
Efficient Nonparametric Estimation of Generalized Panel Data

Transformation Models with Fixed Effects∗

Ying Xiaa Peter C. B. Phillipsb Liangjun Suc

aSchool of Economics, Singapore Management University, Singapore
bYale University, University of Auckland, Southampton University and Singapore

Management University
cSchool of Economics and Management, Tsinghua University, China

November 12, 2022

Abstract

In this article, we consider a generalized panel data transformation model with fixed effects

where the structural functions are assumed to be additive. Our model does not impose para-

metric assumptions on the transformation function, the structural function, or the distribution

of the idiosyncratic error term. We propose a multiple-stage Local Maximum Likelihood Esti-

mator (LMLE) for the structural functions. In the first stage, we apply the regularized logistic

sieve method to estimate the sieve coefficients associated with the approximation of a compos-

ite function and then apply a matching method to obtain initial consistent estimators of the

additive structural functions. In the second stage, we apply the local polynomial method to

estimate certain composite function and its derivatives to be used later on. In the third stage

we apply the local linear method to obtain the refined estimator of the additive structural

functions based on the estimators obtained in Steps 1 and 2. The greatest advantage is that

all minimization problems are convex and thus overcome the computational hurdle for existing

approaches to the generalized panel data transformation model. The final estimates of the ad-

ditive terms achieve the optimal one-dimensional convergence rate, asymptotic normality and

oracle efficiency. The Monte Carlo simulations demonstrate that our new estimator performs

well in finite samples.
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1 Introduction

Since the pioneering work of Box and Cox (1964), transformation models have been widely studied.

They include many popular models, such as the accelerated failure time model, the Weibull hazard

model, the proportional hazard model and the mixed proportional hazard model. Due to their

popularity, transformation models have been widely applied to empirical work in various areas

of economics to study issues that include the length of unemployment spell, the time between

purchases of a particular good, the time intervals between two child births, and the insurance claim

durations, among others. See Van den Berg (2001) for a survey on the applications of duration

models. Meanwhile, the asymptotic properties of different forms of transformation models have

received a great deal of interest. For example, Horowitz (1996) focus on a transformation model

with a nonparametric transformation function and a parametric structural function. Chiappori,

Komunjer and Kristensen (2015) extend the method in Horowitz (1996) to a transformation model

with both nonparametric transformation functions and nonparametric structural functions under

endogeneity.

Even though a fully-nonparametric transformation model avoids various misspecification issues,

it suffers from the curse of dimensionality. For this reason, there has developed a large literature

that applies the additive structure in generalized additive models with an unknown link function;

see Horowitz (2001), Horowitz and Mammen (2007), Horowitz and Mammen (2011) and Lin, Pan,

Lv and Zhang (2018), among others. Recently, Chen, Lu and Wang (2022) have considered a fully

nonparametric transformation model with additive structural functions in a panel data model with

fixed effects. In contrast with the early works such as Horowitz and Lee (2004), Chen (2010) and

Wang and Chen (2020) who also analyze panel transformation models but assume parametric

structural functions, Chen et al. (2022) is the only paper that considers a generalized transfor-

mation model with fixed effects under additivity and avoids imposing any parametric assumption.

The estimator of the structural function Chen et al. (2022) has a closed-form expression, which

makes it is easy to implement and to study the asymptotically normality. Nevertheless, the esti-

mation is done through the matching with other covariates locally and thus suffers from the curse

of dimensionality substantially.

To combat the curse of dimensionality, in this paper we propose a three-stage estimation pro-

cedure for the generalized transformation model with fixed effects and additive structures. We

assume that the nonparametric structural function g (·) exhibits an additive structure: g (x) =∑d
l=1 gl (xl) . Inspired by Horowitz and Mammen (2004, 2011) and Ozabaci, Henderson and Su

(2014), we aim to obtain estimators of the additive structural functions that enjoy the orcale effi-

ciency in the sense that they can be estimated as asymptotically efficiently as the oracle estimator

obtained when the other additive components are observed. In the first stage, we first consider

a regularized sieve method to estimate the logit sieve coefficients associated with the approxima-

tion of a composite function of the inverse L−1 (·) of logit-CDF L (·), the CDF F (·) of the error

difference, and the structural function g (·) , and then generalize the “pairwise differencing” or
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“matching” method of Blundell and Powell (2004) to obtain initial consistent estimators ḡl (·) of

the structural functions gl (·) . In the second stage, we consider the local polynomial estimation of

LF (·) ≡ L−1 (F (·)) and its first order derivative based on the preliminary consistent estimates

ḡl (·) . In the third stage, we apply the local linear method to estimate the one-dimensional ob-

ject gl (·) based on the consistent estimates {ḡl (·)} of {gl (·)} and those of LF (·) and its first

order derivative. Since only one-dimensional nonparametric objects are estimated in the second

and third stage and the additive structure of g (·) is imposed in the whole procedure, the whole

estimation procedure does not have the curse of dimensionality issue.

Interestingly, all the minimization problems in our three-stage approach are convex problems.

This overcomes the computational hurdle in some existing procedure for transformation models.

Furthermore, our estimator achieve optimal convergence rate, asymptotic normality and oracle

efficiency.

The article is organized as follows. Section 2 describes our methodology. We present the asymp-

totic properties of our estimators in Section 3. Section 4 examines the finite sample performance

of our estimators via Monte Carlo simulations. We apply our method to an empirical dataset in

Section 5. Section 6 concludes. All the proofs of the main theorems are relegated to the appendix.

Notation. For a real matrix A, let A′ denote its transpose, and let ∥A∥ and ∥A∥op to denote its

Frobenius norm and operator norm, respectively: ∥A∥ ≡ [tr (AA′)]1/2 and ∥A∥op ≡
√
λmax (A′A),

where ≡ signifies a definitional relationship, tr (·) is a trace operator, and λmax (·) denotes the

maximum eigenvalue of a real symmetric matrix. Similarly, we use λmin(·) to denote the minimum

eigenvalue of a real symmetric matrix. For any function f(·) defined on the real line, let ḟ(·), f̈(·),
and

...
f (·) be its first, second, and third order derivatives and let ∂af(·) be the ath order partial

derivative of f (·). Let
D→ and

P→ be convergence in distribution and convergence in probability.

Let 1{A} denote the usual indicator function which takes one 1 if A holds true and 0 otherwise.

For any positive integer c, we write [c] = {1, 2, ..., c} . For a vector v, |v|0 denotes the number of

nonzero elements in v.

2 Methodology

In this section we first present the panel data transformation model and then propose a multi-step

procedure to estimate it.

2.1 The Model

We consider the following transformation model:

Λ (Yit) = g (Xit) + αi + ϵit =
d∑

l=1

gl (Xl,it) + αi + ϵit, (2.1)
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where i = 1, · · · , n, t = 1, · · · , T, Yit is the observed dependent/response variable, (X1,it, · · · , Xd,it)
′

is a d × 1 vector of observed covariates, g (Xit) =
∑d

l=1 gl (Xl,it), αi is the individual fixed effect

that captures the unobserved individual heterogeneity, ϵit is the idiosyncratic error term, and Λ (·)
is an unknown transformation function that is strictly increasing. Note that the model in (2.1)

specifies a structural relationship between the response variable Yit and the covariates in Xit. We

address the important issue of “curse of dimensionality” by imposing additive structures on the co-

variates. Also, for simplicity and clarity we assume that gl(·), l = 1, · · · , d are all unknown smooth

functions defined on the real line so that each Xl,it is a scalar random variable. Even though

gl(·)’s are only components of the structural relationship, they are often parameters of interest

in empirical applications and we shall refer to them as the structural functions in this paper. In

addition, the derivatives, ġ1(·), · · · , ġd(·), which measure the marginal effects, are also of interest

in practice. For example, ġl (Xl,it) can be interpreted as the marginal effect of Xl,it on Λ (Yit). The

main goal of this paper is to estimate (g1(·), · · · , gd(·)) and their derivatives (ġ1(·), · · · , ġd(·)). Let
g(x) =

∑d
l=1 gl(xl) where x = (x1, ..., xl)

′.

Throughout the paper we focus on a short panel with T being fixed but allow the individual

effect αi to be correlated with the covariates in arbitrarily unknown form. To deal with the fixed

effects αi, we rewrite the model in (2.1) as follows:

Yit = Λ−1 (g (Xit) + αi + ϵit) = Λ−1

(
d∑

l=1

gl (Xl,it) + αi + ϵit

)
, (2.2)

where Λ−1(·) is the inverse function of Λ(·). Clearly, the above expression indicates that the model

(2.1) is different from the classical panel data model of the following form:

Yit = Λ−1 (g (Xit)) + αi + ϵit = Λ−1

(
d∑

l=1

gl (Xl,it)

)
+ αi + ϵit. (2.3)

For the model in (2.3), we can eliminate the fixed effects through various transformations such as

first-differing and within-group transformation. Nevertheless, for the model in (2.1) or (2.2), we

cannot apply such transformations to remove αi due to the presence of the nonlinear function Λ−1.

Fortunately, Chen et al. (2022) find that the distribution of Di,ts ≡ 1 {Yit > Yis} is free of αi. This

motivates the estimation of the structural functions based on such a non-smooth transformation

of the dependent variables.

2.2 Estimation Procedure

For clarity, we focus on the case where T = 2 and then remark on the general case with T > 2

later on. To avoid complication that arises from the presence of discrete covariates, we assume

that all covariates are continuous variables.

Following the lead of Chen et al. (2022), we compare Yi2 with Yi1 by definingDi ≡ 1 {Yi2 > Yi1} .
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Since Λ(·) is strictly increasing, we have

Di = 1 {Λ (Yi2) > Λ (Yi1)}

= 1 {g (Xi2) + ϵi2 > g (Xi1) + ϵi1}

= 1 {g (Xi2)− g (Xi1) > ∆i}

= 1

{
d∑

l=1

gl (Xl,i2)−
d∑

l=1

gl (Xl,i1) > ∆i

}
, (2.4)

where ∆i = ϵi1 − ϵi2. Obviously, the fixed effect αi has been removed via the above nonlinear

transformation so that the distribution of Di is free of αi. Let Xi = (Xi1, Xi2) . Let f(·) and F (·)
denote the probability density function (PDF) and cumulative distribution function (CDF) of ∆i,

respectively. Then

E (Di|Xi) = Pr (g (Xi2)− g (Xi1) > ∆i) = F (g (Xi2)− g (Xi1)) . (2.5)

Inspired by Horowitz and Mammen (2004, 2011) and Ozabaci et al. (2014), we propose a

three-step procedure to estimate the structural functions and their derivatives below. In the first

stage, we first consider a regularized sieve method to estimate the sieve coefficients associated

with the approximation of a composite function of the inverse L−1 (·) of logit-CDF L (·), the CDF

F (·) of ∆i, and the structural equation g (·) , and then generalize the “pairwise differencing” or

“matching” method of Blundell and Powell (2004) to obtain initial consistent estimators ḡl (·) of

the structural functions gl (·) . In the second stage, we consider the local polynomial estimation of

LF (·) ≡ L−1 (F (·)) and its first order derivative based on the preliminary consistent estimates

ḡl (·) . Note that LF (·) is a one-dimensional smooth function and its estimation does not have the

curse of dimensionality issue. In the third stage, we apply the local linear method to estimate the

one-dimensional object gl (·) based on early consistent estimates {ḡl (·)} of {gl (·)} and those of

LF (·) and its first order derivative. Again, here there is no curse of dimensionality involved here.

2.2.1 First-stage estimation of {gl(·)}dl=1

In the first stage, we consider initial consistent estimation of the structural functions {gl(·)}dl=1 in

model (2.1), which is done through two sub-steps.

In principle, we can estimate {gl(·)}dl=1 via least squares based on the model for the response

variable Di by using sieve approximation for the structural functions in (2.4). Nevertheless, the

least squares estimates do not perform well as it cannot ensure the resulting probability estimates

to lie between 0 and 1. To ensure the probability estimates to always lie between 0 and 1 during

the computation, we follow the lead of Hirano, Imbens and Ridder (2003) and consider the method

of logit sieve.

To proceed, we introduce some notations. Let {pl (·) , l = 1, 2, · · · } denote a sequence of B-spline
basis functions. Let K = K(n) be some integer such that K(n) → ∞ as n→ ∞.
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Let PK(xit) =
[
pK(x1,it)

′, · · · , pK(xd,it)
′] ′ where pK(xl) ≡ [p1 (xl) , · · · , pK (xl)]

′ for l = 1, ..., d.

Then under suitable smooth conditions, we can approximate gl(·) by pK(·)′βxl where βxl =

(βxl
1 , · · · , β

xl
K )′ is a K × 1 vector of parameters. Let β = (βx1 ′, · · · , βxd ′)′ . In the sequel, we

propose to use B-spline estimation as it has faster uniform convergence rate than the estimation

based on the power splines. In addition, it is well known that B-splines have low multicollinearity

and recursive formula for calculation, which provides great computational advantages in practice.

See Chapter 19 of Powell (1981) and Chapter 4 of Schumaker (2007) for more details on B-splines.

Let ∆g (Xi) = g (Xi2)−g (Xi1) , and LF (·) = L−1 (F (·)) . In the first substep, we try to approx-

imate the composite function LF (∆g (·)) . Even though the additive structure in g (·) implies that

that of ∆g : ∆g (Xi) =
∑d

l=1 [gl (Xl,i2)− gl (Xl,i1)] , LF (∆g (Xi)) can not be written as additive

functions of (X1,i1, ..., Xd,i1, X1,i2, ..., Xd,i2) . This implies that if one uses {pK(xl,it), l ∈ [d] , t ∈ [2]}
to approximate this composite function, one has to use their 2d-dimensional tensor product to form

the basis functions, resulting in the “curse of dimensionality”. Fortunately, noting that ∆g (·) is

additive and LF (·) is a one-dimensional function, we can avoid the “curse of dimensionality” via

two sieve approximations to the composite function. First, we approximate ∆g (Xi) as follows:

∆g (Xi) =
(
PK(Xi2)− PK(Xi1)

)′
β0 + [r1 (Xi2)− r1 (Xi1)]

≡ ∆PK(Xi)
′β0 +∆r1 (Xi) (2.6)

where r1 (Xi) is the approximation error in the sieve approximation of ∆g (Xi) . Then under certain

smooth conditions on F (·) , we can approximate LF (∆g (Xi)) as follows

LF (∆g (Xi)) = LF
(
∆PK(Xi)

′β0 +∆r1 (Xi)
)

= LF
(
∆PK(Xi)

′β0
)
+ LF (∆g∗i )∆r1 (Xi)

=
R∑
ℓ=0

αℓ,0

(
∆PK(Xi)

′β0
)ℓ

+ [r2 (Xi) + LF (∆g∗i )∆r1 (Xi)]

≡
R∑
ℓ=0

αℓ,0

(
∆PK(Xi)

′β0
)ℓ

+ r (Xi) , (2.7)

where ∆g∗i lies between ∆gi (Xi) and ∆PK(Xi)
′β0, r2 (Xi) can be regarded as the remainder term in

the Rth order Taylor expansion of LF (·) , and r (Xi) = [r2 (Xi) + LF (∆g∗i )∆r1 (Xi)] . Intuitively,

as long as both gl (·)’s and F (·) are sufficiently smooth, and both K and R diverge to infinity, we

can control the overall approximation error r (Xi) uniformly well. In practice, we propose to use

the following functions as the vector of base functions to approximate LF (∆g (Xi)) :

1, ∆PK(Xi), the tensor product of ∆PK(Xi) up to order R. (2.8)

For notational simplicity, we denote the above vector of base functions simply asR (Xi) ≡ RKR (Xi)

where KR signifies the dimension of the vector R (Xi) . Clearly, KR is a deterministic function of

K and R. Then we have

LF (∆g (Xi)) ≈ R (Xi)
′ π0 for some π0 ∈ RKR .
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Note that the true values of the elements of π0 depend on the coefficients αℓ,0’s and β0 nonlin-

early, but it is hard to incorporate such restrictions in the following estimation procedure. Instead,

we will consider a regularized procedure to estimate π0. Specifically, we propose to estimate π0 by

the regularized logit sieve (RLS) method:

π̄ = argmin
π

− 1

n

N∑
i=1

[
Di · ln

(
L
(
R(Xi)

′π
))

+ (1−Di) · ln
(
1− L

(
R(Xi)

′π
))]

+ λ ∥π∥1 , (2.9)

where L (·) is the Logit CDF: L(x) =
exp(x)

1 + exp(x)
, ∥·∥1 is the L1 norm, and λ = λ (n) is a tuning

parameter that shrinks to zero as n → ∞. In comparison with the standard logit sieve estima-

tion, we use regularization in the above minimization problem. Following Belloni, Chernozhukov,

Fernández-Val and Hansen (2017), we can set

λ = cn−1/2Φ−1 (1− cλn/ {2KR}) (2.10)

where c > 1 is slack constant (e.g., 1.1), cλn = 0.1/ log (n) and Φ−1 (·) is the inverse function of the

standard norm CDF Φ. Let m̄i ≡ Ē (Di|Xi) = L (R(Xi)
′π̄) , which serves as an initial consistent

estimator for mi ≡ E (Di|Xi) . Note that even though the true link function F (·) is not a Logistic

function, we can use Logistic function inside the function ln(·) in (2.9). Following Hirano et al.

(2003) and Belloni et al. (2017), we can establish the convergence rate for the above regularized

logit sieve estimator under some suitable conditions.

In the second substep, we consider the use of a matching method to estimate the structural

functions. To see how the idea of “matching” works, note that

mi = E (Di|Xi) = F (∆g (Xi)) .

By the strict monotonicity property of the CDF function F (·) ,

mi ≈ mj if and only if ∆g (Xi) ≈ ∆g (Xj) .

