY217; see Newey

(1997). Assumption (5) reflects the error in the approximation of LF(Ag (x)) by R(x)'7" is uni-

formly well controlled where the term K7 is carried over from the approximation of the additive
function Ag (-) by APX(-) 5y and the term R~(F+1 signifies the error in the approximation of the

(R + 1)th-order continuously derivative function LF (-) by power series. Clearly, R~(+1) « K7

provided R > clog (K) for some ¢ > 0. This indicates to suffices to consider R to be proportioal to

log (K) . Our simulations indicates that a choice of R like 3 or 4 works sufficiently well in general.

In addition, Assumption (5) indicates that 7% should be approximately sparse to facilitate the

asymptotic analysis.

Assumption 4 For every K and R that is sufficiently large,

1. There exist positive constants C1 and Co such that
0 < C1 < Amin (F [R(X;)R(X:)']) < Amax (E [R(X;)R(X;)']) < Cs < o0
2. Let n(mi) = E {Af)ﬁilxﬁpﬁfl’[{’\mi} where j # i. Let fm, () denote the density of m,;.

All eigenvalues of E [n(m;) fm(m;)] are bounded and bounded away from zero: 0 < Cip <
Amin (B [17 (i) fm(mi)]) < Amax (B [11 (i) fm(mi)]) < Car < 0.

Assumption 1) impose some standard conditions to ensure the logit sieve estimator to be

well behaved. Assumption 2) ensures the matching estimator in the second substep of the first

stage estimation is well behaved.

Assumption 5 1. The probability density function (PDF) fx,(-) of X, is bounded and bounded

away from zero within its support X;, forl € [d].

12



Assumption [5| imposes some standard conditions on the density of the regressors.

Assumption 6 1. The kernel function Hy(-) is an ai-order symmetric kernel function with

compact support where a1 > 2 is even; it is third order continuously differentiable.

2. Both Hy(-) and Hs(-) are second order symmetric kernel functions with compact support.

Assumption [6{i) imposes some conditions on the kernel function Hi(-) used in the first stage
estimation. To eliminate the effect of the first stage estimation, we typically resort to a higher
order kernel with a; > 4. Assumption @(ii) indicates that we can use the usual second order
kernel function in the second stage local polynomial regression and the third stage local linear
estimation. Note that we cannot use higher order kernel in local linear or polynomial regressions

to avoid asymptotic singularity, but it is fine to set H3(-) = Ha(+).

Assumption 7 1. Asn — 0o, K — 00, R — 00, hy = 0 ¥¢ € [3], and R—FH+D = O (K—7);

2. K2t 4\ /log(n)/(nhy) + /K log(n)/n + VEKh® + K7Y2 = o(h% + (nhg)~"/?)

3. K3log(n)/n = o(1) and VK (VK + hi (/s log(REV n)/n+K™7)) =o0(1).

Assumption [7] imposes some conditions on the bandwidths hy’s, the sieve approximating terms
K and R, the order of the kernel used in the first stage estimation, and the order of the local
polynomial used in the second stage estimation. Assumption (1) is standard and minimal except
the last part, which ensures that the second sieve approximation error is no bigger than the first
sieve approximation studied in Step 1. Assumption (ii) ensures that the asymptotic biases and
variances of the first-stage and second-stage estimators are sufficiently small to achieve the oracle
efficiency in the third stage. To ensure the last stage local linear estimator of g; (-) to enjoy the
optimal rate of convergence, we need to choose hg to be proportional to n~1/5. To be specific, we

consider the case where a; = 4, as = 3 and hs o n~ /5. Assumption (ii) requires that

2 1
K CK f E|l—0——"-—,=
e (5@—1/2)’3)
1
hi1 o n~° for some cle<10—|—c§(,1>

1 1
h 2 f el—,-].
2 O 1N Oor some Co (10 5)

For example, if v > 2.5, we can simplify choose K = nl/5.

3.2 Asymptotic Properties

In this subsection we study the asymptotic properties of our three-step estimators.

The following theorem establishes the asymptotic properties of the first-stage estimator 6.

13



Theorem 3.1 Suppose that Assumptions (1) and@(@'} and (iii) hold. Let nixn = \/Sr, log(REV n)/n+
K™ and maxn = mkn + \/f?h‘fl + K712 Let Hip, ji = Hip, (mj —my) . Then
(1)
—1
_ _ 1 _
> APETMEAPETM Y, 2 Y Agi APSTYE Hyy, i

1<ij<n 1<i#j<n

1
0—0=—1

+ % Z (APJ?BO — Agij) APZ{;_LKHMIW + Rin,
1<iZj<n
(ii) |0 = bo|| = Op (n2&n) ;
(iii) £ 30 (91 (X1s) — 90 (X10))” = Op (n2rcn) for 1 =1, ,d;
(iv) sup,, e, |G (1) — g1 (2)| = Op(VEmagn) forl=1,--- ,d;
where || Rin|| = Op (N1rcn)-

Theorem (1) establishes a Bahadur-type representation for the first-stage estimator §. Theo-
rem (ii) establishes the Euclidean norm for §. Theorem (iii)—(iv) establishes the mean square
convergence and uniform convergence of g; (-), respectively.

The following theorem establishes the asymptotic properties of the second-stage estimators.

Theorem 3.2 Suppose that Assumptions [0 and (i) and (iii) hold. Let n3gn = Mokn +

hs> T\ /In (n) /(nha). Then

(i) There ezists a positive constant cp such that
| (EF(89:)), maOLF(25g)) = (LF(8g7)), ha0LF(Dg7))| < er |55 = Agsl + Oy (1)

uniformly over j € {1,--+ ,n};
(i) £ Y0, [TF(0g)) = LF(2g)]” = 0y (i) and £ 0, [1aBLF(Agy) — hadLF(2;)]
= Op (ngKn) '

Theorem (1) establishes the asymptotic expansions for ﬁ(Agj)) and hyOLF (Agj); Theorem
3.2(ii) establishes the mean square error convergence rate for the estimators of LF(Ag;) and
hoOLF(Agj), respectively.

With Theorems and we can establish the asymptotic properties of the third stage
estimator of {(g1(-), ()},

Theorem 3.3 Suppose that Assumptions ﬂ hold. Let kqp = [ u® [Hg(u)]bdu for a,b =0,1,2.
Then forl=1,--- ,d,

(i)
(= ) el
0 /nhd gi(wy) gi(x1) 2 0



F2(Ag(X;)) 0 &

2
Ra1

$N<Q;%FMM&»U—HA%WHPMZM}Cm 0)»

(i) 5D, 1G1(1) — au(en)| = Oy (3 + V() / (hg))

Theorem reports the asymptotic properties of the third step local linear estimator of
{(qi(), gl(-))}ld:l. Theorem (1) indicates that the asymptotic distribution of the local linear
estimator of is not affected by random sampling errors in the first two stage estimation. In fact,
our local linear estimator of (g;(+), ¢;(-)) has the same asymptotic distribution that we would have
if the other additive components {(gj(-),gj(-))};.l:Lﬂ and link function F'(-) were known. This
indicates the oracle efficiency of the estimator. Theorem ii) gives the uniform convergence
rate for g;(-). Following the standard exercise in the nonparametric kernel literature, we can also
demonstrate that these estimators of (g, (+),dr,(+)) and (g1,(+), g1,(+)), Vl1 # la € {1,--- ,n} are
asymptotically independent.

In the proof of Theorem we give the linear representations of the nonparametric estimators
{(/g\l(),gl(» }jﬂ with uniform control of the reminder terms. It serves as a building block for
both pointwise and uniform inference. For example, one can consider uniform inference based on
the multiplier bootstrap as in |(Chernozhukov, Chetverikov and Kato| (2014, Corollary 3.1). For
brevity, we skip the details.

4 Numerical Studies

In this section, we are going to use simulated examples to demonstrate how well the proposed
estimation procedure works. We use the same DGPs in |Chen et al.| (2022) to compare their
estimator with the proposed estimator. To save space, we only report the detailed results for the
estimator of g;(-). We consider four data generating processes (DGPs).
DGP I: A (Yir) = X7, + X35 + i + €, where e ~ U(0, 1).
DGP II: A (Yi) = X2, + X2, + i + €ir, where (aei +b) ~ X2(2) with a = 4 (2)® and b =
20D (= 35)-
DGP IIL: A (Vi) = X}, + 0.5X7,, + X3, + i + €, where e ~ U(0, 1).
All DGPs take the Box-Cox transformation of |Bickel and Doksum) (1981) with A(y) = M
for A = 0.8. Both X and X follow U(—1,1) and their correlation coefficient is 0.2. «o; =
0.5 (X714t + X2,it) + 0.5n, where n; is a N(0,1) random variable. The error term either follows
symmetric normal distribution or asymmetric Chi-square distribution of freedom 2.

We define the bias, standard deviation (SD), and root mean integrated squared error (RMISE)

~

of an estimator f(-) of f(-) as

bias = / (E [f(v)] - f(v)‘ dv,
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SD = /sd [f(v)} dv
and

RMISE = (bias® + SD?)'/2,

~

respectively, and use them to assess the accuracy of the estimator f(-).

The kernel function used in the proposed estimation procedure is the standard Gaussian kernel
for all simulated examples in this section. For each simulated example, we assess the accuracy of
the proposed estimation procedure for sample size n = 500 and for each case, we compute the bias,
SD and RMISE of an obtained estimator based on 1000 simulations. Method in |Chen et al.| (2022])
chooses bandwidth by minimizing the leave-one-out cross-validation (CV) function. The proposed

method chooses bandwidth by grid search to minimize CV function.