So in principle, one can consider minimizing the average squared distance between ∆g (Xi) and

∆g (Xj) when we controlmi to lie close tomj . In practice, both ∆g (Xi) andmi’s are not observed,

we need to use sieve approximation to obtain the former one and replace the latter one by its

preliminary consistent estimate. Note that

mi = F (g (Xi2)− g (Xi1)) ≈ F
([
PK(Xi2)− PK(Xi1)

] ′β0) .
For i ∈ {1, · · · , n}, let

△PK
i = PK (Xi2)− PK (Xi1) ,

qk,i = pk (X1,i2)− pk (X1,i1) for k = 1, ...,K,

Ql,i = pK (Xl,i2)− pK (Xl,i1) for l = 1, ..., d.
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For i ̸= j ∈ {1, · · · , n}, let

△PK
i,j = △PK

i −△PK
j , △P

1,K
i,j = q1,i − q1,j ,

△PK−1,K
i =

(
q2,i, ..., qK,i, Q

′
2,i, ..., Q

′
d,i

)′
and △PK−1,K

i,j = △PK−1,K
i −△PK−1,K

j .

Note that △PK
i,j =

(
△P 1,K

i,j ,
(
△PK−1,K

i,j

)′)′
. To estimate β0, we normalize its first element to be

1 and rewrite it as β0 =
(
1, θ0′

) ′. The matching estimator of θ0 is obtained as follows:

θ̄ = argmin
θ

1

n2

∑
1≤i ̸=j≤n

[
△P 1,K

i,j + θ′△PK−1,K
i,j

]2
H1h1 (m̄j − m̄i) (2.11)

= −

 1

n2

∑
1≤i ̸=j≤n

△PK−1,K
i,j △PK−1,K

i,j
′H1h1,ji


−1

1

n2

∑
1≤i ̸=j≤n

△P 1,K
i,j △PK−1,K

i,j H̄1h1,ji,(2.12)

where H̄1h1,ji = H1h1 (m̄j − m̄i) , H1h1(·) ≡ h−1
1 H1 (·/h1), H1(·) is a one-dimensional kernel func-

tion, and h1 is a bandwidth. Let β̄ = (1, θ̄′) =
(
β̄x1′, ..., β̄xd′

)′
, where β̄xl serves as an estimator of

βxl for l = 1, ..., d. Then we obtain the estimate of gl (xl) by ḡl(xl) = pK(xl)
′β̄xl for l = 1, · · · , d

and that of g (x) by ḡ(x) ≡
∑d

l=1 ḡl(xl), where x = (x1, ..., xd)
′ .

2.2.2 Second-stage estimation

To motivate the second-stage estimation, we add some notation. Let

△gi = g (Xi2)− g (Xi1) and △gi,j = △gi −△gj .

Let LF (·) = L−1 (F (·)), LFi = LF (∆gi) and ˙LF i = ˙LF (∆gi). Note that

N∑
i=1

{Di ln [F (∆gi)] + (1−Di) ln [1− F (∆gi)]}

=

N∑
i=1

{Di ln [L (LF (∆gi))] + (1−Di) ln [1− L (LF (∆gi))]} . (2.13)

By Taylor expansions, for any i ̸= j ∈ {1, · · · , n},

LF (∆gi) = LF (∆gj + (∆gi −∆gj)) ≈ LF (∆gj) +

a2∑
l=1

∂a2LF (∆gj)
1

l!
(△gi,j)l ,

where △gi,j is close to zero and LF (·) is a2-order continuously differentiable.

Let △ḡi =ḡ(Xi2)− ḡ (Xi1) and △ḡi,j = △ḡi −△ḡj . Define

Qn

(
△ḡj , {bl}a2l=0

)
=

−1

n

N∑
i=1

H2h2 (△ḡi,j)

8



×

{
Di ln

[
L

(
b0 +

a2∑
l=1

1

hl2l!
(△ḡi,j)l bl

)]
+ (1−Di) ln

[
1− L

(
b0 +

a2∑
l=1

1

hl2l!
(△ḡi,j)l bl

)]}
.

where H2h2(·) ≡ h−1
2 H2 (·/h2), H2(·) is a one-dimensional kernel function, and h2 is a bandwidth.

Obviously, b0+
∑a2

l=1
1

hl
2l!

(△ḡi,j)l bl serves as an a2-order Taylor series approximation of LF (∆ḡi) in

the neighborhood of△ḡj . Then we can estimate
(
LFj , ˙h2LF j

)
by the minimizingQn

(
△ḡj , {bl}a2l=0

)
with respect to {bl}a2l=0 :(

L̂F j , h2∂̂LF j , · · · , ha22 ∂̂a2LF j

)
= arg min

{bl}
a2
l=0

Qn

(
△ḡj , {bl}

ah2
l=0

)
.

Let ̂̇LF j = ∂̂LF j .

2.2.3 Third-stage estimation

In this stage, we refine the early estimates of the structural functions. Our objective is to obtain

an estimator of gl (·) that is as asymptotically efficient as that obtained when the other (d− 1) the

structural functions {gl∗ (·)}dl∗=1,l∗ ̸=l were known.

Note that ∆gi =
∑d

j=1 [gj (Xj,i2)− gj (Xj,i1)] enters the Logit sieve objective function. For

the moment, suppose that {gl∗ (·)}dl∗=1,l∗ ̸=l is known, we aim at estimating gl (·) alone by the local

linear method. Noting that gl (·) appears twice in ∆gi, one may be tempted to conduct the local

linear approximation of gl (Xl,i2) and gl (Xl,i1) simultaneously around a point xl. But to control

the approximation well, one would need to ensure both Xl,i2 and Xl,i1 are around xl. This will

yield a local linear estimator with a slower convergence rate than the usual one-dimensional local

linear estimate. To avoid such slow convergence, we consider Taylor expansion of gl (Xl,i2) and

gl (Xl,i1) separately around a point xl below.

First, by the Taylor expansion of gl (Xl,i1) around xl, we have gl (Xl,i1) ≈ gl (xl)+ġl (xl) (Xl,i1 − xl) .

It follows that

d∑
j=1, ̸=l

[gj (Xj,i2)− gj (Xj,i1)] + gl (Xl,i2)− gl (xl)− ġl (xl) (Xl,i1 − xl)

= ∆gi + gl (Xl,i1)− gl (xl)− ġl (xl) (Xl,i1 − xl) ≡ Gl1,i,

and

LF (Gl1,i) ≈ LF (∆gi)− ˙LF (∆gi) [gl (xl) + ġl (xl) (Xl,i1 − xl)− gl (Xl,i1)] ≡ LFi1(xl). (2.14)

Similarly, using gl (Xl,i2) ≈ gl (xl) + ġl (xl) (Xl,i2 − xl) by Taylor expansion of gl (Xl,i2) around xl,

we have

d∑
j=1,j ̸=l

[gj (Xj,i2)− gj (Xj,i1)] + gl (xl) + ġl (xl) (Xl,i2 − xl)− gl (Xl,i1)
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= ∆gi + gl (xl) + ġl (xl) (Xl,i2 − xl)− gl (Xl,i2) ≡ Gl2,i,

and

LF (Gl2,i) ≈ LF (∆gi) + ˙LF (∆gi) [gl (xl) + ġl (xl) (Xl,i2 − xl)− gl (Xl,i2)] ≡ LFi2(xl). (2.15)

Obviously, Gl1,i is an approximation version of ∆gi in which only gl (Xl,i1) is replaced by its first

order Taylor expansion at xl, and Gl2,i is that of ∆gi in which only gl (Xl,i12) is replaced by its

first order Taylor expansion at xl. Then we may consider the following local likelihood function to

estimate (gl (xl) , ġl (xl))

2∑
t=1

N∑
i=1

H3h3 (Xl,it − xl) {Di ln [L (LF (Glt,i))] + (1−Di) ln [1− L (LF (Glt,i))]}

≈
2∑

t=1

N∑
i=1

Th3 (Xl,it − xl) {Di ln [L (LFit(xl))] + (1−Di) ln [1− L (LFit(xl))]} , (2.16)

where H3h3(·) ≡ h−1
3 H3 (·/h3), H3(·) is a one-dimensional kernel function, and h3 is a bandwidth.

Of course, we cannot minimize the negative of (2.16) with respect to (gl (xl) , ġl (xl)) given the

unknown nature of LF (∆gi) and ˙LF (∆gi) in the definitions of LFi1(xl) and LFi2(xl). A feasible

objective function is given by

Wn,xl
(c) ≡ −

T∑
t=1

N∑
i=1

H3h3 (Xl,it − xl)
[
Di ln

(
L
(
L̂F it,xl

(c)
))

+ (1−Di) ln
(
1− L

(
L̂F it,xl

(c)
))]

,

(2.17)

where c ≡ (c0, c1)
′ ,

L̂F i1,xl
(c) = L̂F i − ̂̇LF i ·

[
c0 + c1

1

h3
(Xl,i1 − xl)− ḡl (Xl,i1)

]
, and

L̂F i2,xl
(c) = L̂F i +

̂̇LF i ·
[
c0 + c1

1

h3
(Xl,i2 − xl)− ḡl (Xl,i2)

]
.

By minimizing the objective function in (2.17) with respect to (c0, c1) yields the following estimates(
ĝl(xl), h3̂̇gl(xl)) = arg min

(c0,c1)
Wn,xl

(c0, c1).

In the next section we will show that the estimators ĝl(xl) and ̂̇gl(xl) are oracle efficient.

3 Assumptions and Asymptotic Results

In this section, we first present the assumptions and then study the asymptotic properties of the

estimators of the structural functions.
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3.1 Assumptions

To proceed, we introduce some notation. A real-valued m-times continuously differentiable func-

tion q(u) on U ⊂ R is said to be a γ-smooth function if, for some r = γ − m ∈ (0, 1], ∃cq,
|∂mq(u)− ∂mq(u∗)| ≤ cq |u− u∗|r holds for all u, u∗ ∈ U . It is well known that γ-smooth functions

can be approximated well by various linear B-splines (e.g., Chen (2007)). So we will assume that

{gl(·)}dl=1 are γ-smooth functions below.

We will use X = ⊗d
l=1Xl to denote the support of Xit = (X1,it, ...Xd,it)

′ . Let X⊗2 = X × X
denote the support of (Xi1, Xi2). We make the following assumptions.

Assumption 1 1. {Yi, Xi}ni=1 are i.i.d.;

2. The support X = ⊗d
l=1Xl of Xit = (X1,it, ...Xd,it)

′ is compact;

3. ϵit is strictly stationary over time.

4. (ϵi1, ϵi2) is independent of (Xi1, Xi2);

5. There exist positive constants cϵ, cϵ and cϵ such that cϵ ≤ E
(
ϵ2it
)

≤ cϵ and E |ϵit|j ≤
cj−2
ϵ j!E

(
ϵ2it
)
<∞ for all j ≥ 2.

Assumption 1 imposes some conditions on {Yi, Xi, ϵit} . Assumption 1(1) assumes the obser-

vations are i.i.d.; Assumption 1(2) assumes the exogenous independent variables have compact

supports. Assumptions 1(3) is made to simplify the notation. Assumption 1(4) is commonly as-

sumed in the nonparametric transformation models to avoid the estimation of certain conditional

distributions. Assumption 1(5) imposes some moment conditions on the error terms to simplify

the derivation.

Assumption 2 1. The link function Λ(·) is strictly increasing;

2. β0 = (1, θ′0)
′ .

Assumption 2 is an identification condition. Note that we impose a strictly monotone condition

on the link function in Assumption 2(1) and normalize the first element of β0 to be 1 in Assumption

2(2). Without the scale normalization, the structural functions {gl(·)}dl=1 cannot be separately

identified from Λ(·).

Assumption 3 1. The CDF F (·) of ∆i = ϵi1 − ϵi2 is strictly monotone and (R+ 1)th order

continuously differentiable.

2. There exists a small positive constant c such that 0 < c < infx=(x1,x2)∈X⊗2 E (Di|Xi = x) ⩽

infx=(x1,x2)∈X⊗2 E (Di|Xi = x) ⩽ 1− c.

3. The set of basis functions {pk(·)}∞k=1 are twice continuously differentiable on their supports;

max0≤h2≤r max1≤l≤d supxl∈Xl

∥∥∂h2pK(xl)
∥∥ ≤ CζrK for r = 0, 1, 2 for some large constant C.
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4. The functions {gl(·)}dl=1 are bounded and γ-smooth function with γ ≥ 2 on their supports;

there exist a vector β0 =
(
βx1′
0 , ...., βxd′

0

)′
such that βxl

0 ∈ interior (B) for some compact set

B in RK and all l = 1, ..., d, and max1≤l≤d supxl∈Xl

∣∣gl(xl)− pK(xl)
′βxl

0

∣∣ = O(K−γ) for some

γ > 2.

5. There exist a vector π0 ∈ interior (Π) for some compact set Π in RKR such that sup
x=(x′

1,x
′
2)

′∈X⊗2

|LF (∆g (x))−R(x)′π0| = O(K−γ+R−(R+1)); we can decompose R(x) = (R1(x)
′, R(x)′)′ and

π0 =
(
π0′1 , π

0′
2

)′
accordingly such that s2π1

log2
(
KR ∨ n

)
≤ K−γn, and sup

x=(x′
1,x

′
2)

′∈X⊗2

∣∣R2(x)
′π0
∣∣

= O(K−γ) where sπ1 ≡
∣∣π01∣∣0 .

Assumption 3(1) imposes some smooth conditions on F (·) to ensure the second sieve approxi-

mation considered in the first stage estimation. Assumption 3(2) ensures the desirable asymptotic

properties of the sieve logit estimator in the first stage. Assumption 3(3)-(4) quantify the prop-

erties of the base functions {pk(·)}∞k=1 and the approximation error for one-dimensional γ-smooth

functions. Note that many basis functions such as polynomials, splines and wavelets satisfy these

conditions with various controls on ζrK . For splines, it is well known that ζrK = K1/2+r; see Newey

(1997). Assumption 3(5) reflects the error in the approximation of LF (∆g (x)) by R(x)′π0 is uni-

formly well controlled where the term K−γ is carried over from the approximation of the additive

function ∆g (·) by ∆PK(·)′β0 and the term R−(R+1) signifies the error in the approximation of the

(R+ 1)th-order continuously derivative function LF (·) by power series. Clearly, R−(R+1) ≪ K−γ

provided R ≥ c log (K) for some c > 0. This indicates to suffices to consider R to be proportioal to

log (K) . Our simulations indicates that a choice of R like 3 or 4 works sufficiently well in general.

In addition, Assumption 3(5) indicates that π0 should be approximately sparse to facilitate the

asymptotic analysis.

Assumption 4 For every K and R that is sufficiently large,

1. There exist positive constants C1 and C2 such that

0 < C1 ≤ λmin

(
E
[
R(Xi)R(Xi)

′]) ≤ λmax

(
E
[
R(Xi)R(Xi)

′]) ≤ C2 <∞.

2. Let η (mi) ≡ E
[
△PK−1,K

i,j △PK−1,K
i,j

′|mi

]
where j ̸= i. Let fm (·) denote the density of mi.

All eigenvalues of E [η (mi) fm(mi)] are bounded and bounded away from zero: 0 < C1L ≤
λmin (E [η (mi) fm(mi)]) ≤ λmax (E [η (mi) fm(mi)]) ≤ C2L <∞.

Assumption 4(1) impose some standard conditions to ensure the logit sieve estimator to be

well behaved. Assumption 4(2) ensures the matching estimator in the second substep of the first

stage estimation is well behaved.

Assumption 5 1. The probability density function (PDF) fXl
(·) of Xl,it, is bounded and bounded

away from zero within its support Xl, for l ∈ [d] .
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Assumption 5 imposes some standard conditions on the density of the regressors.

Assumption 6 1. The kernel function H1(·) is an a1-order symmetric kernel function with

compact support where a1 ≥ 2 is even; it is third order continuously differentiable.

2. Both H2(·) and H3(·) are second order symmetric kernel functions with compact support.

Assumption 6(i) imposes some conditions on the kernel function H1(·) used in the first stage

estimation. To eliminate the effect of the first stage estimation, we typically resort to a higher

order kernel with a1 ≥ 4. Assumption 6(ii) indicates that we can use the usual second order

kernel function in the second stage local polynomial regression and the third stage local linear

estimation. Note that we cannot use higher order kernel in local linear or polynomial regressions

to avoid asymptotic singularity, but it is fine to set H3(·) = H2(·).

Assumption 7 1. As n→ ∞, K → ∞, R→ ∞, hℓ → 0 ∀ℓ ∈ [3], and R−(R+1) = O (K−γ);

2. ha2+1
2 +

√
log(n)/(nh2) +

√
K log(n)/n+

√
Kha11 +K−γ+1/2 = o(h23 + (nh3)

−1/2)

3. K3 log(n)/n = o(1) and
√
K(

√
Kha11 + h−1

1 (
√
sπ1 log(R

R ∨ n)/n+K−γ)) = o (1) .

Assumption 7 imposes some conditions on the bandwidths hℓ’s, the sieve approximating terms

K and R, the order of the kernel used in the first stage estimation, and the order of the local

polynomial used in the second stage estimation. Assumption 7(i) is standard and minimal except

the last part, which ensures that the second sieve approximation error is no bigger than the first

sieve approximation studied in Step 1. Assumption 7(ii) ensures that the asymptotic biases and

variances of the first-stage and second-stage estimators are sufficiently small to achieve the oracle

efficiency in the third stage. To ensure the last stage local linear estimator of gl (·) to enjoy the

optimal rate of convergence, we need to choose h3 to be proportional to n−1/5. To be specific, we

consider the case where a1 = 4, a2 = 3 and h3 ∝ n−1/5. Assumption 7(ii) requires that

K ∝ ncK for cK ∈
(

2

5(γ − 1/2)
,
1

3

)
h1 ∝ n−c1 for some c1 ∈

(
1

10
+
cK
8
, 1

)
h2 ∝ n−c2 for some c2 ∈

(
1

10
,
1

5

)
.

For example, if γ > 2.5, we can simplify choose K = n1/5.

3.2 Asymptotic Properties

In this subsection we study the asymptotic properties of our three-step estimators.

The following theorem establishes the asymptotic properties of the first-stage estimator θ̄.
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Theorem 3.1 Suppose that Assumptions 1–4, 6(1) and 7(i) and (iii) hold. Let η1Kn =
√
sπ1 log(R

R ∨ n)/n+
K−γ and η2Kn = η1Kn +

√
Kha11 +K−γ+1/2. Let H1h1,ji ≡ H1h1 (mj −mi) . Then

(i)

θ̄ − θ0 = −

 1

n2

∑
1≤i ̸=j≤n

△PK−1,K
i,j △PK−1,K

i,j
′H1h1,ji


−1 1

n2

∑
1≤i ̸=j≤n

△gi,j△PK−1,K
i,j H1h1,ji

+
1

n2

∑
1≤i ̸=j≤n

(
△PK

i,j
′β0 −△gi,j

)
△PK−1,K

i,j H1h1,ji

+R1n,

(ii)
∥∥θ̄ − θ0

∥∥ = Op (η2Kn) ;

(iii) 1
n

∑n
i=1 [ḡl (Xl,i)− gl (Xl,i)]

2 = Op (η2Kn) for l = 1, · · · , d;
(iv) supxl∈Xl

|ḡl (xl)− gl (xl)| = Op(
√
Kη2Kn) for l = 1, · · · , d;

where ∥R1n∥ = Op (η1Kn).

Theorem 3.1(i) establishes a Bahadur-type representation for the first-stage estimator θ̄. Theo-

rem 3.1(ii) establishes the Euclidean norm for θ̄. Theorem 3.1(iii)-(iv) establishes the mean square

convergence and uniform convergence of ḡl (·) , respectively.
The following theorem establishes the asymptotic properties of the second-stage estimators.

Theorem 3.2 Suppose that Assumptions 1–4, 6 and 7(i) and (iii) hold. Let η3Kn = η2Kn +

ha2+1
2 +

√
ln (n) /(nh2). Then

(i) There exists a positive constant cF such that∥∥∥(L̂F (△gj)), h2∂̂LF (△gj))− (LF (△gj)), h2∂LF (△gj))
∥∥∥ ≤ cF |△gj −△ḡj |+Op (η3Kn)

uniformly over j ∈ {1, · · · , n};
(ii) 1

n

∑n
j=1

[
L̂F (△gj)− LF (△gj)

]2
= Op

(
η23Kn

)
, and 1

n

∑n
j=1

[
h2∂̂LF (△gj)− h2∂LF (△gj)

]2
= Op

(
η23Kn

)
.

Theorem 3.2(i) establishes the asymptotic expansions for L̂F (△gj)) and h2∂̂LF (△gj); Theorem
3.2(ii) establishes the mean square error convergence rate for the estimators of LF (△gj) and

h2∂LF (△gj), respectively.
With Theorems 3.1 and 3.2, we can establish the asymptotic properties of the third stage

estimator of {(gl(·), ġl(·))}dl=1.

Theorem 3.3 Suppose that Assumptions 1–7 hold. Let κab =
∫
ua [H3(u)]

b du for a, b = 0, 1, 2.

Then for l = 1, · · · , d,
(i) (√

nh3 0

0
√
nh33

)((
ĝl(xl)̂̇gl(xl)

)
−

(
gl(xl)

ġl(xl)

))
− 1

2
g̈l(xl)

(
h23κ21

0

)
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d→ N

(
0,

1

2
E

{
F (△g(Xi)) [1− F (△g(Xi))]

Ḟ 2(△g(Xi))

∣∣∣∣Xl,it = xl

}(
κ02 0

0 κ22

κ2
21

))
;

(ii) supxl∈Xl
∥ĝl(xl)− gl(xl)∥ = Op

(
h23 +

√
ln (n) / (nh3)

)
.

Theorem 3.3 reports the asymptotic properties of the third step local linear estimator of

{(gl(·), ġl(·))}dl=1. Theorem 3.3(i) indicates that the asymptotic distribution of the local linear

estimator of is not affected by random sampling errors in the first two stage estimation. In fact,

our local linear estimator of (gl(·), ġl(·)) has the same asymptotic distribution that we would have

if the other additive components {(gj(·), ġj(·))}dj=1,̸=l and link function F (·) were known. This

indicates the oracle efficiency of the estimator. Theorem 3.3(ii) gives the uniform convergence

rate for gl(·). Following the standard exercise in the nonparametric kernel literature, we can also

demonstrate that these estimators of (gl1(·), ġl1(·)) and (gl2(·), ġl2(·)), ∀l1 ̸= l2 ∈ {1, · · · , n} are

asymptotically independent.

In the proof of Theorem 3.3, we give the linear representations of the nonparametric estimators{(
ĝl(·), ̂̇gl(·))}d

l=1
with uniform control of the reminder terms. It serves as a building block for

both pointwise and uniform inference. For example, one can consider uniform inference based on

the multiplier bootstrap as in Chernozhukov, Chetverikov and Kato (2014, Corollary 3.1). For

brevity, we skip the details.

4 Numerical Studies

In this section, we are going to use simulated examples to demonstrate how well the proposed

estimation procedure works. We use the same DGPs in Chen et al. (2022) to compare their

estimator with the proposed estimator. To save space, we only report the detailed results for the

estimator of g1(·). We consider four data generating processes (DGPs).

DGP I: Λ (Yit) = X2
1,it +X2

2,it + αi + ϵit, where ϵit ∼ U(0, 1).

DGP II: Λ (Yit) = X2
1,it + X2

2,it + αi + ϵit, where (aϵit + b) ∼ X 2(2) with a = 1
2

(
9
8

)3
and b =

1
2 exp

(
− 1

2a

)
.

DGP III: Λ (Yit) = X3
1,it + 0.5X2

1,it +X2
2,it + αi + ϵit, where ϵit ∼ U(0, 1).

All DGPs take the Box-Cox transformation of Bickel and Doksum (1981) with Λ(y) = |y|λsgn(y)−1
λ

for λ = 0.8. Both X1,it and X2,it follow U(−1, 1) and their correlation coefficient is 0.2. αi =

0.5 (X1,it +X2,it) + 0.5η, where ηi is a N(0, 1) random variable. The error term either follows

symmetric normal distribution or asymmetric Chi-square distribution of freedom 2.

We define the bias, standard deviation (SD), and root mean integrated squared error (RMISE)

of an estimator f̂(·) of f(·) as

bias =

∫ ∣∣∣E [f̂(v)]− f(v)
∣∣∣ dv,
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SD =

∫
sd
[
f̂(v)

]
dv

and

RMISE = (bias2 + SD2)1/2,

respectively, and use them to assess the accuracy of the estimator f̂(·).
The kernel function used in the proposed estimation procedure is the standard Gaussian kernel

for all simulated examples in this section. For each simulated example, we assess the accuracy of

the proposed estimation procedure for sample size n = 500 and for each case, we compute the bias,

SD and RMISE of an obtained estimator based on 1000 simulations. Method in Chen et al. (2022)

chooses bandwidth by minimizing the leave-one-out cross-validation (CV) function. The proposed

method chooses bandwidth by grid search to minimize CV function.

Table 1 Estimation results for DGP I

x1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

g1 (x1) 0.64 0.36 0.16 0.04 0.04 0.16 0.36 0.64

Chen et al. (2022)

RMSE 0.2459 0.1489 0.0946 0.0571 0.0576 0.0928 0.143 0.2358

Bias -0.1942 -0.091 -0.03 -0.0025 0.004 -0.0232 -0.0828 -0.1826

SD 0.151 0.118 0.0898 0.0571 0.0575 0.09 0.1167 0.1492

the proposed estimator

RMSE 0.108 0.0804 0.0614 0.0423 0.0403 0.0609 0.0834 0.1116

Bias -0.0074 -0.0016 0.0128 0.0179 0.0132 0.0039 -0.0129 -0.0176

SD 0.1077 0.0804 0.0601 0.0383 0.0381 0.0608 0.0824 0.1102

Table 2 Estimation results for DGP II

x1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

g1 (x1) 0.64 0.36 0.16 0.04 0.04 0.16 0.36 0.64

Chen et al. (2022)

RMSE 0.289 0.1668 0.0962 0.0566 0.0594 0.1013 0.1714 0.2962

Bias -0.2476 -0.1213 -0.0422 -0.0044 -0.0035 -0.0435 -0.1243 -0.2534

SD 0.149 0.1145 0.0865 0.0564 0.0593 0.0915 0.1181 0.1535

the proposed estimator

RMSE 0.1858 0.1389 0.1073 0.0821 0.0829 0.105 0.1335 0.186

Bias -0.0428 -0.0073 0.024 0.039 0.0396 0.0259 -0.0029 -0.0332

SD 0.1808 0.1387 0.1046 0.0723 0.0728 0.1018 0.1335 0.183
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Table 3 Estimation results for DGP III

x1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

g1 (x1) 0.64 0.36 0.16 0.04 0.04 0.16 0.36 0.64

Chen et al. (2022)

RMSE 0.1471 0.1354 0.1163 0.0759 0.0715 0.0935 0.1215 0.2705

Bias -0.0238 -0.0792 -0.075 -0.0456 0.0431 0.0344 -0.0405 -0.2282

SD 0.1452 0.1099 0.0889 0.0607 0.0571 0.087 0.1146 0.1453

the proposed estimator

RMSE 0.0904 0.0934 0.0896 0.0471 0.0909 0.0838 0.1006 0.0407

Bias -0.0312 -0.0755 -0.0404 -0.0179 0.0213 0.0322 0.0912 0.0186

SD 0.0848 0.055 0.08 0.0436 0.0884 0.0774 0.0425 0.0362

Table 1 - 3 report bias (Bias), standard deviation (SD) and root mean square error (RMSE)

of g1 (x1) for DGPs I-III, respectively. When the error terms follow normal distribution in

DGP I and III, the proposed method works better than the method in Chen et al. (2022),

especially at boundary points. When the error term follows Chi-square distribution in DGP

II, the proposed method defeats the method in Chen et al. (2022) at boundary points, e.g.

x1 = −0.8,−0.6,−0.4, 0.4, 0.6, 0.8, and does not function well at center points, e.g. x1 = −0.2, 0.2.

As expected, we usually observe a relatively larger RMSE when the evaluation point is close to

the boundary and it is much more obvious in Chen et al. (2022). The dimension of variables does

not influence the simulation performance of the proposed method, however, the method in Chen

et al. (2022) suffers from the curse of dimensionality in implementation.
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Appendices

This appendix is composed of two sections. Section A contains the proofs of the main results in

the paper. Section B contains some technical lemmas that are used in the proof of the main results

and their proofs.

A Proofs of the Main Results

In this section we prove Theorems 1–3 in the paper.

A.1 Proof of Theorem 3.1

A.1.1 Convergence Rate of Ē (D|X = x)

Recall that g (xt) =
∑d

l=1 gl(xl,t) and ∆g (x) = g (x2) − g (x1) . Recall that LF (·) = L−1 (F (·))
and ∆g (Xi) = g (Xi2)− g (Xi1) . By (2.7) and the definition of R (·) , we have

E (Di|Xi) = F (∆g (Xi)) = L(LF (∆g (Xi))

= L
(
R(Xi)

′π0 + r(Xi)
)
= L

(
R(Xi)

′π0
)
+ L̇ (R∗

i ) r(Xi)

≡ L
(
R(Xi)

′π0
)
+ rL(Xi), (A.1)

where R∗
i lies between R(Xi)

′π0 + r(Xi) and R(Xi)
′π0, and rL(Xi) ≡ L̇ (R∗

i ) r(Xi) signifies the

error for the logit sieve approximation of E (Di|Xi) by L
(
R(Xi)

′π0
)
. By uniform boundedness of

L̇ (·) , we see that rL(Xi) behaves similarly to r(Xi) in that sup
x=(x′

1,x
′
2)

′∈X⊗2 |r(x)| = O (K−γ)

under Assumptions 3 and 7.

Let η1Kn =
√
sπ1 log(K

R ∨ n)/n+K−γ . Under Assumptions 1– 7, one can follow the proof of

Theorem 6.2 in Belloni et al. (2017) hold and obtain the following result: result, we obtain

1

n

n∑
i=1

[
R(Xi)

′ (π̄ − π0
)]2

= Op

(
η21Kn

)
. (A.2)

Under Assumption 4(1), we can show that

1

n

n∑
i=1

[
R(Xi)

′ (π̄ − π0
)]2

=
1

n

n∑
i=1

(
π̄ − π0

)′
R(Xi)R(Xi)

′ (π̄ − π0
)

≥
(
π̄ − π0

)′
λmin

(
1

n

n∑
i=1

R(Xi)R(Xi)
′

)(
π̄ − π0

)
≥ C1

∥∥π̄ − π0
∥∥2 /2 w.p.a.1. (A.3)

Combining (A.2) and (A.3) yields ∥∥π̄ − π0
∥∥ = Op (η1Kn) . (A.4)
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Next,

sup
x=(x′

1,x
′
2)

′∈X⊗2

∣∣∣∣∣R(x)′π̄ − LF

(
d∑

l=1

gl(xl,t1)−
d∑

l=1

gl(xl,t2)

)∣∣∣∣∣
≤ sup

x=(x′
1,x

′
2)

′∈X⊗2

∣∣R(x)′ (π̄ − π0
)∣∣+ sup

x=(x′
1,x

′
2)

′∈X⊗2

∣∣∣∣∣R(x)′π0 − LF

(
d∑

l=1

gl(xl,t1)−
d∑

l=1

gl(xl,t2)

)∣∣∣∣∣
≤ sup

x=(x′
1,x

′
2)

′∈X⊗2

∥R(x)∥
∥∥π̄ − π0

∥∥+O
(
K−γ

)
= ζ0KOp (η1Kn) +O

(
K−γ

)
= Op (ζ0Kη1Kn) . (A.5)

By (A.1) and the uniform boundedness of the first derivative of L (·) ,

1

n

n∑
i=1

[
Ē (Di|Xi)− E (Di|Xi)

]2 ≤ 2

n

n∑
i=1

[
Ē (Di|Xi)− L

(
R(Xi)

′π0
)]2

+
2

n

n∑
i=1

[rL (Xi)]
2

=
2

n

n∑
i=1

[
L
(
R(Xi)

′π̄
)
− L

(
R(x)′π0

)]2
+

2

n

n∑
i=1

[rL (Xi)]
2

≲
2

n

n∑
i=1

[
R(Xi)

′ (π̄ − π0
)]2

+
2

n

n∑
i=1

[rL (Xi)]
2

= Op

(
η21Kn

)
+Op

(
K−2γ

)
= Op

(
η21Kn

)
, (A.6)

and

sup
x=(x′

1,x
′
2)

′∈X⊗2

∣∣Ē (Di|Xi = x)− E (Di|Xi = x)
∣∣

≤ sup
x=(x′

1,x
′
2)

′∈X⊗2

∣∣Ē (Di|Xi = x)− L
(
R(x)′π0

)∣∣+ sup
x=(x′

1,x
′
2)

′∈X⊗2

|rL (x)|

≲ sup
x=(x′

1,x
′
2)

′∈X⊗2

∣∣R(x)′ (π̄ − π0
)∣∣+ sup

x=(x′
1,x

′
2)

′∈X⊗2

|rL (x)|

= ζ0KOp (η1Kn) +Op

(
K−γ

)
= Op

(
K1/2η1Kn

)
. (A.7)

A.1.2 Convergence Rate of ḡl (·)

Noting that △P 1,K
i,j = △gi,j − θ0

′△PK−1,K
i,j +

{
△PK

i,j
′β0 −△gi,j

}
and recalling that H̄1h1,ji =

H1h1

[
Ē (Dj |Xj )− Ē (Di |Xi )

]
, by (2.12) we have

θ̄ − θ0 = −

 1

n2

∑
1≤i ̸=j≤n

△PK−1,K
i,j △PK−1,K

i,j
′H̄1h1,ji


−1

1

n2

∑
1≤i ̸=j≤n

△gi,j△PK−1,K
i,j H̄1h1,ji

−

 1

n2

∑
1≤i ̸=j≤n

△PK−1,K
i,j △PK−1,K

i,j
′H̄1h1,ji


−1

1

n2

∑
1≤i ̸=j≤n

{
△PK

i,j
′β0 −△gi,j

}
△PK−1,K

i,j H̄1h1,ji
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≡ −L−1
0,nL1,n − L−1

0,nL2,n, (A.8)

where, e.g., L0,n ≡ 1

n2
∑

1≤i ̸=j≤n△P
K−1,K
i,j △PK−1,K

i,j
′H̄1h1,ji.Noting that△P

K−1,K
i,j = −△PK−1,K

j,i ,

we have

L1,n =
1

n2

∑
1≤i ̸=j≤n

△gj△PK−1,K
i,j H̄1h1,ji −

1

n2

∑
1≤i ̸=j≤n

△gi△PK−1,K
i,j H̄1h1,ji

=
2

n2

∑
1≤i ̸=j≤n

△gj△PK−1,K
i,j H̄1h1,ji. (A.9)

First, we study the asymptotic properties of L0,n. Recall that H̄1h1,ji= H1h1

[
Ē (Dj |Xj)− Ē (Dj |Xi)

]
and m̄i = Ē (Dj |Xj). Let m̄ji = Ē (Dj |Xj) − Ē (Dj |Xi) , mj = E (Dj |Xj) , mji = E (Dj |Xj) −
E (Dj |Xi) , and H1h1,ji = H1h1 (mji) = H1h1 [E (Dj |Xj)− E (Dj |Xi)] . For i ̸= j ∈ {1, · · · , n}

H̄1h1,ji −H1h1,ji

=Hh1

[
Ē (Dj |Xj)− Ē (Dj |Xi)

]
−H1h1 [E (Dj |Xj)− E (Dj |Xi)]

= h−1
1 Ḣ1h1 (mji) (m̄ji −mji) +

1

2
h−2
1 Ḧ1h1 (mji) (m̄ji −mji)

2 +
1

6
h−3
1

...
H 1h1

(
m∗

ji

)
(m̄ji −mji)

3

= h−1
1 Ḣ1h1 (mji) (m̄j −mj)− h−1

1 Ḣ1h1 (mji) (m̄i −mi)

− h−2
1 Ḧ1h1 (mji) (m̄i −mi) (m̄j −mi) +

1

2
h−2
1 Ḧ1h1 (mji) (m̄j −mj)

2

+
1

2
h−2
1 Ḧ1h1 (mji) (m̄i −mi)

2 + h−3
1

...
H 1h1

(
m∗

ji

)
(m̄ji −mji)

3 , (A.10)

where m∗
ji is between m̄ji and mji. It follows that

L0,n =
1

n2

∑
1≤i ̸=j≤n

△PK−1,K
i,j △PK−1,K

i,j
′H1h1,ji

+
1

n2

∑
1≤i ̸=j≤n

△PK−1,K
i,j △PK−1,K

i,j
′h−1

1 Ḣ1h1 (mji) (m̄j −mj)

− 1

n2

∑
1≤i ̸=j≤n

△PK−1,K
i,j △PK−1,K

i,j
′h−1

1 Ḣ1h1 (mji) (m̄i −mi)

− 1

n2

∑
1≤i ̸=j≤n

△PK−1,K
i,j △PK−1,K

i,j
′h−2

1 Ḧ1h1 (mji) (m̄i −mi) (m̄j −mi)

+
1

2n2

∑
1≤i ̸=j≤n

△PK−1,K
i,j △PK−1,K

i,j
′h−2

1 Ḧ1h1 (mji) (m̄j −mj)
2

+
1

2n2

∑
1≤i ̸=j≤n

△PK−1,K
i,j △PK−1,K

i,j
′h−2

1 Ḧ1h1 (mji) (m̄i −mi)
2

+
1

6n2

∑
1≤i ̸=j≤n

△PK−1,K
i,j △PK−1,K

i,j
′h−3

1

...
H 1h1

(
m∗

ji

)
(m̄ji −mji)

3

≡ L0,n1 + L0,n2 + ....+ L0,n7. (A.11)
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By B.1,
∑7

ℓ=2 ∥L0,nℓ∥op = Op

(
K1/2h−1

1 η1Kn

)
= op(1) and λmin(L0,n) ≥ cL0/2 w.p.a.1.