Table 1 Estimation results for DGP 1

1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

g1 (x1) 0.64 0.36 0.16 0.04 0.04 0.16 0.36 0.64

Chen et al. (2022)

RMSE 0.2459 0.1489 0.0946 0.0571 0.0576 0.0928  0.143  0.2358
Bias -0.1942 -0.091 -0.03 -0.0025 0.004 -0.0232 -0.0828 -0.1826
SD 0.151 0.118 0.0898 0.0571 0.0575  0.09 0.1167  0.1492

the proposed estimator

RMSE 0.108 0.0804 0.0614 0.0423 0.0403 0.0609 0.0834 0.1116
Bias  -0.0074 -0.0016 0.0128 0.0179 0.0132 0.0039 -0.0129 -0.0176
SD 0.1077  0.0804 0.0601 0.0383 0.0381 0.0608 0.0824 0.1102

Table 2 Estimation results for DGP 1II
x1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8
g1 (1) 0.64 0.36 0.16 0.04 0.04 0.16 0.36 0.64
Chen et al.?2022)

RMSE  0.289  0.1668 0.0962 0.0566 0.0594 0.1013 0.1714  0.2962
Bias  -0.2476 -0.1213 -0.0422 -0.0044 -0.0035 -0.0435 -0.1243 -0.2534
SD 0.149  0.1145 0.0865 0.0564 0.0593 0.0915 0.1181 0.1535

the proposed estimator

RMSE 0.1858 0.1389 0.1073 0.0821 0.0829 0.105 0.1335  0.186
Bias  -0.0428 -0.0073  0.024 0.039  0.0396 0.0259 -0.0029 -0.0332
SD 0.1808 0.1387 0.1046 0.0723 0.0728 0.1018 0.1335  0.183
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Table 3 Estimation results for DGP III

1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8
g1 (x1) 0.64 0.36 0.16 0.04 0.04 0.16 0.36 0.64
Chen et al (2022)
RMSE 0.1471 0.1354 0.1163 0.0759 0.0715 0.0935 0.1215 0.2705

Bias  -0.0238 -0.0792 -0.075 -0.0456 0.0431 0.0344 -0.0405 -0.2282

SD 0.1452  0.1099 0.0889 0.0607 0.0571 0.087 0.1146 0.1453
the proposed estimator

RMSE 0.0904 0.0934 0.0896 0.0471 0.0909 0.0838 0.1006 0.0407

Bias  -0.0312 -0.0755 -0.0404 -0.0179 0.0213 0.0322 0.0912 0.0186

SD 0.0848  0.055 0.08 0.0436 0.0884 0.0774 0.0425 0.0362

Table [1| - [3| report bias (Bias), standard deviation (SD) and root mean square error (RMSE)
of g1 (x1) for DGPs I-III, respectively. When the error terms follow normal distribution in
DGP I and III, the proposed method works better than the method in |Chen et al.| (2022),
especially at boundary points. When the error term follows Chi-square distribution in DGP
II, the proposed method defeats the method in |Chen et al| (2022) at boundary points, e.g.
x1 = —0.8,—-0.6,—-0.4,0.4,0.6,0.8, and does not function well at center points, e.g. z; = —0.2,0.2.
As expected, we usually observe a relatively larger RMSE when the evaluation point is close to
the boundary and it is much more obvious in |Chen et al.| (2022). The dimension of variables does
not influence the simulation performance of the proposed method, however, the method in |Chen

et al.| (2022) suffers from the curse of dimensionality in implementation.
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Appendices

This appendix is composed of two sections. Section A contains the proofs of the main results in
the paper. Section B contains some technical lemmas that are used in the proof of the main results

and their proofs.

A Proofs of the Main Results

In this section we prove Theorems 1-3 in the paper.

A.1 Proof of Theorem [3.1]
A.1.1 Convergence Rate of £ (D|X = x)

Recall that g (z;) = Ele gi(z14) and Ag () = g (z2) — g (21). Recall that LF (-) = L™ (F (+))
and Ag (X;) = g (Xi2) — g (Xi1) . By (2.7) and the definition of R (-), we have

E(Di|X;) = F(Ag(Xi))=L(LF(Ag (X))
= L(R(X:)7°+r(X;)) = L(R(X;)'7°) + L (R})r(X;)
= L(R(X;)'7°) +rp(Xy), (A1)

where R} lies between R(X;)'7° + r7(X;) and R(X;)'n°, and rz,(X;) = L (R})r(X;) signifies the
error for the logit sieve approximation of E (D;|X;) by L (R(X;)'7"). By uniform boundedness of
L (), we see that r1(X;) behaves similarly to r(X;) in that SUD, _ (44 p) e e Ir(x)] = O(K™7)
under Assumptions [3] and

Let mign = \/s7r1 log(K®Vn)/n+ K~7. Under Assumptions one can follow the proof of
Theorem 6.2 in [Belloni et al.| (2017)) hold and obtain the following result: result, we obtain

%Z [R(Xi), (7_T — 770)}2 =0, (U%Kn) . (A.2)
i=1

Under Assumption [d(1), we can show that

LSS ROy (- w0 = 1 (- 20 REGORCLY (7 - )
i=1 =1
> (7 - WO)’ Anin (711 Zn: R(Xi)R(Xi)/> (7 — =)
i=1
> |7 — 7r0||2 /2 w.p.a.l. (A.3)
Combining and yields
|7 = 7% = Op (mxcn) (A.4)
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Next,

sup
a=(a},7)) €X®2

< sup |R(z) (7 — )| + sup
x:(x’l,xlz),e./\’@’z m*(m’l,m’z)leX@’Q
< sup | R(z)]| H7r—7TOH +0O (K~

33:(33’1 ,w’z)/eX®2

CoxOp (Min) + O (K~

V)ZOP

")

(CokMKn) -

xth >‘

By (A.1) and the uniform boundedness of the first derivative of L (-),

d
R(x)’rro — LF <Z agi(xe)

=1

“M:“

)

(A.5)

n

Z (DilX)) ~ B (DIX))” < fz (B (D) — L (RO 7)]* + 2 3 [ (X))
i=1
= IS L (ROGR) L (B + 2 ()
i=1 =1
S Y[R (- )P 23 e ()
i=1 i=1
= O (n%Kn) + @) (K ) = Op (W%Kn) ) (A6)
and
sup |E(Ds|X; = z) — E (Dj| X; = )|
:c:(:c’l,xé) cx®2
< sup |E(Ds|X; =) — L (R(:L’)/WO)‘ + sup Irr ()]
= ( 1,:(:2) cx®2 = (:vl 1’2) €x®2
< sup |R(z) (7 — =°)| + sup Irp ()]
z:(z’l,zé) cex®2 m:(m’l,mé) cXx®2
= CoxOp (MmKn) +O0p (K77) =0, (K1/2771Kn) : (A.7)

A.1.2 Convergence Rate of g (+)

Noting that APil,J’-K = Agij — HO’APf;_l’K + {AP{?'BO - Agm} and recalling that Hip, ji =

Hu, [E(Dj]X;)

0 —
1<i#j<n

K-1,K n pK—1.KI
Y. APRGRAPT Hy,

1<i#j<n

1

g

19

— E(D;|X;)], by (2.12) we have

-1

1<7,;é_7<n

Z {APK/

1<z7$j<n

-1

Z Agl,]APK = KH1h1 Jit

— Agiyh APV Hy,



= —LonLin — Loy Lo, (A.8)

1 K-1,K K—1,K/ f . K—1,K K-1,K
where, e.g., Lo = 3 Zlgi;ﬁjgn APM ' APM "*'Hip, ji- Noting that APM = —AP]-’Z- -

we have

len:— > Ag AP 1KH1hW— > AgAPETYEHy, i
1<27$g<n 1<i#j<n
= > AgAPE YRy, i (A.9)
1<z;£j<n

First, we study the asymptotic properties of Lo . Recall that H1p,, j;= Hip, [E (D;|X;) — E (D;]X;)]
and m; = E (D;j|X;). Let mji = E(D;|X;) — E(Dj|X;), mj = E(Dj|X;), mji = E (Dj|X;) —
E(Dj|Xi), and Hip, ji = Hiny (mji) = Hin, [E (Dj]X5) = E(Dj|X3)] . For i # j € {1,--- ,n}

Hip, ji — Hiny i
=Hy, [E (D;|X;) — E (Dj|X;)] — thl [E(Dj|X;) — E(D;|Xy)]

B g, () (myi — my) + h 21 (me) (e — m)? + éhf?’ﬁlhl (m3) (s — myo)?
= hy " Hyp, (mys) (m; —my) — h1 YHyp, (myi) (s — my)

— by 2Hyp, (mygi) (i — mg) (my —mg) + 5h1_2f11h1 (myi) (m; —m;)?

+ %hﬁﬁlhl (i) (s — ) + By oy, (m) (mys — myo)? (A.10)

where m;Z is between m;; and mj;. It follows that

K—1,K n pK—1,K/ -
Z A_PZJ A_PZJ thl »Jt

1<i#j<n
K—1,K n pK—1,K17 17 _
D APRGRAPETE T Hup, (myi) (i — my)
1<i#j<n
K-1,K n pK—1,K/; —17p _
Z APz‘,j APz‘,j /h1 lthl (myz) (m; —m;)
1<i#j<n
K—1,K n pK—1,K1, -2 f _ _
Y ARSTYEARS TR Hiny (myi) (ms — mi) (my — my)
1<z';£j<n
Z APK ! KAPK ! K/h Zthl (mﬂ) (mj — mj)2
1<z;£j<n
1 K-1K n pK—1,K17 -2 7 _ 9
T Z AP AP 'hy* Hipy (myi) (i —m;)
1<i#j<n
K—1,K n pK—1,K17 -3 77 £\ /m 3
o3 O APRGTUEARGTTVNRT Hu, (mi) (mgi — mji)
1<27$]<n
= LO,nl + L07n2 + ..+ L07n7. (All)
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By EZ:Q HLO,MHOP =0, (Kl/zhl_lmKn) = 0p(1) and Amin(Lon) > cr,/2 w.p.a.l.