Next, we derive the asymptotic properties of L1,n. By (A.10), the symmetry of the kernel

function H (·) , and the fact that △PK−1,K
i,j = −△PK−1,K

j,i ,

L1,n =
1

n2

∑
1≤i ̸=j≤n

△gi,j△PK−1,K
i,j H1h1,ji +

2

n2

∑
1≤i ̸=j≤n

△gj△PK−1,K
i,j h−1

1 Ḣ1h1 (mji) (m̄j −mj)

− 2

n2

∑
1≤i ̸=j≤n

△gj△PK−1,K
i,j h−1

1 Ḣ1h1 (mji) (m̄i −mi)

− 2

n2

∑
1≤i ̸=j≤n

△gi,j△PK−1,K
i,j h−2

1 Ḧ1h1 (mji) (m̄i −mi) (m̄j −mi)

+
1

2n2

∑
1≤i ̸=j≤n

△gi,j△PK−1,K
i,j h−2

1 Ḧ1h1 (mji) (m̄j −mj)
2

+
1

2n2

∑
1≤i ̸=j≤n

△gj△PK−1,K
i,j h−2

1 Ḧ1h1 (mji) (m̄i −mi)
2

+
1

6n2

∑
1≤i ̸=j≤n

△gi,j△PK−1,K
i,j h−3

1

...
H 1h1

(
m∗

ji

)
(m̄ji −mji)

3

≡
7∑

ℓ=1

L1,nℓ. (A.12)

By Lemma B.2,
∑7

ℓ=2 ∥L1,nℓ∥ = Op(η1Kn) and ∥L1,n∥ = Op(η1Kn +
√
Kha11 ).

Next, we study L2,n. By (A.10),

L2,n =
1

n2

∑
1≤i ̸=j≤n

(
△PK

i,j
′β0 −△gi,j

)
△PK−1,K

i,j H1h1,ji

+
1

n2

∑
1≤i ̸=j≤n

(
△PK

i,j
′β0 −△gi,j

)
△PK−1,K

i,j h−1
1 Ḣ1h1 (mji) [m̄j −mj ]

− 1

n2

∑
1≤i ̸=j≤n

(
△PK

i,j
′β0 −△gi,j

)
△PK−1,K

i,j h−1
1 Ḣ1h1 (mji) [m̄i −mi]

− 1

n2

∑
1≤i ̸=j≤n

(
△PK

i,j
′β0 −△gi,j

)
△PK−1,K

i,j h−2
1 Ḧ1h1 (mji) [m̄i −mi] [m̄j −mi]

+
1

2n2

∑
1≤i ̸=j≤n

(
△PK

i,j
′β0 −△gi,j

)
△PK−1,K

i,j h−2
1 Ḧ1h1 (mji) [m̄j −mj ]

2

+
1

2n2

∑
1≤i ̸=j≤n

(
△PK

i,j
′β0 −△gi,j

)
△PK−1,K

i,j h−2
1 Ḧ1h1 (mji) [m̄i −mi]

2

+
1

6n2

∑
1≤i ̸=j≤n

(
△PK

i,j
′β0 −△gi,j

)
△PK−1,K

i,j h−3
1

...
H 1h1

(
m∗

ji

)
(m̄ji −mji)

3

≡
7∑

ℓ=1

L2,nℓ. (A.13)
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By Lemma B.3,
∑7

ℓ=2 ∥L2,nℓ∥ = Op (K
−γ) and ∥L2,n∥ = Op(K

−γ+1/2).

By the above results, we have

θ̄ − θ0 = −

 1

n2

∑
1≤i ̸=j≤n

△PK−1,K
i,j △PK−1,K

i,j
′H1h1,ji


−1

×

 1

n2

∑
1≤i ̸=j≤n

△gi,j△PK−1,K
i,j H1h1,ji +

1

n2

∑
1≤i ̸=j≤n

(
△PK

i,j
′β0 −△gi,j

)
△PK−1,K

i,j H1h1,ji


+R1n, (A.14)

where ∥R1n∥ = Op (η1Kn +K−γ).

Given the result in (A.14) and using the results in B.1-B.3, we can readily show that∥∥θ̄ − θ0
∥∥ = Op

(
η1Kn +

√
Kha11 +K−γ+1/2

)
.

Then following the arguments as used in the derivation of (A.6)-(A.7), we have

1

n

n∑
i=1

[ḡl (Xl,it)− gl (Xl,it)]
2 ≤ 2

n

n∑
i=1

[
pK (Xl,it)

′ (β̄xl − βxl
0 )
]2

+
2

n

n∑
i=1

[
gl (Xl,it)− pK (Xl,it)

′ βxl
0 )
]2

≲
∥∥β̄xl − βxl

0

∥∥2 + sup
xl

∣∣gl (xl)− pK (xl)
′ βxl

0 )
∣∣2

= Op

((
η1Kn +

√
Kha11 +K−γ+1/2

)2)
+Op

(
K−2γ

)
= Op

(
η22Kn

)
for l ∈ [d] ,

and

sup
xl∈Xl

|ḡl (xl)− gl (xl)| ≤ sup
xl∈Xl

∣∣pK (xl)
′ (β̄xl − βxl

0 )
∣∣+ sup

xl∈Xl

[
gl (Xl,it)− pK (Xl,it)

′ βxl
0 )
]2

≲ sup
xl∈Xl

∥pK (xl)∥
∥∥β̄xl − βxl

0

∥∥+ sup
xl∈Xl

∣∣gl (xl)− pK (xl)
′ βxl

0 )
∣∣2

=
√
KOp

(
η1Kn +

√
Kha11 +K−γ+1/2

)
+Op

(
K−γ

)
= Op

(√
Kη2Kn

)
for l ∈ [d] .

where η2Kn = η1Kn +
√
Kha11 +K−γ+1/2.

A.2 Proof of Theorem 3.2

Let

Û△gj =
(
L̂F (△gj), h2∂̂LF (△gj), · · · , ha22 ∂̂a2LF (△gj)

)
′ − (LF (△gj), h2∂LF (△gj), · · · , ha22 ∂

a2LF (△gj)) ′.
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Let ϑi,j (b) = b0+
∑a2

l=1
1
hl
2
(△ḡi,j)l bl, where b = (b0, b1, ...., ba2)

′ .Noting that L (z) = exp (z) / (1 + exp (z)) ,

we have

Qn (△ḡj , b)

=
−1

n

N∑
i=1

H2h2 (△ḡi,j) {Di ln [L (ϑi,j (b))] + (1−Di) ln [1− L (ϑi,j (b))]}

=
−1

n

N∑
i=1

H2h2 (△ḡi,j) {Diϑi,j (b)−Di ln [1 + exp (ϑi,j (b))]− (1−Di) ln [1 + exp (ϑi,j (b))]}

=
1

n

N∑
i=1

H2h2 (△ḡi,j) {ln [1 + exp (ϑi,j (b))]−Diϑi,j (b)} .

For an arbitrary U△gj ∈ Ra2+1 and τ ∈ R, let

li,j(τ) = H2h2 (△ḡi,j) ln

(
1 + exp

(
a2∑
l=0

1

hl2l!
(△ḡi,j)l ∂lLF (△gj) + τς ′1i,jU△gj

))
.

where ς1i,j =
(
1, 1

h2
△ḡi,j , · · · , 1

h
a2
2 a2!

△ḡa2i,j
)′
. Then

l′i,j(τ) = H2h2 (△ḡi,j) ς1i,j ′U△gjL

(
a2∑
l=0

1

hl2l!
△ḡli,j∂lLF (△gj) + τς1i,j

′U△gj

)
and

l′′i,j(τ) = H2h2 (△ḡi,j)
[
ς1i,j

′U△gj

]2
L′

(
a2∑
l=0

1

hl2l!
△ḡli,j∂lLF (△gj) + τς ′1i,jU△gj

)
.

It is easy to see that
∣∣∣l′′′i,j(τ)∣∣∣ ≤ ∣∣∣l′′i,j(τ)∣∣∣ ∣∣∣ς ′1i,jU△gj

∣∣∣ . Define

Û△gi = argmax
U△gj

{
Qn

(
△ḡj ,

((
L̂F (△gj), h2∂̂LF (△gj), · · · , ha22 ∂̂a2LF (△gj)

)
′ + U△gj

))
− Qn

(
△ḡj , (LF (△gj), ∂LF (△gj), · · · , ∂a2LF (△gj)) ′

)}
= argmax

U△gj

1

n

N∑
i=1

[li,j(1)− li,j(0)]−
1

n

N∑
i=1

H2h2 (△ḡi,j) ς ′1i,jU△gjDi.

We calculate the first order derivative with respect to τ :

∂τQn

(
△ḡj , (LF (△gj), ∂LF (△gj), · · · , ∂a2LF (△gj)) ′ + τU△gj

)
=

1

n

N∑
i=1

H2h2 (△ḡi,j) ς ′1i,jU△gj

{
L

(
a2∑
l=0

1

hl2l!
△ḡli,j∂lLF (△gj) + τς ′1i,jU△gj

)
−Di

}
.

Evaluating the above derivative at τ= 0 yields

∂τQn

(
△ḡj , (LF (△gj), ∂LF (△gj), · · · , ∂a2LF (△gj)) ′ + τU△gj

)∣∣
τ=0
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=
1

n

N∑
i=1

H2h2 (△ḡi,j) ς ′1i,jU△gj

{
L

(
a2∑
l=0

1

hl2l!
△ḡli,j∂lLF (△gj)

)
−Di

}

=
1

n

N∑
i=1

l′i,j(0)−
1

n

N∑
i=1

H2h2 (△ḡi,j) ς ′1i,jU△gjDi.

Let

Gn

(
U△gj

)
= Qn

(
△ḡj ,

((
L̂F (△gj), h2∂̂LF (△gj), · · · , ha22 ∂̂a2LF (△gj)

)
′ + U△gj

))
−Qn

(
△ḡj , (LF (△gj), ∂LF (△gj), · · · , ∂a2LF (△gj)) ′

)
− ∂τQn

(
△ḡj , (LF (△gj), ∂LF (△gj), · · · , ∂a2LF (△gj)) ′ + τU△gj

)∣∣
τ=0

.

Let ςi,j = ς ′1i,jU△gj . Noting that L
′(x) = L(x) [1− L(x)] and F (△gi) ∈ (0, 1), there exists a positive

constant c> 0 such that

Gn

(
U△gj

)
=

1

n

N∑
i=1

[
li,j(1)− li,j(0)− l′ij(0)

]
≥ 1

n

N∑
i=1

li
′′(0)

ς2i,j
[exp (− |ςi,j |) + |ςi,j | − 1]

=
1

n

N∑
i=1

H2h2 (△ḡi,j)L′

(
a2∑
l=0

△ḡli,j∂lLF (△gj) /l!

)
[exp (− |ςi,j |) + |ςi,j | − 1]

≥ c

n

N∑
i=1

H2h2 (△ḡi,j) [exp (− |ςi,j |) + |ςi,j | − 1]

≥ c

n

N∑
i=1

H2h2 (△ḡi,j)

(
ς2i,j
2

− |ςi,j |3

6

)
,

where the first inequality holds by Lemma 1 in Bach (2010) and the last inequality follows from

the fact that

e−x + x− 1 ≥ x2

2
− x3

6
∀x > 0.

By Step 1 in the proof of Theorem 5.6 in Jiang, Phillips, Tao and Zhang (2021), there exists a

positive constant c∗ such that

Gn

(
Û△gj

)
≥ c∗

3
min

 1

n

N∑
i=1

H2h2 (△ḡi,j) ς2i,j , l̄

[
1

n

N∑
i=1

H2h2 (△ḡi,j) ς2i,j

]1/2
≥ c∗

3
min

(∥∥∥Û△gj

∥∥∥2 , l̄ ∥∥∥Û△gj

∥∥∥) , (A.15)

where

l̄ = inf
U∈Ra2+1

{
1
n

∑N
i=1H2h2 (△ḡi,j) ς2i,j

}3/2

1
n

∑N
i=1H2h2 (△ḡi,j) |ςi,j |

3
.
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Noting that

l̄ ≥ inf
U∈Ra2+1

{
1
n

∑N
i=1H2h2 (△ḡi,j) ς2i,j

}1/2

max
i ̸=j∈{1,··· ,n}

H2h2 (△ḡi,j) ∥ς1i,j∥
∥∥U△gj

∥∥ ≥ Op (h2) ,

we have

l̄
(
ha2+1
2 +

√
ln (n) /(nh2)

)−1 p→ ∞. (A.16)

In addition, by construction and the submultiplicative and triangle inequalities

Gn

(
Û△gj

)
≤
∣∣∣∂tQn

(
△ḡj , (LF (△gj), ∂LF (△gj), · · · , ∂a2LF (△gj)) ′ + τU△gj

)∣∣
τ=0

∣∣∣
=

∣∣∣∣∣ 1n
N∑
i=1

H2h2 (△ḡi,j) ς ′1i,jÛ△gj

{
L

(
a2∑
l=0

1

hl2l!
△ḡli,j∂lLF (△gj)

)
−Di

}∣∣∣∣∣
≤

∥∥∥∥∥ 1n
N∑
i=1

H2h2 (△ḡi,j) ς1i,j

{
L

(
a2∑
l=0

1

hl2l!
△ḡli,j∂lLF (△gj)

)
−Di

}∥∥∥∥∥∥∥∥Û△gj

∥∥∥
≤

∥∥∥∥∥ 1n
N∑
i=1

H2h2 (△ḡi,j) ς ′1i,j

{
L

(
a2∑
l=0

1

hl2l!
△ḡli,j∂lLF (△gj)

)
− F (△gi)

}∥∥∥∥∥∥∥∥Û△gj

∥∥∥
+

∥∥∥∥∥ 1n
N∑
i=1

H2h2 (△ḡi,j) ς ′1i,j [F (△gi)−Di]

∥∥∥∥∥∥∥∥Û△gj

∥∥∥ . (A.17)

Noting that L (LF (△ḡi)) = F (△ḡi), by Taylor expansions we have

L

(
a2∑
l=0

1

hl2l!
△ḡli,j∂lLF (△gj)

)
− F (△gi)

= [F (△ḡi)− F (△gi)] +

[
L

(
a2∑
l=0

1

hl2l!
△ḡli,j∂lLF (△gj)− LF (△ḡi) + LF (△ḡi)

)
− F (△ḡi)

]

= [F (△ḡi)− F (△gi)] + L′ (LF (△ḡi))χi,j +
1

2
L′′ (LF (△¯̄gi,j))χ

2
i,j . (A.18)

where △¯̄gi,j is between
∑a2

l=0
1

hl
2l!
△ḡli,j∂lLF (△gj) and LF (△ḡi), and

χi,j =

a2∑
l=0

1

hl2l!
△ḡli,j

[
∂lLF (△gj)− ∂lLF (△ḡj)

]
/l!−

∞∑
l=a2+1

1

hl2l!
△ḡli,j∂lLF (△ḡj)/l!.