Next, we derive the asymptotic properties of L ,. By (A.10), the symmetry of the kernel

function H (-), and the fact that APﬁ_l’K =

Z AglePK 1KH1h1Jz+

1<'L;é]<n

> Ag AP R Hyp, (mgi) (m

1<i7éj<n

K-1,K
AP,

1<i#j<n

— mz)

= > AgigAPETVRRTEHy, (myi) (i — my) (g — my)

1<17é]<n

e 2

AgiyAPE YRy, (mys) (g — my)?

l<z;éj<n

>

Agi APV RT 2y, (my) (g — ma)”

1<i#j<n

o

Agz ]APK 1Kh 3H1h1 ( ) (m]‘i — mji)S

1<27éj<n

7
= ZLLTM'

(=1

By Lemma S

2 ”Ll,nf” = Op(ann) and HLlnH =

Next, we study Lo ,. By (A.10),

Op(mxn + VEQY).

Lon=— S (APK'By— Agis) APE K1y,

1<iZj<n

+ % Y. (ARS8~ Dgig) AP by Hupy (mgs) [my — m]
1<iZj<n

_ % S (APSBy — £gig) AP R H, (myi) g — m)
1<iZj<n

o 2 (BRI Agug) AP, (i) (i mi] by
1<ii<n

+$ Y (APYBo = Bgig) AP Ry Hipy (mya) [my —my)
1<i#j<n

+# > (AP B — Agig) APSTV R B, (mye) [ — mi]?
1<iZj<n

tom >, (ABS B - Agig) ARGV by Ha, (m3) (g — mya)?
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> Ag AP Hy, (myi) (my —my)

(A.12)
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By Lemma B3 S0, Lol = O (K77) and [[La ]l = Op(K7+12).
By the above results, we have

-1

= 1 K—1,K » pK—1,K
b=bo="\0 > APGTEARGT iy

1<i#j<n

_ 1 _
Z Agi AP YR H i+ 2 Z (APE'By — Ngij) APZ{; S Hip i
1<17é]<n 1<iAj<n

+ Rin, (A.14)

where ||Rin|| = Op (mkn + K77).
Given the result in (A.14) and using the results in we can readily show that

16— 00| = Op (miscn + VR + K 7+1/2).

Then following the arguments as used in the derivation of (A.6))-(A.7)), we have

1 n ) i x 9 n .
nZ;[gz (Xi) — g0 (Xpa)” < *Z o (Xiae) (B — B3] + nZ; 91 (X1it) — pre (Xuae)' By")]

< Hﬁﬁ— el +Sup!91 1) — px (z1) B3|
2
= Op <<771Kn + VKR + K_7+1/2> > + 0, (K7)
= 0, () Tor 1 €]
and
_ _ 2
sup |g1 (z1) — g (z)] < sup |px (1) (B™ — Bo")| + sup [g1 (X1t) — prc (Xuat)’ B")]
T EX] T EX) T EX]
2
< sup |k ()| || — Byt + sup |gi (z1) — px (21) By
T EX) T EX)

= VKO, (min + VEI! + K7%1/2) 10, (K7)
= O (\/?172[(”> for 1 € [d].

where norn = Nikn + \/Ehi” + K—t1/2,

A.2 Proof of Theorem [3.2]

Let

Usg, = (LF (L)), hoOLF(Dgy), - W02 LE(Dg))' = (LF(8gy), hadLF(Agy), - B0 LF (Ag;))
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Let 955 (b) = bo+>_,24 hl (Agm) b, where b = (bg, by, ...., ba, )" . Noting that L (2) = exp () / (1 +exp (2)),

we have
Qn (Agj, b)

N
= _71 > Hop, (AGiy) {DiIn [L (95 (b)) + (1 — Di)In[1 — L (9;5 (b))]}

i=1

N
- _71 Z Hop, (AGi j) {Di; ; (b) — D;In[1 +exp (9;; (b))] — (1 — D;) In[1 + exp (9 ; (b))]}
i=1

N
- % > Hon, (8gi5) {In 1+ exp (9 ()] = Divlij (b)}

i=1
For an arbitrary Uag, € R+l and 7 € R, let

a2

1
li j(T) = Hop, (AGi ;) In (1 + exp (Z Tl (Agi’j)l alLF(Agj) + Tg{i’jUAgJ)) .
=0 ""2"

where ¢1;; = (1, h—ZAgm, cee haz Ag ) . Then

a2 1
lij(r) = Hony (AGij) i Ung, L <Z 7 8910 LE(Dgg) + 761 UAg;) and
1=0 "2
a
_ 2 1
5(1) = Han, (AGiy) [$105'Ung,]” L' (Z hll,ﬁgzgalﬂ’(ﬁ%) +T€1ZJUA9J> :
=0 2

It is easy to see that

()| <

" /
li’j(’r)‘ ‘gli,jUAgj’ . Define

UAg = argmax {Qn (Agj, ((ﬁ(&gj), hQW(Agj)> T ,th@'(Agj)) "+ UAgj))

Ag

— Qu (Agj, (LF(Agy), OLF (Agy),- - 0 LF(Ag;))') }

N N
1 1 _
= arg mAax o Z [li,;(1) = Li,;(0)] — " Z Hap, (AGij) gii,jUAQj D;.
95 i=1 i=1

We calculate the first order derivative with respect to 7:

0-Qn (A§j7 (LF(Agj)v aLF(Agj)v T ’aazLF(Agj)) "+ TUAQ]‘)

N a2
1 _
= > " Hon, (157i) s14,/Ung, {L (E hll,AgmalLF(Agg) +T<1”UA9J> - Dz}-

Evaluating the above derivative at 7= 0 yields

07 Qn (Agﬁ (LF(AQJ')7 8LF(A9J')7 T ,8a2LF(AgJ)) "+ TUAQJ') ‘7-:0
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N S

) . 1 _

=2 Hon, (AGij) s1i,;Ung; {L < hlllAgﬁ’jalLF(AgjO B Dl}
5 > L

i=1 =0
1 1 ¢
== Z l; ;(0) — n Z Hop, (Dgij) 15,jUng; Di.
i=1 i=1

Let

Gn (Ung,) = Qn (Agj, ((ﬁ(ﬁgj), hQﬁ’(Agj), o ,h?@’(ﬂgﬂ) "+ UAgJ'))
— Qn (Agj, (LF(Agj), OLF(Agj), - -+, 0 LF(Agj)))

— 0:Qn (Agj, (LF(Ag;), 0LF(Agj), -+ , 02 LF(Ag)))' + 71U, ) yTZO.

Let i j = 1; ;Ung;- Noting that L'(z) = L(z) [1 — L(x)] and F'(Ag;) € (0,1), there exists a positive
constant ¢> 0 such that

N

Gn (Usg,) = %Z 1:(1) — 15(0) ~ 1;(0)]

=1
*Z
= %ZH% (Agij) L (Z Ag; jO'LF (Lgj) /l!> [exp (= [sij]) + lsigl — 1]

=1 =0

| V

[exp (= [sig]) + izl — 1]

v

N
C _
- >~ Hony (AGig) [exp (= lsigl) + lsijl — 1]
=1
2

e i lsigl®
Z*Z 2hs (AGij) o 6 )

where the first inequality holds by Lemma 1 in Bach (2010) and the last inequality follows from

the fact that
22 3

e_x+x—12?—%b’m>0.

By Step 1 in the proof of Theorem 5.6 in |Jiang, Phillips, Tao and Zhang| (2021), there exists a

positive constant ¢* such that

§ 1/2
chmm(u%\ 1[G, ) (A15)

where "
N a
) | {% Sieq Hony (AGij) %'2,;‘}

l = lnf 1 N = 3
UeRa2+1 o ZZ:]- H2h2 (Agl,]) |§/L:]|
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Noting that

1/2
- . { Zz 1H2h2 (Agld) zy}
[ > inf

UcRe2+tl  max H YA
iy T2t (2503)

Op (h2) >

|§1m|| HUAQJH B

we have

(g 4+ /i) /(nh2)>_1 LN, (A.16)

In addition, by construction and the submultiplicative and triangle inequalities

Gn (ﬁAgj) = ath (Ag]a (LF(AgJ 78LF(A9J aaZLF(AgJ))/+TUA9j)‘T:O‘

— fZHQhQ (AGi ) thUAg] L( hll'Ag”alLF(AgJ)> —Dl}
=1

02

IN

i=1

ZHQM Ang glz]{

i=1

IN

Z H2h2 Agl,j Sli,j { ( hl T AgljalLF(Ag])> z}

Agz ]8ZLF(A9])> - F(Agz)}H HﬁAgj

(A.17)

N
) ) .
n X:thg (Agig) Sty [F(Dgi) — ‘UAQJ'

=1

Noting that L (LF(Ag;)) = F(Ag;), by Taylor expansions we have

ao 1
L (Z Ag;ja’LF(Agj)) — F(Ag;)

=0

az
L (Z iS00 LE(Dg)) ~ LE(g) + LF(Ag») - F(Ag)

= [F(8g0) ~ F(2g0)] + I (LE(880) xag + 51 (LF(AFi5) X (A.18)

where Ag; j is between > ;2 hll'Agw(‘?lLF(Agj) and LF(Ag;), and

as 0o

=3 0, [alLFng) ILE(Agy)] /1 "X OGO LE(Ag) 1.
.