Substituting (A.18) into (A.17) yields

Gn(Û△gj ) ≤

{∥∥∥∥∥ 1n
N∑
i=1

H2h2 (△ḡi,j) ς1i,jL′ (LF (△ḡi))χi,j

∥∥∥∥∥+
∥∥∥∥∥ 1n

N∑
i=1

H2h2 (△ḡi,j) ς1i,j [F (△ḡi)− F (△gi)]

∥∥∥∥∥
+

∥∥∥∥∥ 1

2n

N∑
i=1

H2h2 (△ḡi,j) ς1i,jL′′ (LF (△¯̄gi,j))χ
2
i,j

∥∥∥∥∥+
∥∥∥∥∥ 1n

N∑
i=1

H2h2 (△ḡi,j) ς1i,j [F (△gi)−Di]

∥∥∥∥∥
}

×
∥∥∥Û△gj

∥∥∥
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≡ {∥G1,nj∥+ ∥G2,nj∥+ ∥G3,nj∥+ ∥G4,nj∥}
∥∥∥Û△gj

∥∥∥ , (A.19)

where the definitions of Gℓ,nj , ℓ = 1, ..., 4, are self-evident. By Lemma B.4, we have uniformly over

j ∈ {1, · · · , n}, ∣∣∣Gn

(
Û△gj

)∣∣∣ ≤ cF |△gj −△ḡj |
∥∥∥Û△gj

∥∥∥
+Op

(
ha2+1
2 +

√
log(n)/(nh2) + η2Kn

)∥∥∥Û△gj

∥∥∥ . (A.20)

Combining (A.15) and (A.20), we have uniformly over j ∈ {1, · · · , n}

c∗

3
min

(∥∥∥Û△gj

∥∥∥ , l̄) ≲ |△gj −△ḡj |+Op

(
ha2+1
2 +

√
log(n)/(nh2) + η2Kn

)
.

which, in conjunction with (A.16) implies that∥∥∥Û△gj

∥∥∥ ≲ |△gj −△ḡj |+Op

(
ha2+1
2 +

√
log(n)/(nh2) + η2Kn

)
uniformly over j ∈ {1, · · · , n}. The completes the proof of (i).

Given the above uniform rate, (ii) follows automatically.

A.3 Proof of Theorem 3.3

A.3.1 Convergence Rate of
(
ĝl(xl), ̂̇gl(xl)) ′

Let Ûxl
=
(
ĝl(xl), h3̂̇gl(xl)) ′−(gl(xl), h3ġl(xl))

′. Let c = (c0, c1) and H3h3,itxl
= H3h3 (Xl,it − xl)

for t = 1, 2. Define

W1,nxl
(c) =

1

n

N∑
i=1

H3h3,i1xl

{
ln

(
1 + exp

(
L̂F i − ̂̇LF i ·

[
c0 + c1

1

h3
(Xl,i1 − xl)− ḡl (Xl,i1)

]))
+ Di

̂̇LF i ·
[
c0 + c1

1

h3
(Xl,i1 − xl)

]
−Di

(
L̂F i +

̂̇LF iḡl (Xl,i1)
)}

,

and

W2,nxl
(c) =

1

n

N∑
i=1

H3h3,i2xl

{
ln

(
1 + exp

(
L̂F i +

̂̇LF i ·
[
c0 + c1

1

h3
(Xl,i2 − xl)− ḡl (Xl,i2)

]))
− Di

̂̇LF i ·
[
c0 + c1

1

h3
(Xl,i2 − xl)

]
−Di

(
L̂F i − ̂̇LF iḡl (Xl,i2)

)}
.

Then Wnxl
(c) =W1,nxl

(c) +W2,nxl
(c). Let Uxl

= (c0 − gl(xl), c1 − h3ġl(xl))
′ ∈ R2. Then

L̂F i +
̂̇LF i ·

[
c0 + c1

1

h3
(Xl,i2 − xl)− ḡl (Xl,i2)

]
= L̂F i +

̂̇LF i

[
(c0 − gl(xl)) + (c1 − h3ġl(xl))

1

h3
(Xl,i2 − xl) + gl(xl) + ġl(xl)h3

1

h3
(Xl,i2 − xl)− ḡl (Xl,i2)

]
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= L̂F i − ̂̇LF i

[
ḡl (Xl,i2)− gl(xl)− ġl(xl)h3

1

h3
(Xl,i2 − xl)

]
+ ̂̇LF i

(
1,

1

h3
(Xl,i2 − xl)

)
Uxl

= L̂F i − ̂̇LF i · rl,i2 + ̂̇LF iuxl,i2,

and similarly,

L̂F i − ̂̇LF i ·
[
c0 + c1

1

h3
(Xl,i1 − xl)− ḡl (Xl,i1)

]
= L̂F i +

̂̇LF i

[
ḡl (Xl,i1)− gl(xl)− ġl(xl)h3

1

h3
(Xl,i1 − xl)

]
− ̂̇LF i

(
1,

1

h3
(Xl,i1 − xl)

)′
Uxl

= L̂F i +
̂̇LF i · rl,i1 − ̂̇LF iuxl,i1,

where rxl,it ≡ ḡl (Xl,it) − gl(xl) − ġl(xl)h3
1
h3

(Xl,it − xl) and uxl,it =
(
1, 1

h3
(Xl,it − xl)

)′
Uxl

for

t = 1, 2. Further define

ll,i1(τ) = H3h3,i1xl
ln
(
1 + exp

(
L̂F i +

̂̇LF i · rxl,i1 − τ̂̇LF i · uxl,i1

))
and

ll,i2(τ) = H3h3,i2xl
ln
(
1 + exp

(
L̂F i − ̂̇LF i · rxl,i2 + τ̂̇LF i · uxl,i2

))
,

Then we have

l′l,i1(τ) = −̂̇LF i · uxl,i1H3h3,i1xl
L
(
L̂F i +

̂̇LF i · rxl,i1 − τ̂̇LF i · uxl,i1

)
,

l′l,i2(τ) = ̂̇LF i · uxl,i2H3h3,i2xl
L
(
L̂F i − ̂̇LF i · rxl,i2 + τ̂̇LF i · uxl,i2

)
,

l′′l,i1(τ) = ̂̇LF 2

i · u2xl,i1
H3h3,i1xl

L′
(
L̂F i +

̂̇LF i · rxl,i1 − τ̂̇LF i · uxl,i1

)
, and

l′′l,i2(τ) = ̂̇LF 2

i · u2xl,i2
H3h3,i2xl

L′
(
L̂F i − ̂̇LF i · rxl,i2 + τ̂̇LF i · uxl,i2

)
.

It is straightforward to show that∣∣l′′′l,it(τ)∣∣ ≤ l′′l,it(τ)
∣∣∣̂̇LF i · uxl,it

∣∣∣ for t = 1, 2.

Define

Û△gi = argmax
Uxl

{
W1,nxl

(
(gl(xl), ġl(xl)) + U ′

xl

)
+W2,nxl

(
(gl(xl), ġl(xl)) + U ′

xl

)
− W1,nxl

(gl(xl), ġl(xl))−W2,nxl
(gl(xl), ġl(xl))}

= argmax
Uxl

{
1

n

N∑
i=1

[ll,i1(1)− ll,i1(0)] +
1

n

N∑
i=1

[ll,i2(1)− ll,i2(0)] +
1

n

N∑
i=1

DiH3h3,i1xl

̂̇LF i · uxl,i1

− 1

n

N∑
i=1

DiH3h3,i2xl

̂̇LF i · uxl,i2

}
.
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We calculate the first order derivative at τ ,

∂τW1,nxl

(
(gl(x), ġl(x)) + τU ′

xl

)
= − 1

n

N∑
i=1

̂̇LF iH3h3,i1xl
uxl,i1

{
L
(
L̂F i +

̂̇LF irxl,i1 − τ̂̇LF i · uxl,i1

)
−Di

}
,

and

∂τW2,nxl

(
(gl(x), ġl(x)) + τU ′

xl

)
=

1

n

N∑
i=1

̂̇LF iH3h3,i2xl
uxl,i2

{
L
(
L̂F i − ̂̇LF irxl,i2 + τ̂̇LF i · uxl,i2

)
−Di

}
.

Evaluating the above derivatives at τ = 0 yields

∂τW1,nxl

(
(gl(x), ġl(x)) + τU ′

xl

)∣∣
τ=0

= − 1

n

N∑
i=1

̂̇LF iH3h3,i1xl
uxl,i1

{
L
(
L̂F i +

̂̇LF irxl,i1

)
−Di

}
,

∂τW2,nxl

(
(gl(x), ġl(x)) + τU ′

xl

)∣∣
τ=0

=
1

n

N∑
i=1

̂̇LF iH3h3,i2xl
uxl,i2

{
L
(
L̂F i − ̂̇LF irxl,i2

)
−Di

}
.

Let

Gn (Uxl
) =W1,nxl

(
(gl(x), ġl(x)) + U ′

xl

)
+W2,nxl

(
(gl(x), ġl(x)) + U ′

xl

)
−W1,nxl

(gl(x), ġl(x))

−W2,nxl
(gl(x), ġl(x))− ∂τW1,nxl

(
(gl(x), ġl(x)) + τU ′

xl

)∣∣
τ=0

− ∂τW2,nxl

(
(gl(x), ġl(x)) + τU ′

xl

)∣∣
τ=0

.

Noting that L′(x) = L(x) [1− L(x)] and F (△gi) ∈ (0, 1) . There exist a positive constant C1 such

that

Gn (Uxl
) =

1

n

N∑
i=1

[
ll,i2(1)− ll,i2(0)− ll,i2

′(0)
]
+

1

n

N∑
i=1

[
l1,i(1)− l1,i(0)− l1,i

′(0)
]

≥ 1

n

N∑
i=1

li
′′(0)∣∣∣̂̇LF i · uxl,i2

∣∣∣2
[
exp

(
−
∣∣∣̂̇LF i · uxl,i2

∣∣∣)+ ∣∣∣̂̇LF i · uxl,i2

∣∣∣− 1
]

+
1

n

N∑
i=1

li
′′(0)[̂̇LF i · uxl,i1

∣∣∣2
[
exp

(
−
∣∣∣̂̇LF i · uxl,i1

∣∣∣)+ ∣∣∣̂̇LF i · uxl,i1

∣∣∣− 1
]

=
1

n

N∑
i=1

H3h3,i2xl
L′
(
L̂F i − ̂̇LF i · rxl,i2

) [
exp

(
−
∣∣∣̂̇LF i · uxl,i2

∣∣∣)+ ∣∣∣̂̇LF i · uxl,i2

∣∣∣− 1
]

+
1

n

N∑
i=1

Th3 (X,l,i1 − xl)L
′
(
L̂F i +

̂̇LF i · rxl,i1

) [
exp

(
−
∣∣∣̂̇LF i · uxl,i1

∣∣∣)+ ∣∣∣̂̇LF i · uxl,i1

∣∣∣− 1
]

≥ C1
1

n

N∑
i=1

H3h3,i2xl

(
1

2

[̂̇LF i · uxl,i2

]2
− 1

6

∣∣∣̂̇LF i · uxl,i2

∣∣∣3)

+ C1
1

n

N∑
i=1

H3h3,i1xl

(
1

2

[̂̇LF i · uxl,i1

]2
− 1

6

∣∣∣̂̇LF i · uxl,i1

∣∣∣3) ,
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where the first inequality holds by Lemma 1 in Bach (2010) and the last inequality holds because

e−x + x− 1 ≥ x2

2
− x3

6
∀ x > 0.

By Step 1 in the proof of Theorem 5.6 in Jiang et al. (2021), there exist some positive constant

C1 and C such that

Gn

(
Ûxl

)
≥ 1

3
min

(
C1

1

n

N∑
i=1

H3h3,i1xl

[̂̇LF i · uxl,i1

]2
+ C1

1

n

N∑
i=1

H3h3,i2xl

[̂̇LF i · uxl,i2

]2
,

C1 l̄1

[
1

n

N∑
i=1

H3h3,i1xl

[̂̇LF i · uxl,i1

]2]1/2
+ C1 l̄2

[
1

n

N∑
i=1

H3h3,i2xl

[̂̇LF i · uxl,i2

]2]1/2
≥C

3
min

(∥∥∥Ûxl

∥∥∥2 , (l̄1 + l̄2
) ∥∥∥Ûxl

∥∥∥) , (A.21)

where

l̄t = inf
Uxl

∈Ra2+1

{
1
n

∑N
i=1H3h3,itxl

[̂̇LF i · uxl,it

]2}3/2

1
n

∑N
i=1H3h3,itxl

∣∣∣̂̇LF i · uxl,it

∣∣∣3 for t = 1, 2.

As in (A.16), we have (
l̄1 + l̄2

) (
h23 +

√
1/(nh3)

)−1 p→ ∞. (A.22)

In addition, by construction,

Gn

(
Ûxl

)
≤
∣∣∣∂τW1,nxl

(
(gl(x), ġl(x)) + τU ′

xl

)∣∣
τ=0

+ ∂τW2,nxl

(
(gl(x), ġl(x)) + τU ′

xl

)∣∣
τ=0

∣∣∣
≤

∣∣∣∣∣ 1n
N∑
i=1

̂̇LF iH3h3,i1xl
uxl,i1

{
L
(
L̂F i +

̂̇LF i · rxl,i1

)
−Di

}∣∣∣∣∣
+

∣∣∣∣∣ 1n
N∑
i=1

̂̇LF iH3h3,i2xl
uxl,i2

{
L
(
L̂F i − ̂̇LF i · rxl,i2

)
−Di

}∣∣∣∣∣
≤ ∥Uxl

∥

{∥∥∥∥∥ 1n
N∑
i=1

̂̇LF iH3h3,i1xl
µxl,it

{
L
(
L̂F i +

̂̇LF i · rxl,i1

)
−Di

}∥∥∥∥∥
+

∥∥∥∥∥ 1n
N∑
i=1

̂̇LF iH3h3,i2xl
µxl,it

{
L
(
L̂F i − ̂̇LF i · rxl,i2

)
−Di

}∥∥∥∥∥
}

≡ ∥Uxl
∥ {∥D1n (xl)∥+ ∥D2n (xl)∥} , (A.23)

where µxl,it =
(
1, 1

h3
(Xl,it − xl)

)′
.

Note that L (LFi) = Fi. By Taylor expansions,

L
(
L̂F i − ̂̇LF i · rxl,i2

)
−Di
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= L

(
LF i + L̂F i − LF i − ̂̇LF i [ḡl (Xl,i2)− gl (Xl,i2)] +

1

2
̂̇LF ig̈l(x̄li) (Xl,i2 − xl)

2

)
−Di

= L (LF i + δxl,i2)−Di

= Fi −Di + L′ (LF i) δxl,i2 +
1

2
L′′ (L̄F i

)
δ2xl,i2

, (A.24)

where δxl,i2 = L̂F i−LF i−̂̇LF i [ḡl (Xl,i2)− gl (Xl,i2)] +
1
2
̂̇LF ig̈l(x̄l,i2) (Xl,i2 − xl)

2 , x̄l,i2 is between

Xl,i2 and xl, and L̄F i is between LF i and LF i + δxl,i2. Similarly,

L
(
L̂F i +

̂̇LF i · rxl,i1

)
−Di

= L

(
LF i + L̂F i − LF i +

̂̇LF i [ḡl (Xl,i1)− gl (Xl,i1)]−
1

2
̂̇LF ig̈l(x̄li) (Xl,i1 − xl)

2

)
−Di

= L (LF i + δxl,i1)−Di

= Fi −Di + L′ (LF i) δxl,i1 +
1

2
L′′ (L̄F i

)
δ2xl,i1

, (A.25)

where δxl,i1 = L̂F i−LF i+
̂̇LF i [ḡl (Xl,i1)− gl (Xl,i1)]− 1

2
̂̇LF ig̈l(x̄l,i1) (Xl,i1 − xl)

2 , x̄l,i1 is between

Xl,i1 and xl, and L̄F i is between LF i and LF i + δxl,i1. Let

Then by (A.24),

D1n (xl) ≡
1

n

n∑
i=1

̂̇LF iH3h3,i2xl
µxl,it

{
L
(
L̂F i − ̂̇LF i · rxl,i2

)
−Di

}
=

1

n

n∑
i=1

˙LF iH3h3,i2xl
µxl,it (Fi −Di) +

1

N

n∑
i=1

(̂̇LF i − ˙LF i)H3h3,i2xl
µxl,it (Fi −Di)

+
1

n

n∑
i=1

̂̇LF iH3h3,i2xl
µxl,itL

′ (LF i) δxl,i2 +
1

2n

n∑
i=1

̂̇LF iH3h3,i2xl
µxl,itL

′′ (L̄F i

)
δ2xl,i2

≡ D1n,1 (xl) +D1n,2 (xl) +D1n,3 (xl) +D1n,4 (xl) .

It is standard to show that

∥D1n,1 (xl)∥ = Op

(√
1/(nh3)

)
for each xl ∈ Xl and

max
xl∈Xl

∥D1n,1 (xl)∥ = Op

(√
log(n)/(nh3)

)
.

In addition, we can show thatD1n,2 (xl) = Op (η3Kn) , D1n,3 (xl) = Op

(
h23 + η3Kn

)
, andD1n,4 (xl) =

Op

(
h43 + η23Kn

)
uniformly in xl ∈ Xl by using Theorem 3.2. It follows that

D1n (xl) = Op

(
h23 +

√
1/(nh3) + η3Kn

)
for each xl ∈ Xl and

max
xl∈Xl

∥D1n (xl)∥ = Op

(
h23 +

√
log(n)/(nh3) + η3Kn

)
.

The same conclusion holds for D2n (xl) . Consequently, by (A.23)

Gn

(
Ûxl

)
≤ Op

(
h23 +

√
1/(nh3) + η3Kn

)∥∥∥Ûxl

∥∥∥ . (A.26)
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Combining (A.21) and (A.26), we have

c

3
min

(∥∥∥Ûxl

∥∥∥ , l̄) ≤ Op

(
h23 +

√
1/(nh3) + η3Kn

)
.

This result, in conjunction with (A.22), implies that∥∥∥Ûxl

∥∥∥ = Op

(
h23 +

√
1/(nh3) + η3Kn

)
.

In addition, our conditions ensure that η3Kn = o
(
h23 +

√
h3/n

)
. It follows that∥∥∥∥(ĝl(xl), 1

h3
̂̇gl(xl))−

(
gl(xl),

1

h3
ġl(xl)

)∥∥∥∥ =
∥∥∥Ûxl

∥∥∥ = Op

(
h23 +

√
1/(nh3)

)
.

The above results can be made to hold uniformly in xl with little modification: maxxl∈Xl

∥∥∥Ûxl

∥∥∥ =

Op

(
h23 +

√
log(n)/(nh3)

)
.