Substituting (A.18) into (A.17) yields

N
1
Gn(Ung,) < {H ZH% (AGig) stigL (LF(Ag:)) xij ;Zﬂzhz (AGig) stig [F(Dgi) — F(Agi)]

|

N

1 _

- g Hop, (AGij) s1ij [F'(Agi) — Dy
i=1

1 . _
o Z Hop, (DGig) s1igL" (LF(Agig)) X3
=1

<[,
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= {IG1msll + G2l + 1 Gaonsll + G 1} | T,

, (A.19)

where the definitions of G5, £ = 1, ..., 4, are self-evident. By Lemma[B.4} we have uniformly over
j € {17 7”}7

‘Gn <[7Agj)‘ < cr|Agj — Agjl HﬁAgj
+ 0, (g7 + Vog(m)/(nha) + maxcn ) Uy,

Combining (A.15) and (A.20)), we have uniformly over j € {1,--- ,n}
1) S 1895 = 2351 + 0, (hg* + /log(n) [(nha) + maxcn )

which, in conjunction with (A.16|) implies that

000, | 5 1205 - 2351+ 0, (1241 + oo ) + e

. (A.20)

ct . ~
([0

uniformly over j € {1,--- ,n}. The completes the proof of (i).
Given the above uniform rate, (ii) follows automatically.
A.3 Proof of Theorem [3.3]

A.3.1 Convergence Rate of <§l(acl), al(xl)>’

Let Uy, = <§l($l), hs@z(@)) "—(gi(x1), hagi(x1))’. Let ¢ = (co, c1) and Hspy jtz; = Hsng (Xii6 — 1)
for t =1, 2. Define

N
1 — T 1
Wina, (¢) = - § H3ps i1z, {111 (1 + exp <LF¢ — LF; - {Co + Clhfg (Xiin—x) — @ (Xl,il)}>>
i1

- 1 — =
+ D;LF; - [Co + i (X1 — $z)] —D; (LFi + LF;g (Xl,il))} ,

and

N

1 — = 1

Wo na, (€) = E Hsp, ioa, {hl (1 + exp (LFz' + LF; - [Co + 61}73 (X2 — 1) — @ (Xl,iQ)])>
=1

- 1 — =
— D;LF; - [Co + 01}73 (X1 — IZ)] - D; <LFi — LF;q (Xl,z‘2))} .

Then Wy, (¢) = Wi na, (¢) + Wa pg, (¢). Let Uy, = (co — g1(z1), 1 — hagi(z;))" € R2. Then

— = 1
LF;,+ LF;- [Co + 01}73 (X2 —x1) — g1 (Xl,i2)}
1

— - . . 1 _
=LF;+ LF; [(Co —gi(z1)) + (c1 — hagi(x7)) ™ (X152 — 21) + gi(21) + gl(ﬂé‘z)hshf3 (X142 — x1) — g1 (Xi42)
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— = . 1 - 1
=LF; - LF; [91 (X142) — gi(xr) — gl(l’l)h:%}T3 (X142 — xl)] + LF; (17 s (X102 — wl)) Us,
—LF;— LF; - Tia + LFiug, 2,
and similarly,
— 1 B
LF; — LF; - [Co + 61173 (Xpin—x) —a (Xl,il)]

—_— - — 1 !
=LF;+LF,; [Ql (X1,01) — gi(xg) — gz(wz)hsh (X1 — )] — LF; <1, T (X1 — 961)) Uy,
= LF;+ LF; - 1131 — LFug, 1,

!
where r3,it = g1 (X1it) — gi(zg) — g'z(wl)h?,% (X1t — 1) and ug, 4 = ( hi (X1t — z)) Uy, for
t = 1,2. Further define

—

ll,il (7’) = H3h3,ila:l In (1 + exp (fﬁl + LFZ' *Txyil — TLFZ' . Uxhil)) and
liio(T) = Hspy o, In (1 + exp (ﬁz — LF; 74,0+ TLF; - uxl,i2>> ;

Then we have

—

halt) = ~LF; - ug 1 Hang i1z, L (LFi +LF; -1y —TLF; - uxl,il) ;

Lo(T) = LF; - uy, ioHspg i22, L (LFi —~ LF; - ryi0 +TLF; - um;,i?) )

—2

ll zl( ) = LFi . uil,ilH?)h:s,ilsz, (LFl' + LFZ' *Txyil — TLFZ' . uxl,ﬂ) y and
—2 — — —
lio(T) = LF; -2, joHsh, o0 L' (LFi — LF; 7y +TLF; uw;z) -
It is straightforward to show that

W;t ‘ < ll it 7) ‘LFZ' * Ugy it

fort=1,2.

Define

Ung: = arg Igjlx {Wiina, ((9(2), 9i(22)) + Uy,) + Wane, ((91(220), di(20)) + Uy,))
— Wiz, (gi(21), g1(71)) — Wana, (9i(z1), i(20)) }

N N

1 1 1 —

= argmax { - E [l1i1(1) — 111 (0)] + - E [l1i2(1) — 11:2(0)] + - E DiH3py i12, LE; - gy i1
l i=1 i=1 i=1

1 —
T n Z D;H3py oz, LEF; - uxl,zz} -
=1
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We calculate the first order derivative at 7,

OWina, ((91(x), i) + 70U, ) = —— Z LF; Hapg 12, Uz, i1 {L <EF@ + LFry, i1 — TLF; - Uzl,ﬂ) - Di} ,
i=1
and
1 L — == —=
O Wana, (1), qu(@)) +7U3,) = o Z LF;iHspy i2a)Uay,i2 {L (LFi — LFiry i + TLF; - le,iZ) - Di} -
i=1

Evaluating the above derivatives at 7 = 0 yields

N
) 1 —= — T
O Wiz, (91(2), gu(2)) +7U)| _, = - Z LF;iHspy i1, Uay i1 {L (LFi + LFz'?”g;l,u) - Di} ;
i=1
1 L — =
O Wanz, (91(2), gu(2)) +7UL )|, = - Z LFiH3py i20, Uayi2 {L <LFi - LFiTxl,zQ) - Di} :
i=1
Let

Gn (Uz)) = Winay ((91(2), 9u(2)) + Us,) + Wana, (90(2), 90(2)) + Up, ) = Wiy (91(2), du())
— Wana, (90(2), 9u(2)) = 0 Wina, ((91(2), 1(2)) + 70 )| __g = 0:Waina, (((@), gu(@) + UL )| -

Noting that L'(z) = L(x) [1 — L(z)] and F(Ag;) € (0,1). There exist a positive constant C; such

that
N

N
Gn (Uy) = %Z [U,i2(1) = 11i2(0) — 11,52 (0)] + % Z [1,i(1) = 11,3(0) — 11,/'(0)]
i=1 i=1
1 N — —
. exp _)LFi'ux,ﬂ +‘LFi-ux,i2 —1
nz,w = o ([ |
N — —
+ i Z {eXp (- ’LFi " Ugy il ) + ‘LFi CUgyil| — 1]
i=1 [LF g, 11‘

_1}

) + ‘LFi “Ugy il

) + ‘LFz' “Ugy 42

1 . —
= Z H3py o, L' (LFi — LF;- Tml,iQ) [GXP (— ‘LFi “Ugy,i2
i=1

1]

N
1 — —
+ - ZTh3 (X,l,z‘l —x) % (LFZ- + LF; - rxml) [exp <— ‘LFZ- “Ugy il
)
)

1 N 1 r—— 2 11—
> 015 ZH3h3,i2:Bl 3 |:LFi . le,m} ~ % ’LFi U, 2
i=1

L 1 — 2 ] =
+C1— > Hang i1 (2 [LFZ' ' “‘”l’“} G ’LFi e
=1
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where the first inequality holds by Lemma 1 in Bach! (2010) and the last inequality holds because

2 23

- -1>——-—YV 0.
e "+t =5 6 x>
By Step 1 in the proof of Theorem 5.6 in Jiang et al.| (2021)), there exist some positive constant

€' and C such that

~ 1 . 1 N — 2 1 N — 2
Gn <Ua:z> > g min Qlﬁ ; H3h3,i1xl [LFi : uml,il] + Qlﬁ ; H3h3,i2xl |:LFZ' . uml’i2:| ,
(1 & —— S P _ 112
Cih - Z Hsps i1 [LFi : le,il} + Cqls - Z Hi3pg izz, [LFi : Ua:,,iz}
i=1 i=1
C T R TI
> min (‘ O ||, (1 + 1) j T, ) : (A.21)
where »
- 2
_ {TIL Ef\il H3h3,itxl |:LF7, : le,it:| }
ly = inf » — 3 fort =1,2.
U,, €ER%2 N
a = SN Hapg itey | LF; - le,it‘
As in (A.16)), we have
- -1
(L +12) (h% + 1/(nh3)) 4 . (A.22)

In addition, by construction,

Gn ((7) < |0 Wina, (91(2), Gi(2)) + 7UL) | _o + 0-Wona, ((91(2), Gi(2)) + 70, ) ‘7:0‘
1 L — .
< - ;LFiH3h3,i1:vluxl,il {L (LFZ- + LF; - rxm-l) - Di}
1L — .
5 ;LFiH3h3,i2xluwl,i2 {L (LFi — LF;- sz,z?) — Di}

N
1 — =
- Z LF;H3p, i1a; foay it {L (LFi + LF; - Tzl,ﬂ) — Di}

|
)

= Uz [ {llD1n (z)[| + [ D2n (x|}, (A.23)

< Uz, |l {

N

1 — —

=3 LFiHap szttt { L (LFs = LFi - 102) = Dy}
=1

+

/
where fiz, it = (1, h% (X1t — xl)) )
Note that L (LF;) = F;. By Taylor expansions,

L (ﬁl — LFl . Ta:l,iQ) — Dl
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— - 1/\ o
=L <LFi + LF; — LF; — LF; (g1 (X142) — 91 (X132)] + iLFz‘gl(xli) (X102 — 961)2) —D;
= L(LF; + 0yy.0) — D;
{L‘l,iQ’

1 _
= F, = Dy + L' (LF) 0y + 5 L" (LF:) 6 (A.24)

where 8, ;2 = LF; — LF; — LF; [g; (Xp.12) — 91 (X1.40)] + SLFG(T12) (Xii2 — 21)% , 142 is between
X2 and x;, and LF; is between LF; and LF; + 0z,,i2- Similarly,

L (ﬁ’ T EEZ : Txl,ﬂ) - D;
-F <LFi +LF,~ LF; + LF; (90 (X,1) — g1 (Xiin)] — %Eiél(%) (X1 — 3:1)2) - D;
= L(LF;+6z,n) — D;

x7,i1

1 ~
= F; — Di + L' (LF;) 62,1 + 511” (LF;) 52 (A.25)

where 0,1 = LF; — LF; + LF; [g (X11) — g1 (X101)] — SLF G (T0) (Xia — 21)%, @141 is between
X1 and z7, and LF; is between LF; and LF; + 0z,,i1- Let

Then by (A.24),
1 e — —
Dun (@) = = 3~ LFiHapgizoi izt { L (EFi = LF; - 10yi2) = Di |
=1
1 < . 1 & —— )
= = LFiHsny oz ftay it (F; — Di) + = > _(LF; — LF;) Hang i, fay it (F; — Di)
= NI
+ lzn:ﬁﬂ ; @ L' (LF;) 84,00 + iifﬁﬂ ; «L" (LF;) 62, ;
n - - i413h3 52z My it 1) Oz ,i2 o 4 1 i413h3 322 Mz, it i) Og;,42
1= 1=

= Din,1 (z1) + Din2 (1) + Dings (21) + Dina (21) .
It is standard to show that
|Ding (z)|| = Op ( 1/(nh3)> for each z; € X} and
0, (Viog(n)/(nhs))

D =
max i (@) = O,

In addition, we can show that D1y, 2 (21) = Op (13Kn) , Dina (z1) = Op (h§ + 773Kn) ;and Dy 4 (27) =
O, (h§ + 3 Kn) uniformly in z; € A} by using Theorem It follows that

Din () = O (h% ++/1/(nhs) + 773Kn) for each z; € X} and

max | D (z)| = O, (h§ + /log(n)/ (nhs) + ngKn) .