A.3.2 Asymptotic Distribution of
(
ĝl(xl), ̂̇gl(xl))

Noting that
(
ĝl(xl), h3̂̇gl(xl)) ′ = argminc0,c1 Wn,xl

(c0, c1), we have

∂Wn,xl
(c0, c1)

∂ (c0, c1) ′

∣∣∣∣
(c0,c1)=(ĝl(xl), h3

̂̇gl(xl))

=
∂W1,nxl

(c0, c1)

∂ (c0, c1) ′

∣∣∣∣
(c0,c1)=(ĝl(xl), h3

̂̇gl(xl))
+
∂W2,nxl

(c0, c1)

∂ (c0, c1) ′

∣∣∣∣
(c0,c1)=(ĝl(xl), h3

̂̇gl(xl))′
= 0.

Since we have already proved that
(
ĝl(xl), ̂̇gl(xl)) ′ p→ (gl(xl), ġl(xl))

′,
(
ĝl(xl), ̂̇gl(xl)) ′ is

close to (gl(xl), ġl(xl))
′ for sufficiently large n and we only need to examine the minimization

of Wn,xl
(c0, c1) around (gl(xl), h3ġl(xl))

′. By the first order Taylor expansion, we have

0 =
∂Wn,xl

(c0, c1)

∂ (c0, c1) ′

∣∣∣∣
(a,b)=(ĝl(xl), h3

̂̇gl(xl))

=
∂Wn,xl

(c0, c1)

∂ (c0, c1) ′

∣∣∣∣
(a,b)=(gl(xl), h3ġl(xl))

+
∂2Wn,xl

(c0, c1)

∂ (c0, c1)
′ ∂ (c0, c1)

∣∣∣∣
(c0,c1)=(g∗l (xl), h3ġ∗l (xl))

[(
ĝl(xl), h3̂̇gl(xl)) ′ − (gl(xl), h3ġl(xl))

′
]
,

where (g∗l (xl), h3ġ
∗
l (xl)) lies between

(
ĝl(xl), h3̂̇gl(xl)) and (gl(xl), h3ġl(xl)).

By the Taylor expansions in (A.25) and (A.24), we have

∂W1n,xl
(c0, c1)

∂ (c0, c1) ′

∣∣∣∣
(c0,c1)=(gl(xl), h3ġl(xl))
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= − 1

n

N∑
i=1

̂̇LF iH3h3,i1xl

(
1,

1

h3
(Xl,i1 − xl)

)
(Fi −Di)

+
1

2n

N∑
i=1

L′ (LF i)
̂̇LF 2

i g̈l(x̄li)H3h3,i1xl

(
(Xl,i1 − xl)

2 ,
1

h3
(Xl,i1 − xl)

3

)

− 1

n

N∑
i=1

L′ (LF i)
̂̇LF iH3h3,i1xl

(
1,

1

h3
(Xl,i1 − xl)

){
L̂F i − LF i +

̂̇LF i [ḡl (Xl,i1)− gl (Xl,i1)]
}

− 1

2n

N∑
i=1

L′′ (L̄F i

)̂̇LF iH3h3,i1xl

(
1,

1

h3
(Xl,i1 − xl)

)
δ2xl,i1

,

and

∂W2n,xl
(c0, c1)

∂ (c0, c1) ′

∣∣∣∣
(a,b)=(gl(xl), h3ġl(xl))

=
1

n

N∑
i=1

̂̇LF iH3h3,i2xl

(
1,

1

h3
(Xl,i2 − xl)

)
(Fi −Di)

+
1

2n

N∑
i=1

̂̇LF iH3h3,i2xl

(
1,

1

h3
(Xl,i2 − xl)

)
L′ (LF i)

̂̇LF ig̈l(x̄li) (Xl,i2 − xl)
2

+
1

n

N∑
i=1

̂̇LF iH3h3,i2xl

(
1,

1

h3
(Xl,i2 − xl)

)
L′ (LF i)

{
L̂F i − LF i − ̂̇LF i [ḡl (Xl,i2)− gl (Xl,i2)]

}
+

1

n

N∑
i=1

̂̇LF iH3h3,i2xl

(
1,

1

h3
(Xl,i2 − xl)

)
+

1

2
L′′ (L̄F i

)
δ2xl,i2

.

Given the above results, we can show that

√
nh3

(
∂Wn,xl

(gl(xl), h3ġl(xl))

∂ (c0, c1) ′
− E

[
L′ (LF (△g(Xi))) ˙LF

2
(△g(X))

∣∣∣Xl,it = xl

]
g̈l(xl)fXl

(xl)

(
h23κ21

0

))
d→ N

(
0, 2E

{
˙LF

2
(△g(Xi))F (△g(Xi)) [1− F (△g(Xi))]

∣∣∣Xl,it = xl

}
fXl

(xl)

(
κ02 0

0 κ22

))
.

where
∂Wn,xl

(gl(xl), h3ġl(xl))

∂(c0,c1)′
=

∂Wn,xl
(c0,c1)

∂(c0,c1)′

∣∣∣
(c0,c1)=(gl(xl), h3ġl(xl))

, and κab =
∫
ua [H3(u)]

b du.

To derive the linear expression and asymptotic distribution of
(
ĝl(xl), h3̂̇gl(xl)) ′, we calculate

the second order derivative:

∂2Wn,xl
(c0, c1)

∂ (c0, c1)
′ ∂ (c0, c1)

∣∣∣∣
(c0,c1)=(gl(xl), h3ġl(xl))

=
∂2W1,nxl

(c0, c1)

∂ (c0, c1)
′ ∂ (c0, c1)

∣∣∣∣
(c0,c1)=(gl(xl), h3ġl(xl))

+
∂2W2,nxl

(c0, c1)

∂ (c0, c1)
′ ∂ (c0, c1)

∣∣∣∣
(c0,c1)=(gl(xl), h3ġl(xl))

=
1

n

N∑
i=1

(̂̇LF i

)2
H3h3,i1xl

µxl,i1L
′
(
L̂F i − ̂̇LF i ·

[
gl(xl) + h3ġl(xl)

1

h3
(Xl,i1 − xl)− ḡl (Xl,i1)

])
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+
1

n

N∑
i=1

(̂̇LF i

)2
H3h3,i2xl

µxl,i2L
′
(
L̂F i +

̂̇LF i ·
[
gl(xl) + h3ġl(xl)

1

h3
(Xl,i2 − xl)− ḡl (Xl,i2)

])
p→ 2E

[
L′ (LF (△g(X))) ˙LF

2
(△g(X))

∣∣∣Xl = xl

]
fXl

(xl)

(
1 0

0 κ21

)

= 2E
[
L′ (LF (△g(X))) ˙LF

2
(△g(X))

∣∣∣Xl = xl

]
fXl

(xl)

(
1 0

0 κ21

)
,

where µxl,it =
(
1, 1

h3
(Xl,it − xl)

)′ (
1, 1

h3
(Xl,it − xl)

)
for t = 1, 2.

It follows that(
ĝl(xl), h3̂̇gl(xl)) ′ − (gl(xl), h3ġl(xl))

′

=

(
∂2Wn,xl

(c0, c1)

∂ (c0, c1)
′ ∂ (c0, c1)

∣∣∣∣
(c0,c1)=(g∗l (xl), h3ġ∗l (xl))′

)−1
∂Wn,xl

(c0, c1)

∂ (c0, c1)
′

∣∣∣∣
(c0,c1)=(gl(xl), h3ġl(xl))′

=

(
1

n

N∑
i=1

(
˙LF i

)2
H3h3,i1xl

µxl,itL
′ (LF i)

)−1

×

{
− 1

n

N∑
i=1

˙LF iH3h3,i1xl

(
1,

1

h3
(Xl,i1 − xl)

)
(Fi −Di)

+
1

2n

N∑
i=1

L′ (LF i) ˙LF
2
i g̈l(x̄li)H3h3,i1xl

(
(Xl,i1 − xl)

2 ,
1

h3
(Xl,i1 − xl)

3

)

+
1

n

N∑
i=1

˙LF iH3h3,i2xl

(
1,

1

h3
(Xl,i2 − xl)

)
(Fi −Di)

+
1

2n

N∑
i=1

˙LF iH3h3,i2xl

(
1,

1

h3
(Xl,i2 − xl)

)
L′ (LF i) ˙LF ig̈l(x̄li) (Xl,i2 − xl)

2

}
+R3n,

where ∥R3n∥= Op

(
h23 +

√
h3/n+ η3Kn

)
. Then

√
nh3

((
1 0

0 h3

)((
ĝl(xl)̂̇gl(xl)

)
−

(
gl(xl)

ġl(xl)

))
− 1

2
g̈l(xl)

(
h23κ21

0

))
d→ N

(
0,

1

2

(
E
{

˙LF
2
(△g(X))F (△g(X)) [1− F (△g(X))]

∣∣∣Xl = xl

}
fXl

(xl)
)−1

(
κ02 0

0 κ22

κ2
21

))
,

Noting that LF (·) = L−1(F (·)), we have

˙LF (△g(X)) =
∂L−1 (F (△g(X)))

∂x
=
∂ [ln (F (△g(X)))− ln (1− F (△g(X)))]

∂x

=
Ḟ (△g(X))

F (△g(X))
+

Ḟ (△g(X))

1− F (△g(X))
=

Ḟ (△g(X))

F (△g(X)) [1− F (△g(X))]
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and then we have the final asymptotic distribution of
(
ĝl(xl) ̂̇gl(xl)),

√
nh3

((
1 0

0 h3

)((
ĝl(xl)̂̇gl(xl)

)
−

(
gl(xl)

ġl(xl)

))
− 1

2
g̈l(xl)

(
h23κ21

0

))
d→ N

(
0,

1

2
E

{
F (△g(Xi)) [1− F (△g(Xi))]

Ḟ 2(△g(Xi))

∣∣∣∣Xl,it = xl

}(
κ02 0

0 κ22

κ2
21

))
.

This completes the proof of the theorem.

B Technical Lemmas

In this appendix we state some technical lemmas that are used in the proofs of the main results

and then prove them.

Recall that mi = E (Di|Xi) , mji = mj −mi, H1h1,ji = H1h1(mj −mi), and fm(·) denotes the
PDF of mi. Let η(mi) = E

[
△PK−1,K

i,j △PK−1,K
i,j

′|mi)
]
for j ̸= i.

Lemma B.1 Let L0,n and L0,n1 be as defined in the proof of Theorem 3.1. Suppose that the

conditions in Theorem 3.1 are satisfied. Then

(i)∥L0,n1 − E (L0,n1)∥ = Op

(√
K/n

)
, ∥E (L0,n1)− E [η(mi)fm (mi)]∥ = O (Kha1) = o (1) ,

and λmin (L0,n1) ≥ C1L/2 w.p.a.1.;

(ii) ∥L0,nℓ∥op = Op

(
K1/2h−1

1 η1Kn

)
= op(1) for ℓ = 2, ..., 7;

(iii) ∥L0,n − E [η(mi)fm (mi)]∥op = op(1) and λmin (L0,n) ≥ C1L/2 w.p.a.1.

Proof. (i) By the variance calculation and Chebyshev inequality, it is standard to show that∥∥∥∥∥∥ 1

n2

∑
1≤i ̸=j≤n

{
△PK−1,K

i,j △PK−1,K
i,j

′H1h1,ji − E
[
△PK−1,K

i,j △PK−1,K
i,j

′H1h1,ji

]}∥∥∥∥∥∥ = Op

(√
K/n

)
.

By Taylor expansions and the i.i.d. condition on {Xi} , for any j ̸= i

E
[
△PK−1,K

i,j △PK−1,K
i,j

′H1h1(mj −mi)
]
= E {η(mi)H1h1(mj −mi)}

= E

[
η(mi)

∫
1

h1
H1(

m−mi

h1
)fm (m) dm

]
= E

[
η(mi)

∫
H1(u)fm (mi + hu) du

]
= E [η(mi)fm (mi)] +O (ha11 )E

[
η(mi)f

(a1)
m (mi)

]
,

Noting that
∥∥∥E [η(mi)f

(a1)
m (mi)

]∥∥∥ = O (K) , the second part of (i) follows. By the Weyl’s inequal-

ity,

λmin (L0,n1) ≥ λmin (E (L0,n1))− ∥L0,n1 − E (L0,n1)∥
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≥ λmin (E (L0,n1))−Op

(√
K/n

)
≥ 1

2
λmin (E [η(mi)fm (mi)])−O (Kha1)−Op

(√
K/n

)
≥ C1L/2 w.p.a.1.

(ii) As in part (i), we can readily show that ∥L0,nℓ∥op = Op

(
K1/2h−1

1 η1Kn

)
= op (1) for

ℓ = 2, ..., 7. For example, for L0,n2, we have

∥L0,n2∥op =

∥∥∥∥∥∥ 1

n2

∑
1≤i ̸=j≤n

△PK−1,K
i,j △PK−1,K

i,j
′h1

−1
Ḣ1h1 (mji) (m̄j −mj)

∥∥∥∥∥∥
op

≤ max
1≤j≤n

|m̄j −mj |
1

n2

n∑
j=1

∥∥∥∥∥∥
n∑

i=1,i ̸=j

△PK−1,K
i,j △PK−1,K

i,j
′h1

−1
Ḣ1h1 (mji)

∥∥∥∥∥∥
op

= Op

(
K1/2η1Kn

)
Op

(
h−1
1

)
= Op

(
K1/2h−1

1 η1Kn

)
= op (1) .

(iii) The result follows from (i)-(ii) and the Weyl’s inequality.

Lemma B.2 Let L1,n, L1,n1 and L1,n2 be as defined in the proof of Theorem 3.1. Suppose that

the conditions in Theorem 3.1 are satisfied. Then

(i) ∥L1,n1∥ = Op

(√
K/n+

√
Kha11

)
;

(ii) ∥L1,nℓ∥ = Op (η1Kn) for ℓ = 2, 3;

(iii) ∥L1,nℓ∥ = Op (η1Kn) for ℓ = 4, 5, 6, 7;

(iv) ∥L1,n∥ = Op

(
η1Kn +

√
Kha11

)
.

Proof. (i) Note that mi = E (Di|Xi) = F (△gi) under Assumption 2. First, notice that

L1,n1 =
1

n2

∑
1≤i ̸=j≤n

(△gi −△gj)△PK−1,K
i,j H1h1 (mj −mi) =φnU1n,

where

U1n =

(
n

2

)−1 ∑
1≤i ̸=j≤n

(△gi −△gj)△PK−1,K
i,j H1h1 (mj −mi) =

(
n

2

)−1 ∑
1≤i<j≤n

q1n(Xi, Xj),

φn =
(
n
2

)
/n2 → 1/2 as n → ∞, and q1n(Xi, Xj) = △gij△PK−1,K

i,j H1h1 (mji). Note that q1n(·, ·) is
symmetric in its two arguments. Let

r1n(Xj) = E [q1n(Xi, Xj)|Xj ] for j ̸= i, and θ1n = E [r1n(Xj)] ,

By the Hoeffding decomposition (see, Theorem 1 in Section 1.6 of Lee (1990), we have U1n =

θ1n + U(1)
1n + U(2)

1n , where

U(1)
1n =

1

n

n∑
i=1

[r1n(Xj)− θ1n] ,
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U(2)
1n =

(
n

2

)−1 ∑
1≤i<j≤n

[q1n(Xi, Xj)− r1n(Xi)− r1n(Xj) + θ1n] .

Note that for j ̸= i,

E ∥q1n(Xi, Xj)∥2 = E
[
tr
{
(△gi,j)2△PK−1,K

i,j △PK−1,K
i,j

′H2
1h1

(mji)
}]

= O(Kh−1) = o(n).

Then by Lemma 3.1 in Powell, Stock and Stoker (1989), E
∥∥∥U(2)

n

∥∥∥2 = o(n−1) and thus U(2)
n =

op(n
−1/2). It remains to study θn and U(1)

n .

Let ρP (mi) = E
[
△PK−1,K

i |mi

]
, ρg (mi) = E [△gi|mi] and ρ (mi) = E

[
△gi△PK−1,K

i |mi

]
Note that r1n (Xj) = E

[
(△gi −△gj)△PK−1,K

i,j H1h1 (mji) |Xj

]
= E

[
△gi△PK−1,K

i,j H1h1 (mji) |Xj

]
−

△gjE
[
△PK−1,K

i,j H1h1 (mji) |Xj

]
≡ r1n,1 (Xj)−r1n,2 (Xj) . By straightforward moment calculations

and the independence of {Xi}, we have

r1n,1 (Xj) = E
{
△gi

[
△PK−1,K

j −△PK−1,K
i

]
H1h1 (mji) |Xj

}
= △PK−1,K

j E [E (△gi|mi, Xj)H1h1 (mji) |Xj ]

− E
{
E
[
△gi△PK−1,K

i (Xi) |mi, Xj

]
H1h1 (mji) |Xj

}
= △PK−1,K

j E [ρg (mi)H1h1 (mji) |Xj ]− E {ρ (mi)H1h1 (mji) |Xj}

= △PK−1,K
j

∫
ρg (m)

1

h1
H1

(
m−mj

h1

)
fm (m) dm−

∫
ρ (m)

1

h1
H1

(
m−mj

h1

)
fm (m) dm

= △PK−1,K
j

[
ρg (mj) fm (mj) +

ha11
a1!

∂(a1) [ρg (m) fm (m)]
∣∣∣
m=mj

+ o(ha11 )

]
−
[
ρ (mj) fm (mj) +

ha11
a1!

∂(a1) [ρ (m) fm (m)]
∣∣∣
m=mj

+ o(ha11 )

]
.

and

r1n,2 (Xj) = △gjE
{[

△PK−1,K
j −△PK−1,K

i

]
H1h1 (mji) |Xj

}
= △gj△PK−1,K

j E [H1h1 (mji) |Xj ]−△gjE
{
E
[
△PK−1,K

i |mi, Xj

]
H1h1 (mji) |Xj

}
= △gj△PK−1,K

j E [H1h1 (mji) |Xj ]−△gjE {ρP (mi)H1h1 (mji) |Xj}

= △gj△PK−1,K
j

∫
1

h1
H1

(
m−mj

h1

)
fm (m) dm−△gj

∫
ρP (m)

1

h1
H1

(
m−mj

h1

)
fm (m) dm

= △gj△PK−1,K
j

[
fm (mj) +

ha11
a1!

f (a1)m (mj) + o(ha11 )

]
−△gj

[
ρ (mj) fm (mj) +

ha11
a1!

∂(a1) [ρP (m) fm (m)]
∣∣∣
m=mj

+ o(ha11 )

]
.

Then it is easy to show that

∥θ1n∥ = ∥E [r1n,1 (Xj)]− E [r1n,2 (Xj)]∥ = O
(√

Kha11

)
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where we use the fact that

E
{
△gj△PK−1,K

j fm (mj)−△gj [ρ (mj) fm (mj)]
}

−E
{
△PK−1,K

j ρg (mj) fm (mj)− ρ (mj) fm (mj)
}

=
{
E
[
△gj△PK−1,K

j fm (mj)
]
− E [ρ (mj) fm (mj)]

}
+E

{
△PK−1,K

j ρg (mj) fm (mj)−△gj [ρ (mj) fm (mj)]
}

=
{
E
[
E
(
△gj△PK−1,K

j |mj

)
fm (mj)

]
− E [ρ (mj) fm (mj)]

}
+
[{
E
(
△PK−1,K

j |mj

)
ρg (mj) fm (mj)

}
− E {E (△gj |mj) [ρ (mj) fm (mj)]}

]
= 0 + 0 = 0

by the repeated use of the law of iterated expectations. In addition, we can readily show that

E ∥r1n (Xj)∥2 = O (K) and E
∥∥∥U(1)

1n

∥∥∥2 = O (K/n) . Then
∥∥∥U(1)

1n

∥∥∥ = Op(
√
K/n). Consequently, we

have

∥U1n∥≤ ∥θ1n∥+ 2
∥∥∥U(1)

1n

∥∥∥+ ∥∥∥U(2)
1n

∥∥∥
=Op

(√
Kha11

)
+Op

(√
K/n

)
+ op(n

−1/2) = Op

(√
Kha11 +

√
K/n

)
.

Then the result in (i) follows.

(ii) Recall that L1,n2 =
2

n2
∑

1≤i ̸=j≤n△gj△P
K−1,K
i,j h−1

1 Ḣ1h1 (mji) [m̄j −mj ] , where m̄j =

L (R(Xj)
′π̄) . It is easy to see that

L1,n2 =
2

n2

∑
1≤i ̸=j≤n

△gj△PK−1,K
i,j h−1

1 Ḣ1h1 (mji) [m̄j −mj ]

=
2

n2

∑
1≤i<j≤n

q2n ((Xi, Xj) , π̄) = 2φnU2n (π̄)

where

q2n ((Xi, Xj) , π) = h−1
1 △gj△PK−1,K

i,j Ḣ1h1 (mji)
[
L
(
R(Xj)

′π
)
−mj

]
+h−1

1 △gi△PK−1,K
j,i Ḣ1h1 (mij)

[
L
(
R(Xi)

′π
)
−mi

]
=

{
△gj

[
L
(
R(Xj)

′π
)
−mj

]
+△gi

[
L
(
R(Xi)

′π
)
−mi

]}
h−1
1 △PK−1,K

i,j Ḣ1h1 (mij) ,

U2n (π) =
1(
n
2

) ∑
1≤i<j≤n

qn ((Xi, Xj) , π) ,

and φn =
(
n
2

)
/n2 → 1 as n → ∞. Here we use the fact that Ḣ1h1 (m) = −Ḣ1h1 (−m) by the

symmetry of H1 and △PK−1,K
i,j = −△PK−1,K

j,i . By construction, q2n ((Xi, Xj) , π) is symmetric in

(Xi, Xj) .
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It suffices to determine the probability order of U2n (π̄) by studying the U -process {Un (π)} .
Let r2n(Xj , π) = E [q2n ((Xi, Xj) , π) |Xj ] and θ2n (π) = E [r2n(Xj , π)] . Then we have the following

Hoeffding decomposition:

U2n (π) = θ2n (π) + 2U(1)
2n (π) + U(2)

2n (π) ,

where

U(1)
2n (π) =

1

n

n∑
i=1

[r2n(Xj , π)− θ2n (π)]

U(2)
2n (π) =

1(
n
2

) ∑
1≤i<j≤n

[q2n ((Xi, Xj) , π)− r2n(Xj , π)− r2n(Xj , π) + θ2n (π)] .

Let δj ≡ δj,π ≡ L (R(Xj)
′π)−mj , where we frequently suppress the dependence of δj on π. Note

that

r2n(Xj , π) = h−1
1 E

[{
△gj

[
L
(
R(Xj)

′π
)
−mj

]
+△gi

[
L
(
R(Xi)

′π
)
−mi

]}
△PK−1,K

i,j Ḣ1h1 (mij) |Xj

]
= h−1

1 △gjδjE
[
△PK−1,K

i,j Ḣ1h1 (mij) |Xj

]
+ h−1

1 E
[
△giδi△PK−1,K

i,j Ḣ1h1 (mij) |Xj

]
≡ r2n,1(Xj , π) + r2n,2(Xj , π).

Note that

r2n,1(Xj , π) = h−1
1 △gjδjE

[
△PK−1,K

i Ḣ1h1 (mij) |Xj

]
− h−1

1 △gjδj△PK−1,K
j E

[
Ḣ1h1 (mij) |Xj

]
= h−1

1 △gjδjE
[
ρP (mi) Ḣ1h1 (mij) |Xj

]
− h−1

1 △gjδj△PK−1,K
j E

[
Ḣ1h1 (mij) |Xj

]
= h−1

1 △gjδj
∫
Ḣ1 (u) ρP (mj + hu)fm (mj + hu) du

−h−1
1 △gjδj△PK−1,K

j

∫
Ḣ1 (u) fm (mj + hu) du

= −△gjδj∂ [ρP (mj)fm (mj)] +△gjδj△PK−1,K
j ∂fm (mj) du+ r2n1,a(Xj , π)

and

r2n,2(Xj , π) = h−1
1 E

[
△giδi△PK−1,K

i Ḣ1h1 (mij) |Xj

]
− h−1

1 △PK−1,K
j E

[
△giδiḢ1h1 (mij) |Xj

]
= h−1

1 E
[
ρδ (mi) Ḣ1h1 (mij) |Xj

]
− h−1

1 △PK−1,K
j E

[
ρδg (mi) Ḣ1h1 (mij) |Xj

]
= h−1

1

∫
Ḣ1 (u) ρδ(mj + hu)fm (mj + hu) du

−h−1
1 △PK−1,K

j

∫
Ḣ1 (u) ρδg (mj + hu) fm (mj + hu) du

= −∂ [ρδ(mj)fm (mj)] +△PK−1,K
j ∂ [ρδg (mj) fm (mj)] + r2n2,a(Xj , π),

where ρδ (mi) = E
(
△giδi△PK−1,K

i |mi

)
, ρδg (mi) = E (△giδi|mi) , r2n1,a(Xj , π) and r2n2,a(Xj , π)

denote the remainder terms in the first order Taylor expansions, we use the fact that
∫
Ḣ1 (u) du = 0
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and
∫
Ḣ1 (u)udu = −1. Note that

[ρδg (mj) ρP (mj + hu)− ρP (mj) ρδg (mj + hu)− ρδ (mj) + ρδ(mj + hu)]fm (mj + hu)

= hu[ρδg (mj) ρ
(1)
P (mj)− ρP (mj) ρ

(1)
δg (mj) + ρ

(1)
δ (mj)]fm (mj + hu)

+
1

2
h21u

2[ρδg (mj) ρ
(2)
P (m∗

j )− ρP (mj) ρ
(2)
δg

(
m∗

j

)
+ ρ

(2)
δ (m∗

j )]fm (mj + hu)

≡ huψ1jfm (mj + hu) +
1

2
h21uψ2jfm (mj + hu)

where m∗
j lies between mj and mj +hu, ψ1j = ρδg (mj) ρ

(1)
P (mj)−ρP (mj) ρ

(1)
δg (mj)+ρ

(1)
δ (mj) and

ψ2j = ρδg (mj) ρ
(2)
P (m∗

j ) −ρP (mj) ρ
(2)
δg

(
m∗

j

)
+ ρ

(2)
δ (m∗

j ). Then

θ2n (π) = E [r2n,1(Xj , π) + r2n,2(Xj , π)]

= h−1
1

∫
Ḣ1 (u)E{[ρδg (mj) ρP (mj + hu)− ρP (mj) ρδg (mj + hu)

−ρδ (mj) + ρδ(mj + hu)]}fm (mj + hu) du

=

∫
Ḣ1 (u)uE [fm (mj + hu)ψ1j ] du+

h1
2

∫
Ḣ1 (u)u

2E [fm (mj + hu)ψ2j ] du

≡ θ2n,1 (π) + θ2n,2 (π) .

Noting that mj = E (Dj |Xj) = F (△gj) = L (LF (△gj)) , we have by Taylor expansions,

δj = L
(
R(Xj)

′π
)
− E (Dj |Xj)

= L
(
R(Xj)

′π
)
− L (LF (△gj))

= L̇ (LF (△gj))
[
R(Xj)

′π − LF (△gj)
]
+

1

2
L̈ (LF (△¯̄gj))

[
R(Xj)

′π − LF (△gj)
]2

= L̇ (LF (△gj))R(Xj)
′(π − π0) + L̇ (LF (△gj))

[
R(Xj)

′π0 − LF (△gj)
]

+
1

2
L̈ (LF (△¯̄gj))

{
R(Xj)

′ (π − π0
)
+
[
R(Xj)

′π0 − LF (△gj)
]}2

≡ L̇ (LF (△gj))R(Xj)
′ (π − π0

)
+ L̇ (LF (△gj))

[
R(Xj)

′π0 − LF (△gj)
]
+ δj,2,

where △¯̄gj is between R(Xj)
′π and LF (△gj). Note that

sup
∥π−π0∥≤Cη1Kn

max
1≤j≤n

|δj,2| ≲ sup
∥π−π0∥≤Cη1Kn

∥∥R(Xj)
′ (π − π0

)∥∥2
+ sup

∥π−π0∥≤Cη1Kn

∥∥R(Xj)
′π0 − LF (△gj)

∥∥2
≤ K

∥∥π − π0
∥∥2 +O

(
K−2γ

)
= O

(
Kη21Kn

)
,

max
1≤j≤n

∣∣R(Xj)
′π0 − LF (△gj)

∣∣ = O
(
K−γ

)
, and

sup
∥π−π0∥≤CηKn

max
1≤j≤n

|LF (△¯̄gj)− LF (△gj)| ≤ O
(√

Kη1Kn

)
.

In addition,

sup
∥π−π0∥≤Cη1Kn

E
(
δ2j
)

≲ sup
∥π−π0∥≤Cη1Kn

E
∣∣R(Xj)

′ (π − π0
)∣∣2 + E

[
R(Xj)

′π0 − LF (△gj)
]2
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+ sup
∥π−π0∥≤Cη1Kn

max
1≤j≤n

|δj,2|2

= O
(
η21Kn

)
+O

(
K−2γF

)
+O

(
K2η41Kn

)
= O

(
η21Kn

)
.

By these results and the uniform boundedness of L̇ and L̈, we can readily show that for l = 1, 2,

E [fm (mj)ψ1j ] = E
{[
ρδg (mj) ρ

(1)
P (mj)− ρP (mj) ρ

(1)
δg (mj) + ρ

(1)
δ (mj)

]
fm (mj)

}
= O (η1Kn) ,∣∣∣E [f (l)m

(
m∗

j

)
ψ1j

]∣∣∣ ≲ E
{∣∣∣ρδg (mj) ρ

(1)
P (mj)− ρP (mj) ρ

(1)
δg (mj) + ρ

(1)
δ (mj)

∣∣∣} = O
(
K1/2η1Kn +Kη21Kn

)
,

uniformly in π with
∥∥π − π0

∥∥ ≤ Cη1Kn. Then

sup
∥π−π0∥≤Cη1Kn

|θ2n,1 (π)|

= sup
∥π−π0∥≤Cη1Kn

∣∣∣∣∫ Ḣ1 (u)uE [fm (mj + hu)ψ1j ] du

∣∣∣∣
= sup

∥π−π0∥≤Cη1Kn

∣∣∣∣−E [fm (mj)ψ1j ] + h1

∫
Ḣ1 (u)u

2E
[
f (1)m (mj)ψ1j

]
du

+
h21
2

∫
Ḣ1 (u)u

3duE
[
f (2)m

(
m∗

j

)
ψ1j

]∣∣∣∣
≲ sup

∥π−π0∥≤Cη1Kn

|E [fm (mj)ψ1j ]|+
h21
2

sup
∥π−π0∥≤Cη1Kn

∣∣∣E [f (2)m

(
m∗

j

)
ψ1j

]∣∣∣
= O (η1Kn) + h21O

(
K1/2η1Kn +Kη21Kn

)
= O (η1Kn) ,

where the second and third equalities hold by the second order Taylor expansions and the fact

that
∫
Ḣ1 (u)udu = −1 and

∫
Ḣ1 (u)u

2du = 0 by the symmetry of H1 (·) . Analogously, we have

uniformly in π with
∥∥π − π0

∥∥ ≤ Cη1Kn,

sup
∥π−π0∥≤Cη1Kn

|θ2n,2 (π)| = sup
∥π−π0∥≤Cη1Kn

∣∣∣∣h12
∫
Ḣ1 (u)u

2E [fm (mj + hu)ψ2j ] du

∣∣∣∣
≤ sup

∥π−π0∥≤Cη1Kn

h21
2

∣∣∣∣∫ Ḣ1 (u)u
3duE

[
f (1)m

(
m∗

j

)
ψ2j

]∣∣∣∣
= h21O

(
K1/2η1Kn +Kη21Kn

)
= O (η1Kn) .

It follows that

sup
∥π−π0∥≤Cη1Kn

∥θ2n (π)∥ = O (η1Kn) .

Similarly, we can show that

E

[
sup

∥π−π0∥≤Cη1Kn

∥∥r2n (X1, π
0
)∥∥2]≲K2η21Kn = o(K)

and

E

[
sup

∥π−π0∥≤Cη1Kn

∥∥q2n ((X1, X2) , π
0
)∥∥2]
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≲ E

[
sup

∥π−π0∥≤Cη1Kn

∥∥∥△g1 [L (R(X1)
′π0
)
−m1

]
h−1
1 △PK−1,K

1,2 Ḣ1h1 (m1,2)
∥∥∥2]

≲ E

[
sup

∥π−π0∥≤Cη1Kn

∥∥∥{△g1 [L (R(X1)
′π0
)
+ L

(
R(X1)

′π0
)]}

h−1
1 △PK−1,K

1,2 Ḣ1h1 (m1,2)
∥∥∥2]

+E

[
sup

∥π−π0∥≤Cη1Kn

∥∥∥{△g1 [L (R(X1)
′π0
)
−m1

]}
h−1
1 △PK−1,K

1,2 Ḣ1h1 (m1,2)
∥∥∥2]

≲ E

[
sup

∥π−π0∥≤Cη1Kn

∥∥∥{△g1R(X1)
′ (π0 − π0

)}
h−1
1 △PK−1,K

1,2 Ḣ1h1 (m1,2)
∥∥∥2]

+E

[
sup

∥π−π0∥≤Cη1Kn

∥∥∥{△g1 [L (R(X1)
′π0
)
−m1

]}
h−1
1 △PK−1,K

1,2 Ḣ1h1 (m1,2)
∥∥∥2]

≲ h1
−3Kη21Kn.

Then by Corollary 5.3 in Chen and Kato (2020), we have

sup
∥π−π0∥≤CηKn

∥∥∥U(2)
2n (π)

∥∥∥≲ n−1
(
h1

−3Kη21Kn

)1/2
ln (n) = op (η1Kn) .

By the empirical process theory, we have

sup
∥π−π0∥≤Cη1Kn

∥∥∥U(1)
2n (π)

∥∥∥= Op

(
n−1/2K1/2 ln (n)

)
= Op (η1Kn) .

Consequently, we have

∥Un (π̄)∥ ≲ sup
∥π−π0∥≤Cη1Kn

∥∥∥θ2n (π) + 2U(1)
2n (π) + U(2)

2n (π)
∥∥∥ = Op (η1Kn)

and ∥L1,n2∥ = Op (η1Kn) . Analogously, we can show that ∥L1,n3∥ = Op (η1Kn) .

(iii) It suffices to obtain the rough probability bound for ∥L1,nℓ∥ with ℓ = 4, 5, 6, 7. For example,

∥L1,n5∥≲

∥∥∥∥∥∥h−2
1

1

n2

∑
1≤i ̸=j≤n

△gj△PK−1,K
i,j Ḧ1h1,ji

∣∣L (R(Xj)
′π̄
)
− E (Dj |Xj)

∣∣2∥∥∥∥∥∥
≲ h−2

1

1

n2

∑
1≤i ̸=j≤n

∥∥∥△gj△PK−1,K
i,j Ḧ1h1,ji

∥∥∥ ∣∣∣L̇ (LF (△gj))R(Xj)
′ (π̄ − π0

)∣∣∣2
+ h−2

1

1

n2

∑
1≤i ̸=j≤n

∥∥∥△gj△PK−1,K
i,j Ḧ1h1,ji

∥∥∥ ∣∣[R(Xj)
′π0 − LF (△gj)

]∣∣2
+ h−2

1

1

n2

∑
1≤i ̸=j≤n

∥∥∥△gj△PK−1,K
i,j Ḧ1h1,ji

∥∥∥ |δj,2|2
= h−2

1 Op

(
K1/2η21Kn

)
+ h−2

1 Op

(
K−2γ

)
+ h−2

1 Op

(
K2η41Kn

)
= Op (η1Kn) .