T1EX]

The same conclusion holds for Ds, (z;). Consequently, by (A.23)
G, (ﬁxl> <0, (h% ++/1/(nhs) + 773Kn) ’

30
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Combining (A.21)) and (A.26)), we have

%min(‘ ,Z) <Oy (h%—l-\/m‘i‘%}{n)‘

This result, in conjunction with (A.22)), implies that
‘ =0p (h% + V1/(nhs) + 773Kn) :

In addition, our conditions ensure that nsx, = o (h% + /hs/ n) . It follows that

Uy,

~

Uy,

~ 1~ 1. ~
a(z), —g(x) ) — (g(@), —ax) ||| = ‘ Uz || = Op (h;%, + 1/(nh3)> :
h3 h3
The above results can be made to hold uniformly in z; with little modification: max,, ey, ﬁx, =
0, <h§ + /Tog(n) /(nhg)) .
A.3.2 Asymptotic Distribution of (ﬁl(xl), El(xl))
Noting that (ﬁl(xl), hggl(a;l)) "= argming, o, Wz, (co, c1), we have
aWn,xl (007 Cl)
Ofcose1)” N(ey.en)=(anten). hsdu(x)
_ OWipg (co,c1) OW2,na, (co,c1) _0
9 (co,c1)’ (co,c1)=(Gi (1), h3gy(x1)) 9 (co; 1)’ (co,c1)=(Gi(x1), hagy(z1))’

Since we have already proved that (@z(xz% Ez(xz))' 2 (qi(a), qi(w))’, (@(Sﬂz% Ez(xl))' is
close to (gi(x;), gi(z;))’ for sufficiently large n and we only need to examine the minimization

of Wiz, (co, 1) around (g;(x;), hsgi(z;))’. By the first order Taylor expansion, we have

0— 6Wn,xl (COa Cl)
= T a) lwne(e ey 1
0, C1 (a,0)=(G1 (1), hag(z))
_ Wna (co,c1)
d(co,c1)’ (a,b)=(gi (), hagi(z1))
O*Wy z, (co, c 7 g !
T3 7 /lé v [(91(501), h3gz(l’z)) "= (1), hagi(a))'|
(co,€1)" (€05 €1) l(cy e1)=(g7 (21), hagi (1))

where (gF(21), hsg;(a1)) lies between (@(ml), hggl(xl)) and (g,(z1), hagu(z1))-
By the Taylor expansions in (A.25) and (A.24]), we have

ann,xl (607 Cl)
8 (Co, Cl) !

(co,e1)=(gi(x), hagi(z1))
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N
1 - 1
= _E ZLFiHShg,ilxl <1, E (Xl,z'l — xl)> (FZ - Dl)
1=1
1 & , -2 , 1 ,
+ g 2 L' (LF) LFu(@0) Hapaata { (Xris = 20)° s 5= (X = 1)

N
1 — 1 /\ —
- Z L' (LF;) LF;Hsp, i1, <1> s (X101 — fL‘l)) {LFi — LF;+ LF;[q (X11) — g (Xl,il)]}

N
1 - = 1
~ 5 > L"(LF;) LF;Hsp, i1a, ( . (Xpin — $z)) 02,01
and
aW2n,xl (607 Cl)
8 (CO7 Cl) /

(a,b)=(gi(x1), hagi(z))

1 N o~ 1
== ZLFiH?)hg,,iQacl (1, — (X420 — ;,;l)) (F; — Dy)
i hs3
1 N o~ 1 _—
+ % ZZ_; LFiH3h3,i2{L'l <1; hig (Xl,z‘2 - l’l)) L/ (LFl) LFigl(a*:“) (Xl’ig — :L’l)2

N
1L — 1 _ -
+ - g LF;Hgzp, ioa, ( s (X120 — )) L' (LF;) {LFi — LF; — LF; (g (X1:2) — i (Xl,iZ)]}
—1

N

1 —

1 1 -
. ZLF Hspy iox, (17 hig (Xl,i? - :El)) + §L” (LF ) 59[:1 2

3

Given the above results, we can show that

' 2
o <8Wn,xl (gi(@1), hagu(z0) [L’ (LF(Ag(X3))) L’Fz(Ag(X))‘ Xy = wz} (@) () <h3m21>>

0 (co,c1)’ 0

AN (0, 2E {LFZ(AQ(Xi))F(AQ(Xi)) [1- F(Ag(X,-))]‘ X0 = wz} Fro (@) <K02 0 )) |

0 Koo

OWn 2, (g1(21), hagi(®1)) _ OWn,z (co,c1)

where o)’ = ey , and Kgp = [ u®[H; du

(cose1)=(gu(x1), hagi(z1))
To derive the linear expression and asymptotic distribution of (§Z($l), hggl(ml)) ' we calculate

the second order derivative:
O*Wy., (co, 1)
9 (€0, 1) 0 (0, 1) |(cq.e0)= (g1 (), P )
_ O*W1 a, (co, c1)
9 (co,c1)" 0 (co, c1)

62W2,nzl (Co, Cl)
!
(co,c1)=(gi(x1), hagi(z1)) 9 (co, c1) 9 (co, 1)

(co,e1)=(gi(1), hagi(z1))

N
1 =\ 2 — ==
= E (LFz) Hspy i1y oyt L <LF1'—LF¢ [gz(xz)Jrh:sgl(u’Uz)h (Xiin—x1) — a1 (Xz,ﬂ)D
=1
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N
1 L 2 —
+ Z ( ) Hspy o oy i2 L <LFi + LF; - {gl(l‘z) + h3gl(fvz) I (Xpi2 —21) — 31 (Xl,i2):|>

i=1
2o L' (LF(Ag(X )L'FQ(Ag(X))‘ X = xl} Fx (@) (é ;;)
—92F [L’ (LF(AQ(X)))LFQ(AQ(X))‘ X = xl] () ((1) m(2)1> ’

/
where fiz, it = (1, h% (Xt — azl)) (1, h% (X1t — :zl)> fort =1,2.

It follows that

(l’l h391(9€l)> — (gi(21), hagi(zr))’
Wn,xl (007 Cl)

C() 01
/
9(co,1)" Nicper)=(au(ar), hagu(ar)’

nxl

—1
) )
(9 CO’Cl 9 (co, 1) (co.c1)=(g; (x1), hag; (z1))’

i=1
1 1
EZLF H3h3 ilxy ( 7h (Xl il —1’[)) (F D)

i=1

1 h
<nZ(LF Hspy ity oy it L' (LF; )>

1 * . —
o > L (LFY) LFG1(0) Hapg 1 <(Xl,z’1 —z)?, h,ig (X1 — l‘l>3)
=1
1 N 1
+ n ZLFin),h&ile (1, ™ (X102 — mz)) (F; — D)
i=1
1 3 ) 1 / ° -
Z LFiH3h3,i2.’El 17 h,ig (Xl,iQ — xl) L (LFZ) LFZgl(ale) (Xl,iQ _ xl)

t o 4
=1

where ||Rs,||= O, (h% + hs/n+ 773Kn> . Then

- 1 0 qz)\ g1(zy) 1 ) h2kiay
\/T?)((O h3) ((51(:61)) (gl(xl)>> 291( l>< 0 ))

N

2} + R3n7

K02

4 N (0; (E{LF2<A9(X>>F(A9<X>> [1- F(Ag(X))]\ X = xz} Fxi W) 1 ( 0 g

= L7 YF(-)), we have

Noting that LF(-)
L (F(Lg(X)) _ lln(F(Ag(X)))

—In(1 - F(Ag(X)))]

LP(Lg(X)) = = - —
_F(agX) | Fog(X) F(Lg(X)
F(Ag(X) " 1- F(Ag(X) — F(Ag(X)) 1~ F(Ag(X))]
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and then we have the final asymptotic distribution of (ﬁl(:cl) g?l(asl)),

- 1 0 gz  (a@)\) 1. . h3ka1
(o ) () - (o)) -0 (7))
d 1 [ F(Ag(Xy)) [1 = F(Ag(X3))] _ Koz 0

This completes the proof of the theorem.

B Technical Lemmas

In this appendix we state some technical lemmas that are used in the proofs of the main results
and then prove them.

Recall that m; = E (D;|X;), mj = mj —my, Hip, ji = Hip, (mj —m;), and fp,(-) denotes the
PDF of m;. Let n(m;) = E [APﬁ_LKAPf;_LKﬂmi)} for j # i.

Lemma B.1 Let Lo, and Loy, be as defined in the proof of Theorem . Suppose that the
conditions in Theorem [3.1] are satisfied. Then

(i) Loms = E (Loa)l| = Op (VE/R) , |1B (Lons) = Eln(m) f (ma)][| = O (Kh) = o0(1),
and Amin (Lon) > Cip/2 w.p.a.1.;

(i) | Lomell,p = Op (K20 sen) = 0p(1) for £=2,...,7;
(iti) || Loy — E [n(mi) fra (mi)]ll,, = 0p(1) and Amin (Lon) = C11/2 w.p.a.1.

Proof. (i) By the variance calculation and Chebyshev inequality, it is standard to show that

1 _ _ _ _
= 2 {APZ-I,; Ny I’K'thl,ji—E[APﬁ YRR I’K'thl,jz}} =0p (\/K/n)-

1<i#j<n

By Taylor expansions and the i.i.d. condition on {X;}, for any j # i
E [APST AP iy, (my = m)| = E {n(ma) Hip, (m — i)}

=& otm) [ h—lfh(m ) ()

_E [n(mi) / () fon (s + ha) du}
= Bln(my)fn (mo)] + O (k1) B [n(ma) £ (m3)]

Noting that HE [ (m;) fm (a1) (mz)} H = O (K), the second part of (i) follows. By the Weyl’s inequal-
ity,

)\min (LO,nl) > )\min (E (LO,nl)) - HLO,nl ) (LO,nl)H
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Y

A (E (Lo.u1)) = Op (VK /)

i (B 10m0) fn (m)]) = O (1) = 0, (V)

> Ci1/2 w.p.a.l.

v

(ii) As in part (i), we can readily show that ||L0,ng||0p = 0, (K1/2h1_1771Kn) = o, (1) for
¢ =2,..,7. For example, for Lg 2, we have

1 K-1,K n pK—1,K1; —17p _
ILomalle, = |l=5 D ARG CAPSYY AT Hupy (myi) (m; —my)

1<i#j<n op

IN

n n
1 K—1,K n pK—1,K/, —17
_ -1, -1L,Ky
max [m; —mj| — E E AP AP hi " Hip, (myji)
1<j<n n 5] 5]
=J= j=1||i=1,i#j

= Op (K1/2771Kn> Op (h’l_l) =0p <K1/2h1_1771Kn) =op(1).

op
(iii) The result follows from (i)-(ii) and the Weyl’s inequality. m

Lemma B.2 Let L1, L1y and L1, be as defined in the proof of Theorem . Suppose that
the conditions in Theorem [3.1] are satisfied. Then

(i) |11l = Oy (VE/m + VERS )

(it) || Linell = Op (mkn) for €= 2,3;

(111) || L1 nel| = Op (Nikcn) for £ =4,5,6,7;

(0) | L1nll = Op (miscn + VERE) .

Proof. (i) Note that m; = E (D;|X;) = F (Ag;) under Assumption 2| First, notice that

1 _
Lim =5 > (Dgi— Agj) APSM Hy, (mj —mi) =puUi,
1<i#j<n
where
n) ' K—1,K n\ !
Urn = (2) Y. (Dgi—Dgy) AP Hipy (my —my) = <2> D qn(Xi, X5),
1<ij<n 1<i<j<n

on = (5)/n* = 1/2 as n — oo, and qin(X;, X;) = AgijA-PZ'J_LKthl (mji). Note that qin(-,-) is

symmetric in its two arguments. Let
rin(X;) = Elqin(Xs, X;)|X;] for j # i, and 01, = E'[r1,(X;)],
By the Hoeffding decomposition (see, Theorem 1 in Section 1.6 of Lee (1990), we have Uy, =

01+ U + U where

U0 = =N [rn(X)) — 61,
n

1n



~1
n
Uﬁ) = ( > E [q1n(Xi, Xj) — r1n(Xi) — r1in(X5) + 6010] -
1<i<j<n

Note that for j # i,

B law(Xe, X)I* = B [tr {(Agig)? AP APSTVO R, (myi) }] = O = ofn).

2
Then by Lemma 3.1 in [Powell, Stock and Stoker| (1989), F ’ Uff) ‘ = o(n~!) and thus [USLQ):
0p(n~1/2). Tt remains to study 6,, and U,

Let pp (m;) = E [APZ'KA’KWi] s pg(mi) = E[Agi|m;] and p(m;) = E [AgiAPZ-KfLKWi]
Note that ri, (X;) = E [(Agi — Agy) APV Ha, (myi) |XJ} =L [Agiﬁpﬁfl’Kthl (mi) ’XJ} -

Ag;E [APﬁfl’Kthl (mji) |XJ} = r1n,1 (Xj)—T1n,2 (X;) . By straightforward moment calculations

and the independence of {X;}, we have
ring (X5) = B { 8gi [AP[ TV~ APSTV iy, (mge) 1 )
= AP[ VBB (Agilmi, X5) Hiny (mys) |X]
—-E {E [Agz’APZ’K*l’K (Xi) !mian} Hip, (mji) |Xj}
= APPSR B pg (mi) Hyp, (myji) | X;] = E {p (mi) Hip, (myi) | X;}
= AP gy ) ot (M) o) = [ o) ot (M) fo o)

hi hi

= PRy 1) o )+ 25 00 gy ) fn ]|+ 05

m=m;
ai

= [om) o m + 2 000 [ () (] o).

m=m;
and
Tin2 (Xj) = Ag; E { [APJ‘K%K - Aﬂml’ﬂ Hip, (mji) |Xj}
= Dgi AP TVNE [Huny (mgi) X)) = 89,8 { B [ APy, X5 | Hu, (mgo) 1 )
= Ag; APV E [Hyp, (mi) |1X5) = Agi E {pp (ma) Hup, (myi) | X5}

— 1 —m; 1 —
:A%Mf1K/hH«th>m@mmfA%/WW0hm(th)mmmm
1 1 1 1

- hal a a
:A%Agflﬂ[hxmﬁ+a;ﬁfwmﬂ+OMfﬂ
ay

~ 8y, [ﬂ (m5) o () + 300 [pp ) fo ()| 4 o<h;“>] .

m=m;
Then it is easy to show that

[01n]l = 1B [r1n,1 (X;)] — E [rinz2 (X;)]]| = O (ﬁhi“)
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where we use the fact that

E {AgJAPK T f (my) — Dgj [0 (M) f (m)]
~E{ AP 0y (my) fin () = p () fn ()
= { [AQJAPK 1Kfm mJ:| E mj fm (mj)]
+E{APJK Y oy (M) f (my) — Dg; [p (mj)fm(mj)]}

(
= {B[B (808P K my) fu ()] = B lo (my) fin (m;)]}
+ E( (
0

{B (8P 5 1m; ) oy (my) fo (m)) } = ELE (Dgylmy) [p (my) fn ()]}
+0=0

by the repeated use of the law of iterated expectations. In addition, we can readily show that
2
MMM&N%%NMMMEWQH:OmmyﬂmW%g:@QMW&Qmmmm%m

have

1 2
1Ual1< 1610l + 2|05 || + U

=0, (VEI') +0, (VE/n) + 0)(n™1%) = 0, (VKRS + VEn) .
Then the result in (i) follows.
2

(ii) Recall that L17n2 = 2 Zl<z7£]<n AQJAPK L Khl lthl (mﬂ) [m]' — mj] , where m; =
L (R(X;)'m). It is easy to see that

Lig = —5 D, Ag ARGy, (my) g —my)
1<27é]<n
2
= 3 Y (X0 X;),7) = 20,0 ()
1<i<j<n

where

@on (X3, X5),m) = h11A APK 1KHlln (m;i) [ (R(X])/ ) mj]
+m1A%APK?”ﬁﬂm mU[Lqu/w) m;]
= {Ag; [L(R(X))m) —my] + Agi [L(R(X:)'m) —my] } hi ' APST VYR Hyp, (myj)

Us, (71') = (711) Z QH((Xian)aTr)a

2/ 1<i<j<n
and ¢, = (3)/n* — 1 as n — oo. Here we use the fact that Hip, (m) = —Hip, (—m) by the
symmetry of H; and APf;_l’K = —APE"YE By construction, gan (X3, Xj) ,m) is symmetric in

(Xi, X5).

37



It suffices to determine the probability order of Us, (7) by studying the U-process {U, (7)}.

Let 72, (X;, ™) = E [q2n (X3, X;), 7) | X;] and Oy, (1) = E [r2,(X;,m)] . Then we have the following
Hoeffding decomposition:

Uszn () = 2 () + 2US)) () + US) () ,

where

n

U (r) = > fran(X5,m) — o ()
=1

U () = 1) [gn (X5, X;) ) = 190 (X;, ) — 10 (X5, ) + Oy ()]
2/ 1<i<j<n

Let 0; = 6j» = L (R(X;)'7) — m;, where we frequently suppress the dependence of d; on 7. Note
that

ron(X;,7) = hi'E [{Agj (L (R(X;)'7) — mj] + Agi [L (R(X:)'T) —mi] } APEVE Hy, (myg) X }
= W 8g; 8B [ AP g, (mig) 15 + W7 B [Dgibi APV g (miy) 1X,
= 1901 (X, ) + T202( X, 7).
Note that
rana(Xj,m) = by AgidsE [ APy (mig) 1XG] = b 8g;8,8Pf B [fu, (mig) 1]
= BTG | pp (i) Finy (mig) 1K) = BT Agi AP TV [, (miy) 1X;
= hy'Ag;d; / Hy (u) pp(mj + hu) fr, (mj + hu) du
—hy ' Ago APSTHE / Hy (4) fim (mj + hu) du
= —1g;8;0 [op(my) fn (m)] + Dgs0 AP VD fr () du + o a( X, 7)
and
ran2(X;,m) = W' (80 APS T i, (mig) 1X] = T AP TEE [ Mg, (mig) 1]
= hflE [Pa (m) thl (i) |Xj} - hl_lﬁij_l’KE [Pég (mi) thl (mij) |XJ1
= 1t [ (@) ps(my ) o () d
—hpLAPKLK / Hy (w) psy (my + hut) fn (m; + hot) du
= —0[ps(m;) fm (m))] + APFTVED [psg () fn (M) + T202,0(X5, 7).