Similarly, ∥L1,nℓ∥ =Op (η1Kn) for ℓ = 5, 6, 7. Alternatively, we can use the arguments as used in

(ii).
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Note that L1,n4 =
1

2n2
∑

1≤i ̸=j≤n△gi,j△P
K−1,K
i,j h−2

1 Ḧ1h1 (mji) [m̄i −mi] [m̄j −mj ] . It is easy

to see that

L1,n4 =
1

2n2

∑
1≤i ̸=j≤n

△gi,j△PK−1,K
i,j h−2

1 Ḧ1h1 (mji) [m̄i −mi] [m̄j −mj ]

=
1

2n2

∑
1≤i<j≤n

q3n ((Xi, Xj) , π̄) =
1

2
φnU3n (π̄)

where

q3n ((Xi, Xj) , π) = △gi,j△PK−1,K
i,j h−2

1 Ḧh1 (mji)
[
L
(
R(Xi)

′π
)
−mi

] [
L
(
R(Xj)

′π
)
−mj

]
U3n (π) =

1(
n
2

) ∑
1≤i<j≤n

q3n ((Xi, Xj) , π) ,

and φn =
(
n
2

)
/n2 → 1 as n → ∞. It suffices to determine the probability order of U3n (π̄)

by studying the U -process {U3n (π)} . Let r3n(Xj , π) = E [q3n ((Xi, Xj) , π) |Xj ] and θ3n (π) =

E [r3n(Xj , π)] . Then we have the following Hoeffding decomposition:

U3n (π) = θ3n (π) + 2U(1)
3n (π) + U(2)

3n (π) ,

where

U(1)
3n (π) =

1

n

n∑
i=1

[r3n(Xj , π)− θ3n (π)]

U(2)
3n (π) =

1(
n
2

) ∑
1≤i<j≤n

[q3n ((Xi, Xj) , π)− r3n(Xj , π)− r3n(Xj , π) + θ3n (π)] .

Note that

r3n(Xj , π) = E
{
△gi,j△PK−1,K

i,j h−2
1 Ḧ1h1 (mji)

[
L
(
R(Xi)

′π
)
−mi

] [
L
(
R(Xj)

′π
)
−mj

]
|Xj

}
= h−2

1 δjE
[
△gi,jδi△PK−1,K

i,j Ḧ1h1 (mji) |Xj

]
= h−2

1 δjE
[
△giδi△PK−1,K

i,j Ḧ1h1 (mji) |Xj

]
− h−2

1 δj△gjE
[
δi△PK−1,K

i,j Ḧ1h1 (mji) |Xj

]
≡ r3n,1(Xj , π)− r3n,2(Xj , π).

Note that

r3n,1(Xj , π) = h−2
1 δjE

[
△giδi△PK−1,K

i Ḧ1h1 (mji) |Xj

]
− h−2

1 δj△PK−1,K
j E

[
△giδiḦ1h1 (mji) |Xj

]
= h−2

1 δjE
[
ρ (mi) Ḧ1h1 (mij) |Xj

]
− h−2

1 δj△PK−1,K
j E

[
ρgδ (mi) Ḧ1h1 (mji) |Xj

]
= h−2

1 δj

∫
Ḧ1 (u) ρ(mj + hu)fm (mj + hu) du

−h−2
1 δj△PK−1,K

j

∫
Ḧ1 (u) ρgδ (mj + hu) fm (mj + hu) du
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=
1

2
δj∂

2 [ρ(mj)fm (mj)] +
1

2
δj△PK−1,K

j ∂2 [ρgδ (mj) fm (mj)] + r3n1,a(Xj , π),

and

r3n,2(Xj , π) = h−2
1 δj△gjE

[
δi△PK−1,K

i Ḧ1h1 (mji) |Xj

]
− h−2

1 δj△gj△PK−1,K
j E

[
δiḦ1h1 (mji) |Xj

]
= h−2

1 δj△gjE
[
ρδP (mi) Ḧ1h1 (mij) |Xj

]
− h−2

1 δj△gj△PK−1,K
j E

[
ρδ (mi) Ḧ1h1 (mji) |Xj

]
= h−2

1 δj△gj
∫
Ḧ1 (u) ρδP (mj + hu)fm (mj + hu) du

−h−2
1 δj△gj△PK−1,K

j

∫
Ḧ1 (u) ρδ(mj + hu)fm (mj + hu) du

=
1

2
δj△gj∂2 [ρδP (mj)fm (mj)] +

1

2
δj△gj△PK−1,K

j ∂2 [ρδ (mj) fm (mj)] + r3n2,a(Xj , π),

where r3n1,a(Xj , π) and r3n2,a(Xj , π) denote the remainder terms in the second order Taylor ex-

pansions, and we use the fact that
∫
Ḧ1 (u) du = 0 and

∫
Ḧ1 (u)udu = 0. With the above results,

we can readily show that

|θ3n (π)| = |E [r3n,1(Xj , π) + r3n,2(Xj , π)]|

≲
1

2

∣∣E {δj△gj∂2 [ρδP (mj)fm (mj)]
}∣∣+ 1

2

∣∣∣E {δj△gj△PK−1,K
j ∂2 [ρδ (mj) fm (mj)]

}∣∣∣
≡ θ3n,1 (π) + θ3n,2 (π) .

uniformly in π with
∥∥π − π0

∥∥ ≤ Cη1Kn. Then

sup
∥π−π0∥≤Cη1Kn

|θ3n,1 (π)| = sup
∥π−π0∥≤Cη1Kn

∣∣E {δj△gj∂2 [ρδP (mj)fm (mj)]
}∣∣

≲ sup
∥π−π0∥≤Cη1Kn

[
E
(
δ2j
)]1/2 {

E
∥∥∂2 [ρδP (mj)fm (mj)]

∥∥2}1/2

= O (η1Kn)O
(
K1/2η1Kn

)
= o (η1Kn) ,

where we use the fact that sup
∥π−π0∥≤Cη1Kn

E
(
δ2j

)
= O

(
η21Kn

)
and sup

∥π−π0∥≤Cη1Kn

E
∥∥∂2 [ρδP (mj)fm (mj)]

∥∥2
= O

(
Kη21Kn

)
. Similarly, sup

∥π−π0∥≤Cη1Kn

|θ3n,2 (π)| = o (η1Kn) .

Similarly, we can show that

E

[
sup

∥π−π0∥≤Cη1Kn

∥r3n (X1, π)∥2
]
≲K2η2Kn = o(K)

and

E

[
sup

∥π−π0∥≤Cη1Kn

∥q3n ((X1, X2) , π)∥2
]

≲ E

[
sup

∥π−π0∥≤Cη1Kn

∥∥∥△g1,2△PK−1,K
1,2 h−2

1 Ḧ1h1 (m21)
[
L
(
R(X1)

′π
)
−m1

] [
L
(
R(X2)

′π
)
−m2

]∥∥∥2]
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≲ max
1≤i≤n

sup
∥π−π0∥≤Cη1Kn

∥∥L (R(Xi)
′π
)
−mi

∥∥4E [∥∥∥△g1,2△PK−1,K
1,2 h−2

1 Ḧ1h1 (m21)
∥∥∥2]

= O
(
K2η41Kn

)
O
(
Kh−5

)
= O

(
h−5
1 K3η41Kn

)
.

Then by Corollary 5.3 in Chen and Kato (2020), we have

sup
∥π−π0∥≤CηKn

∥∥∥U(2)
3n (π)

∥∥∥≲ n−1
(
h1

−5K3η41Kn

)1/2
ln (n) = op (η1Kn) .

By the empirical process theory, we have

sup
∥π−π0∥≤Cη1Kn

∥∥∥U(1)
3n (π)

∥∥∥= Op

(
n−1/2K1/2 ln (n)

)
O
(
K1/2η1Kn

)
= op (η1Kn) .

Consequently, we have

∥U3n (π̄)∥ ≲ sup
∥π−π0∥≤Cη1Kn

∥∥∥θ3n (π) + 2U(1)
3n (π) + U(2)

3n (π)
∥∥∥ = op (η1Kn)

and ∥L1,n4∥ = op (η1Kn) . Analogously, we can show that ∥L1,nℓ∥ = op (η1Kn) for ℓ = 5, 6, 7.

(iv) The result follows from (i)-(iii).

Lemma B.3 Let L2,n, L2,n1, ..., L2,n7 be as defined in the proof of Theorem 3.1. Suppose that the

conditions in Theorem 3.1 are satisfied. Then

(i) ∥L2,n1∥ = Op

(
K−γ+1/2

)
;

(ii) ∥L2,nℓ∥ = op (K
−γ) for ℓ = 2, ..., 7;

(iii) ∥L2,n∥ = Op

(
K−γ+1/2

)
.

Proof. (i) Note that

∥L2,n1∥ =

∥∥∥∥∥∥ 1

n2

∑
1≤i ̸=j≤n

(
△PK

i,j
′β0 −△gi,j

)
△PK−1,K

i,j H1h1,ji

∥∥∥∥∥∥
≤ 2max

i

∣∣△PK
i

′β0 −△gi
∣∣ 1

n2

∑
1≤i ̸=j≤n

∥∥∥△PK−1,K
i,j

∥∥∥ |H1h1,ji|

= Op

(
K−γ

)
Op

(
K1/2

)
= Op

(
K−γ+1/2

)
(ii) Note that

∥L2,n2∥ =

∥∥∥∥∥∥ 1

n2

∑
1≤i ̸=j≤n

(
△PK

i,j
′β0 −△gi,j

)
△PK−1,K

i,j h−1
1 Ḣ1h1,ji (m̄j −mj)

∥∥∥∥∥∥
≤ 2max

i

∣∣△PK
i

′β0 −△gi
∣∣max

j
|m̄j −mj |

h−1
1

n2

∑
1≤i ̸=j≤n

∥∥∥△PK−1,K
i,j

∥∥∥ ∣∣∣Ḣ1h1,ji

∣∣∣
= Op

(
K−γ

)
Op

(
K1/2η1Kn

)
Op

(
h−1
1

)
= op

(
K−γ

)
.

Similarly, we can show that ∥L2,nℓ∥ = op (K
−γ) for ℓ = 3, ..., 7.

(iii) This follows from (i)-(ii).
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Lemma B.4 Let G1,nj , ..., G4,nj be as defined in (A.19) in the proof of Theorem 3.2. Suppose

that the conditions in Theorem 3.2 are satisfied. Then

(i) There exists a positive constant cF such that ∥G1,nj∥ ≤ cF |△gj −△ḡj | + Op(h
a2+1
2 ) uni-

formly in j = 1, 2, ..., n;

(ii) There exists a positive constant cF such that ∥G2,nj∥ ≤ cF |△gj −△ḡj |+ Op(h
a2+1
2 ) uni-

formly in j = 1, 2, ..., n;

(iii) max1≤j≤n ∥G3,nj∥≤ Op (η2Kn) ;

(iv) max1≤j≤n ∥G4,nj∥≤ Op

(√
ln (n) /(nh2)

)
.

Proof. (i) Recall that ς1i,j =
(
1, 1

h2
△ḡi,j , · · · , 1

h
a2
2 a2!

△ḡa2i,j
)

′ and

χi,j =

a2∑
l=0

1

hl2l!
△ḡli,j

[
∂lLF (△gj)− ∂lLF (△ḡj)

]
/l!−

∞∑
l=a2+1

1

hl2l!
△ḡli,j∂lLF (△ḡj)/l!.

Then

∥G1,nj∥

≤

∣∣∣∣∣ 1n
N∑
i=1

H2h2 (△ḡi,j)
(
1,

1

h2
△ḡi,j , · · · ,

1

ha22 a2!
△ḡa2i,j

)
′

× L′ (LF (△ḡi))


a2∑
l=0

1

hl2l!
△ḡli,j

[
∂lLF (△gj)− ∂lLF (△ḡj)

]
/l!−

∞∑
l=a2+1

1

hl2l!
△ḡli,j∂lLF (△ḡj)/l!


∣∣∣∣∣∣

≤
a2∑
l=0

∣∣∣∂lLF (△gj)− ∂lLF (△ḡj)
∣∣∣ /l!

×

∥∥∥∥∥ 1n
N∑
i=1

H2h2 (△ḡi,j)
(
1,

1

h2
△ḡi,j , · · · ,

1

ha22 a2!
△ḡa2i,j

)
′L′ (LF (△ḡi))

1

hl2l!
△ḡli,j/l!

∥∥∥∥∥
+

∥∥∥∥∥∥
∞∑

l=a2+1

∣∣∣∂lLF (△ḡj)∣∣∣ /l!
∣∣∣∣∣ 1n

N∑
i=1

Hh2 (△ḡi,j)
(
1,

1

h2
△ḡi,j , · · · ,

1

ha22 a2!
△ḡa2i,j

)
′L′ (LF (△ḡi))

1

hl2l!
△ḡli,j

∣∣∣∣∣
∥∥∥∥∥∥

≡ G1,nj,1 +G1,nj,2.

By the uniform boundedness of all finite order derivatives of L (·) ,

∥G1,nj,1∥ ≤ C |△gj −△ḡj |
a2∑
l=0

∥∥∥∥∥ 1n
N∑
i=1

H2h2 (△ḡi,j)
(
1,

1

h2
△ḡi,j , · · · ,

1

ha22 a2!
△ḡa2i,j

)(
△ḡi,j
h2

)l
∥∥∥∥∥

≤ C |△gj −△ḡj |
a2∑
l=0

1

n

N∑
i=1

∥H2h2 (△ḡi,j)∥ ≤ C |△gj −△ḡj |

where recall that C can vary over places. For G1,nj,2, we have

∥G1,nj,2∥ ≲

∥∥∥∥∥∥
∞∑

l=a2+1

∣∣∣∣∣ 1n
N∑
i=1

|Hh2 (△ḡi,j)|
∥∥∥∥(1, 1

h2
△ḡi,j , · · · ,

1

ha22 a2!
△ḡa2i,j

)∥∥∥∥(△ḡi,j
h2

)l
∣∣∣∣∣
∥∥∥∥∥∥
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= Op(h
a2+1
2 )

where we use the fact that maxi |△ḡi| = Op

(
h22
)
. It follows that G1,nj ≤ cF |△gj −△ḡj | +

Op(h
a2+1
2 ) uniformly in j ∈ [n].

(ii) Note that G2,nj =
(
G2,nj,0, ...., G2,nj,ah2

)
, where

G2,nj,l =
1

n

N∑
i=1

H2h2 (△ḡi,j)
(

1

h2
△ḡi,j

)l

[F (△ḡi)− F (△gi)] for l = 0, 1, ..., ah2 .

Note that

G2,nj,0 =
1

n

N∑
i=1

H2h2 (△ḡi,j) {F (△ḡi)− F (△gi)}

=
1

n

N∑
i=1

H2h2 (△gi,j) {F (△ḡi)− F (△gi)}+
1

n

N∑
i=1

Ḣ2h2

(
△ḡ∗i,j

)
(△ḡi,j −△gi,j) {F (△ḡi)− F (△gi)}

≡ G2,nj,01 +G2,nj,02,

where △ḡ∗i,j lies between △ḡi,j and △gi,j . For G2,nj,02, we have by Theorem 3.1(iv),

|G2,nj,02| ≲ h−1
2 max

i,j
|△ḡi,j −△gi,j |max

i
|△ḡi −△gi|

= Op

(
h−1
2

(
K1/2η2Kn

)2)
= Op (η2Kn) uniformly in j.

For G2,nj,01, we can show that

|G2,nj,01| ≲

∣∣∣∣∣ 1n
N∑
i=1

H2h2 (△gi,j) {F (△ḡi)− F (△gi)}

∣∣∣∣∣
≲

∣∣∣∣∣ 1n
N∑
i=1

∣∣H2h2 (△gi,j)F ′ (△gi)
∣∣ (△ḡi −△gi)

∣∣∣∣∣ = Op (η2Kn) .

Then |G2,nj,0| = Op (η2Kn) . Similarly, we can show that |G2,nj,0ℓ| = Op (η2Kn) for ℓ = 1, ..., a2. It

follows that |G2,nj | = Op (η2Kn) .

(iii) The proof is analogous to that of (i) and thus omitted.

(iv) Recall that △ḡi =ḡ(Xi2)− ḡ (Xi1) and △ḡi,j = △ḡi−△ḡj . Let △gi =g(Xi2)− g (Xi1) and

△gi,j = △gi −△gj . Note that G4,nj = (G4,nj,0, ..., G4,naS ) , where

G0
4,nj,l =

1

n

N∑
i=1

H2h2 (△ḡi,j)
(

1

h2
△ḡi,j

)l

[F (△gi)−Di] .

Let G0
4,nj,l =

1
n

∑N
i=1,i ̸=j Hh2 (△gi,j)

(
1
h2
△gi,j

)l
[F (△gi)−Di] for l = 0, 1, ..., a2 where 0

0 is defined

to be 1. Noting that E (Di|Xi) = F (△gi) , we can apply Bernstein exponential inequality to show

that

max
1≤j≤n

∥∥G0
4,nj,l

∥∥ = Op

(√
log(n)/(nh2)

)
for l = 0, 1, ..., a2.
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Next,

G4,nj,0−G0
4,nj,0 =

1

n

N∑
i=1,i ̸=j

[H2h2 (△ḡi,j)−H2h2 (△gi,j)] [F (△gi)−Di]−
1

n
H2h2 (0) [F (△gj)−Dj ] .

It is easy to see that the second term on the right hand side of the last equation is Op

(
n−1h−1

2

)
uniformly in j. For the first term we can readily apply the arguments as used in the proof of Lemma

B.2 and show it is op

(√
log(n)/(nh2)

)
uniformly in j. Similarly, for l = 1, ..., a2, we have

G4,nj,l −G0
4,nj,l =

1

n

N∑
i=1,i ̸=j

[
H2h2 (△ḡi,j)

(
1

h2
△ḡi,j

)l

−H2h2 (△gi,j)
(

1

h2
△gi,j

)
l

]
[F (△gi)−Di] ,

and we can use the arguments as used in the proof of Lemma B.2 and show it is op

(√
log(n)/(nh2)

)
uniformly in j.
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