where ps (m;) = E (Agi@APiK_l’K\mi) s Psg (mi) = E (Agidilmi) , man1,0(Xj, ) and ropg o (X, )

denote the remainder terms in the first order Taylor expansions, we use the fact that [ H; (u)du=0
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and [ Hy (u)udu = —1. Note that

[psg (M) pp(mj + hu) — pp (m;) psg (M + hu) — ps (mj) + ps(my; + hu)] fr (mj + hu)

= hulpsy (mj) pp)(my) — pp (my) pss) (m) + p§ (my)] fon (mj + )

45 3Plpsg (ms) p2(m3) — pp () o) (m2) + 2 ()] fon (5 + )
= huyjfm (mj + hu) + §h%uw2jfm (mj + hu)

where m lies between m; and m; + hu, ¥1; = psg (m;) p%)(mj) —pp (m;) p((slg) (mj) + p((sl)(mj) and

sy = o5y (my) o2 () —pp (my) ;) (m3) + oS (). Then
O (%) = E[ron1(X;,7) + rona(X;, )]
— 1! [ ) E{(psg () p(ms 1) = p () g (m; -+ )
—ps (m;) + ps(m; + hu)]} fm (my + hu) du
= /H1 YuE [fm m]+hu)¢1j]du+/H1 W2E [ fn (mj + hu) ;] du
= Oop,1 (1) + O2p2 ().
Noting that m; = E (D;|X;) = F (Agj) = L(LF (Ag;)) , we have by Taylor expansions,
8 = L( X;)'w) — E(Dj|Xj;)
L (R(X;)'m) — L(LF (Lgy))
= L(LF (8g)) [ROG)'7 — LF (8g))] + 3 E(LF (84)) [ROX)'7 — LF (2g)))°
= L(LF (5g) R(X) (m — 7% + L (LF (5g;)) [R(X;)'7° — LF (Ag;)]
4 L (LF (Ag;) {R(X;) (7 — 7°) + [R(X;)'7° — LF (Agj)]}?
= L(LF (0gj)) R(X;)' (w —7°) + L (LF (5gy)) [ROG) 70 — LF (5gy)] + 62,

where Ag; is between R(X;)'m and LF (Ag;). Note that

sup max |62 S sup HR(Xj)’ (7r - 7['0) H2
=0 <Cmgcn 1SISP =m0 <Cxcn
L sup |R(X;)7° = LF (Ag))||

[mr—mOl<Cnikn
K =" +0 (K7) = 0 (Kitic,)
max |R(X;)'7’ — LF (Agj)] = O(K™), and

1<j<n

sup max |LF (Ag;) — LF (Agj)l < O (\/}ann) .

[0 || <Cre, 1SIST

IN

In addition,

sup E(82) £ sup E|R(X;) (x—m )} + E [R(X;)'n" — LF (Agj)]

~

J
7w =m0l <Cmrn 7w =m0 <Cmikn
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+ sup max |0;|?
I =m0 | <Cim gy FSIST

= O (nign) +O (K727) + O (K*ni,) = O (Mixn) -
By these results and the uniform boundedness of L and L, we can readily show that for I = 1,2,
Efm (m) 1] = E{[psg (m3) o5 (my) = o (ms) o) (m5) + o (m5)] f ()} = O ()
B[ ) vis)| 5 B {|pse () o (m5) = o (ms) 25 () + 50 (m) | b = O (K s + Konder)
uniformly in 7 with ||7 — 7°|| < Cn1gyn. Then

sup |02n,1 ()]
|m—mC)|<Cnikn

= sup
[m=mO<Cmxn

[ @ (f (4 ) by]

= sup
[7—m0<Cnmikn

_,_hj/[—'[l( udduE [f (m )wlj}
< sup |E [ fm (mj)¢1j]|+ﬁ Sup ‘E [ 7(3) (m;) ¢1j”

[m =m0 <Cmirn lr—mOl<Cnikn

~E o ) ) + b [ B (02 (1D () b1y

= O(mgn) +hi0 <K1/2771Kn + Kn%Kn> = O (MmKn)

where the second and third equalities hold by the second order Taylor expansions and the fact
that [ Hy (u)udu = —1 and [ Hy (u) u?du = 0 by the symmetry of Hj (-). Analogously, we have

uniformly in 7 with H7r — 7r0H < Cmkn,

h
swp  (ona () = sup | [ (@) 0B [ (4 ) ] du
[m—mO<Cnirn =m0l <Cmkn
h2
< sup /H1 3duE[f ( )1/12]]
||7T—7T0||§C771Kn

= Ko <K1/2?71Kn + Kn%Kn> = O (MmkKn) -

It follows that

sup |02 (m)[| = O (Mrcn) -
|r—mOI<CmKn

Similarly, we can show that

E|  sup  [rza (X1,7°) \}2] SK* i, = o(K)
|[m—mO<Cnikn
and
E sup llg2n ((X1,X2),7%)|| ]
7= <Cnircn
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) 2
< E sup HAgl [ (R(X1)'7°) —mi] by APEVE iy, (ml,z)H
7= <Cmrn
) 2
S Bl s [{ag [L(REG)T) + L (RG]} AT AP iy (mo)|
7= <Cmirn
i 2
+E| s |{Ag [E(REX)T) = ma] AT AP i, (ma)|
|7 =m0 <Cmgcn
) 2
< F sup ‘ {AglR(Xl)' (7T0 - wo)} hIIAPf;l’Kthl (mlg)H
HTI'*TI’OHSC'IHK”
i 2
+E sup H {Agl [L (R(Xl)/ﬂ'o) — ml] } hflﬂpﬁil’Kthl (ml,g)H
| —m0 | <Cmgcr

S.; hligKn%Kn‘
Then by Corollary 5.3 in |Chen and Kato| (2020), we have

— — 1/2
Sup HngL) (Tr)H S n 1 (h 3K lKn) / ln (n) = Op (ann) .
Hﬂ'iﬂ'O”SCnKn

By the empirical process theory, we have

sup HTUSL) (7T)H =0, (n_1/2K1/2 In (n)) = Op (MmKn) -

lm—mON <Cmxn

Consequently, we have

10 @IS sup 6o (m) + 205 (1) + UE) ()| = Op (mrca)

|70 <Cmixn

and || L1 n2|| = Op (MmKn) - Analogously, we can show that || L1 n3| = Op (n1kn) -
(iii) It suffices to obtain the rough probability bound for || L; ,,¢|| with £ = 4,5, 6, 7. For example,

o1
|LranslS %5 D0 Dgp SRS Huny i | L (R(X;)'7) — E(D;] X))|°

1<i#j<n
1 K—1,K ; ) 2
<hy 2n2 |88 P B i | | (L (8970 ROGY (7 = 7%)|
1<i#j<n
2
+h Y HAg]APK VK il | | [ROG Y70 = LF (Ag))]|
1<z;éj<n
s Y HA%APK P Hy il 1621
1<z7£]<n

— 1720, (KM, ) + W20y (K727) + 20y (Knfxcs) = Op (niscn)

Similarly, || L1 ne|| =Op (mkn) for £ = 5,6, 7. Alternatively, we can use the arguments as used in

(ii).
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1 K-1,K, -2 _ _ .
Note that Ly p4 = 33 Zlgz‘;ﬁjgn Agi,jAPi?j L hy 2H1h1 (mj;) [m; —m;] [m; —my]. It is easy
to see that

1 Ko i i
L = 505 > Agig AP R Hipy (myi) [mi — ma) [my — my)
1<ij<n

1 - 1 -
- W Z I3n ((Xi7Xj) 77T) = 5()071[]371 (71-)

1<i<j<n

where

Gon (X0, X5),m) = Dgig APV Hyy (i) [L (RX)'7) —mi] [L (R(X)'T) = mj]
1
U (M) = x> a3 (X0, X)),
(5) 1<i<j<n
and ¢, = (5)/n®* — 1 as n — oo. It suffices to determine the probability order of Usy, (T)
by studying the U-process {Usy, (m)}. Let r3,(X;,7) = E g3, (X3, X;),7)|X;] and 03, (1) =
E [r3n(Xj,m)]. Then we have the following Hoeffding decomposition:

Usn () = O3, () + 203 () + U () ,

where

1 n

U (1) = — 3 [rsn(Xj,m) = O30 ()]
i=1
1

Uy (m) = B > lasn (Xi, X5) ) = 130 ( X5, ) — 130 (X, ) + b ()]
2/ 1<i<j<n

Note that

Tgn(Xj, 7T) =F {Agi,jAPf;_LKhl_zj‘Ilhl (mﬂ) [L (R(XZ)/TI') - m,] [L (R(Xj)lﬂ') - mj} ’X]}

= hIQCSJE [Agid‘éiﬂfz{;il’Kthl (mﬂ) ’X]:|

= W72, [ Dgids SRS E, (myi) |X5] = h726; 00,8 [SiAPST iy (myi) X
= 11 (X5, 1) — T302( X, 7).
Note that
ran1(Xj, ™) = hi?6;E [AgifszAR-K_l’Kﬁml (myi) |Xj] — hy?0;APF T E [Agi&ﬁml (myi) |Xj]
= K%6E [p(mi) Hiny (miy) 1X;| = W20, 8P K E | pgs (my) Hin, (i) X, |
— n2%, / iy () p(my + hu) fon (m; + hu) du

—hy%6;APSTLR / Hy () pgs (mj + ha) f (m + hu) du
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= 300 3 ()] + 50,8 PET (g () o ()] + T (Xy ),
and
rana(X5,m) = hi28005E [GAPST  Hu, (mgi) 1X5] = b 28500, APF T E [, (mgi)1X;]
= h%00gE [Pap (ms) Hup, (mij) |Xj] — hy?6; g, AP T E [pa (ms) Hup, (myi) |Xj:|
= hf25jA9j /Hl (w) psp(mj + h) fr (mj + hu) du
—hy %0 8g; AP TS / Hy (u) ps(mj + ha) frn (m + ) du
= 50030 [pp () fon ()] + 303050, 5P 5P s () i ()] + a5, ),

where 73,1,4(Xj, 7) and 73,2,4(X;, 7) denote the remainder terms in the second order Taylor ex-
pansions, and we use the fact that [ Hy (u)du = 0 and [ Hy (u) udu = 0. With the above results,
we can readily show that

O3n (1) = |E [r3n,1(X;, ™) + r3n,2(X;, )]

1 1 K-1,K
5 1B {60002 [psp(my) fn ()1} + 5 | B {0,00, 8P/ 7102 105 () fn (m)] |
O3n.1 () + O3 2 () .

A

uniformly in 7 with Hﬂ' — 7TOH < Cnign- Then

sup 031 ()] = sup ‘E {6jAgj82 [psp (M) fm (m])}}‘
lm—70| <Cnigcm lm =70 <Cnigcm
1/2
< sw (B {B]0% lospmy) fu ()]}

l7—m0<Cmixn

= O(mkn)O (Kl/men) =0 (MmKn),

where we use the fact that sup E (5?) =0 (n%Kn) and sup E H82 [psp(mj) fm ()] H2
l7—mO<Cmkn lm=mOI<Cnikn
= O (Knik,) - Similarly, sup 0302 (7)| = 0 (MKn) -
[7—mO<Cnikn
Similarly, we can show that

E sup [l (X1, )7 | SK 0k, = o(K)
7= <Cmrn
and
E sSup HQBTL ((X17X2)37T)||2

”ﬂ-*ﬂ—O”SCT]lK'n

.. 2

S FE 0Sup HAngAPLIgiLKhIQHUH (m21) [L (R(Xl)/ﬂ') — ml] [L (R(XQ),T(') — mg] H ]
lm—mOl<Cmxn
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. 2
< max sup HL (R(XZ'),TF) — mi||4E |:HA9172AP1{(2_1’Kh1_2H1h1 (mgl)H ]

1<i<n lm—7m0 | <Cm1 ke
= 0 (K2771Kn) o (Kh 5) =0 (h1_5K3771LKn) :
Then by Corollary 5.3 in |Chen and Kato| (2020)), we have
_ _ 1/2
sup HU(2) )H 5 7 1 (hl 5K377%Kn) /
[|w =m0 <Cnxcn

In(n) = 0p (Mxn) -

By the empirical process theory, we have
sup HU‘S’B (7T)H =0, <n_1/2K1/2 In (n)) 0 (K1/2771Kn) = o0p (MKn) -
=70 <Cnikn
Consequently, we have
1Usn (0 S sup 030 () + 208 (m) + U ()| = 05 (mxca)
lm—mO<Cmirn

and || L1 n4|| = 0p (M Kn) - Analogously, we can show that || L || = op (nkn) for £ =5,6,7.
(iv) The result follows from (i)-(iii). m

Lemma B.3 Let Loy, Lopi, ..., Lo y7 be as defined in the proof of Theorem . Suppose that the
conditions in Theorem [3.1] are satisfied. Then

(i) | Lol = Op (K7H/2)

(1) || Lopne|| = 0p (K77) for £ =2,...,7;

(iii) |Lan|| = Op (K—7+1/2) .

Proof. (i) Note that

1 K-1,K
[ L2mll =/ > (APN'By— Agiy) APV Hp i
1<i#j<n

1 _
<2max|AP By = Dgi| = Y HAPJ‘; 1’KH [Hny jil
! 1<i#j<n

=0, (K7)0, <K1/2> ~0, <K‘7+1/2>

(ii) Note that

1 K-1,K _
ILonall = |5 D (ABSBo— Agig) ARG byt i, i (i —m;)
1<izj<n
hit :
< 2m?X‘APZ-K'BO—Agi‘max|mj—mj|ﬁ HAPK IKH ‘thhji
I 1<i#j<n

= Op (Kﬂ) Op (Kl/zann) Op (hl_l) = 0p (Kﬂ) :

Similarly, we can show that || Lo /| = op (K~7) for £ =3,...,7.
(iii) This follows from (i)-(ii). m
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Lemma B.4 Let G14j,...,Ganj be as defined in in the proof of Theorem . Suppose
that the conditions in Theorem [3.3 are satisfied. Then

(i) There exists a positive constant cp such that ||G1ni|| < cr |Agj — Ag;| + Op(h2 1) uni-
formly in j=1,2,...n

(i) There exists a positive constant cp such that ||Gan;l| < cr|Ag; — Agj| + Op(h5> ™) uni-
formly in j=1,2,....n

(iti) maxi<j<n | G3njll< Op (n2kn) ;

(iv) maxi<jn |G| < Op (v/In () [(nha) )

Proof. (i) Recall that ¢i; ; = ( . L NGy ha2 Ag”) " and

az 0o

Xij = Zh,l,al [P0~ FLP@g)] = S ol 0 LE(Bg) 1
l=az2+1

Then

1G 105

< 125 oy (851) (L2 2050+ )
=\, 2ho 9i,j ’hg 9i5, 7h§2a2! 9;5

=1
% L' (LF(Ag:)) ZWIAI [alLF(AgJ) OLE(A )} -3 hll'Ag”alLF(Ag])/l'
l=as+1

LF(Dg5) = 0'LF(2g;)]| /1

N
1 1 1 1
=S Hopg (8505) (1= 8905, 7a— 05 ) 'L (LF(AG1)) 1= AL /1
X n 2h2( g ,]) < 7h2 Gijs 7h32a2! ,]) ( ( g )) ! gz,j/l

i=1 héll
1 1 1
! ! NG e ——Ag®2 'L 3,)) ——Ag
+ lzﬂ)a LF(Ag;)) )/l ZH;W (Agig) <1, R ,h32a2lag”> L' (LF(Ag)) hé“Agw
az

= Gipj1 + Gipgo-

By the uniform boundedness of all finite order derivatives of L (-),

1 1 1 NG\
. P - — a: - e eee =a 2]
1Gimjall < ClAg; — Ag; =D Han, (Agij) (1, 7y B, ’thaQ!Agi5> (h2 )

=1
a2 1 N
< Clag —AglY ) - > N Hon, (Agij)ll < C1Ags — Agyl
=0 i=1

where recall that C' can vary over places. For G ,;2, we have

o) 1 N 1 Ag A\
. _ ~ ) — a% l"]
HGI,RJQH ,S l ;i_l - ; ‘HhQ (Agz] ‘ H < Agz]a ) hg2a2!Agi’§> ‘ ( h2 )
= 2 =
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= O/p(hgﬁl)
where we use the fact that max; |Ag| = Oy (h3). It follows that Gi,; < cp|Agj — Ag;l +
0,(h3>™) uniformly in j € [n].
(11) Note that G2,nj = (GZ,nj,Ov ceney GZ,nj,ahz) s where

N l
1 1
GQ,nj,l = E E H2h2 (Agz,]) (@Agl’]> [F (Agz) - F (Agl)] for | = 0,1, vy Gy
i=1

Note that
N

1
Ganjo = ;ZH%Q (Agi ) {F (Dgi) — F (Dgi)}
=1

N N
1 a 1 g —% — _
T on > Hany (Agig) {F (53:) = F (Dgi)} + " > Hon, (1g55) (8Gij — Dgig) {F (Dgi) — F (Dgi)}
=1 i=1
= Gopnjor + Gonjo2,
where Ag; ; lies between Ag; j and Ag; ;. For Gg 55,02, we have by Theorem (iv),

~

|Ganjo2| S h2_1 rr%%x |AGij — Agi max |Ag: — Agil

2
= 0, <h2_1 (K1/27]2Kn> ) = Op (n2Kn) uniformly in j.

For G201, we can show that

N
1
Gomjor] S EZH%Q (Agi ) {F (Agi) — F (Agi)}
=1
1 N
S e D [Hons (8gi5) F' (Dgi)| (A — Dgi)| = Op (n2n) -
=1

Then |G njo| = Op (N2ky) - Similarly, we can show that |G 00| = Op (N2Kkn) for £ =1,...,as. It
follows that |G2,,j| = Op (N2Kn) -

(iii) The proof is analogous to that of (i) and thus omitted.

(iv) Recall that Ag; =g(Xi2) — g (Xi1) and Ag; j = Agi — Agj. Let Ag; =g(Xi2) — g (Xi1) and
Ag;j = ANg; — Agj. Note that Gy nj = (Ganjo, s Ganag) » where

N l
1 _ 1 _
Gl ia = - > Hon, (AGij) (,wﬁgzu) [F(Agi) — Dyl
i=1

!
Let Ginj’l = %Zi]\;u# Hp, (Agij) (%Agm) [F(Ag;) — Dj] for 1 = 0,1, ..., ap where 0° is defined
to be 1. Noting that F (D;|X;) = F (Ag;), we can apply Bernstein exponential inequality to show
that

max HGinﬂH =0, ( log(n)/(nhg)) for 1 =0,1,...,a0.

1<j<n
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Next,

N
> [Hon, (Agig) = Hony (Dgi)] [F(Dgi) — Di) - %Hth (0) [F(Agj) — Dj].
i=1,i4j

1
0 _
G4,nj,0 —G4,nj,o = ﬁ

It is easy to see that the second term on the right hand side of the last equation is O, (n_lhg 1)

uniformly in j. For the first term we can readily apply the arguments as used in the proof of Lemma

B.2| and show it is o, ( log(n)/(nhg)) uniformly in j. Similarly, for [ = 1, ..., a2, we have

N l
1 . 1 1
Ganji — G iy = - > [thz (Agij) <hQA9m'> — Hop, (Agi5) (mﬁgz‘,y) l
i=1,i#]

[F'(Agi) = Dil

and we can use the arguments as used in the proof of Lemma|B.2|and show it is o, ( log(n)/ (nh2)>

uniformly in j. =
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