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1 Introduction

Heterogeneous panel data regressions have seen increasing use in economic analyses because they
can capture rich heterogeneity across both cross section and time. But models with complete
heterogeneity along either the cross section or time dimension tend to possess too many parameters
to be identified, which results in slow convergence or inefficient estimates. For this reason, more
and more researchers advocate the use of panel data models with certain structures imposed
along either the cross section or time dimension. On the one hand, the recent burgeoning on
panels with latent group structures can be motivated from the observation that different groups
of individuals may respond differently to an exogenous shock. For instance, Durlauf and Johnson
(1995), Berthelemy and Varoudakis (1996), and Ben-David (1998) show economies in different
groups of income per capita and/or education level may converge to different steady state equilibria.
Chu (2012), Zhang and Cheng (2019) and Klapper and Love (2011) show an exogenous shock like
policy implementation has different impact on different individuals. Long et al. (2012) discuss the
influence of 2008 financial crisis on the economic growth is different for emerging and developed
economies. On the other hand, the recent popularity of panels with structural changes can be
motivated from the occurrence of financial crises, technological progress, and economic transitions,
etc, during the time periods covered by the data. See Qian and Su (2016) for a survey on panel
data models that consider the estimation and tests of structural changes.

Even though there exists a large literature on the study of individual or time heterogeneity alone
in the slope coefficients of a panel data model, few of them consider both types of heterogeneity
simultaneously. Exceptions include Keane and Neal (2020) and Lu and Su (2022) who consider
linear panel data models with two-dimensional unobserved heterogeneity in the slope coefficients
that are modelled via the usual additive structures, and Chernozhukov et al. (2020) and Wang
et al. (2022) who model the slope coefficients via the use of low-rank matrices for conditional
mean and quantile regressions, respectively. In addition, Okui and Wang (2021) and Lumsdaine
et al. (2022) consider both individual heterogeneity and time heterogeneity by modeling them as a
grouped pattern and structural breaks, respectively. Specifically, Okui and Wang (2021) develop a
new panel data model with latent groups where the number of groups and the group memberships
do not change over time but the coefficients within each group can change over time and they
may have different breaking dates; Lumsdaine et al. (2022) consider the panels with a grouped
pattern of heterogeneity when the latent group membership structure and/or the values of slope
coefficients change at a break point. Both papers provide algorithms to recover the latent group
structure based on linear panel models with or without individual fixed effects, but cannot allow
for the presence of more complicated fixed effects such as the interactive fixed effects (IFEs) to
capture the strong cross-sectional dependence in the data.

In this paper, we proposes a linear panel data model with IFEs such that the slope coefficients
exhibit two-way heterogeneity. Following the lead of Okui and Wang (2021) and Lumsdaine et al.

(2022) and to encourage the parameter parsimony, we use a latent group structure to capture the



individual heterogeneity and an unknown structural break to capture the time heterogeneity. As
for the latent group structure, we allow the model to have different group numbers and different
group membership before and after the break. Given the complicated structure of the model, we
propose to estimate the break point, the number of groups before and after the break, the group
membership before and after the break, and the group-specific parameters in multiple steps. Our
key insight is that for each of the p regressors, their slope coefficients, when allowed to vary across
both cross section and time dimension, can be written as a factor structure with a fixed number
of factors so that they can be stacked into a low-rank matrix.

In the first step, we explore the low-rank nature of the slope matrices and propose to obtain
their initial estimates by the nuclear norm regularization (NNR), a popular machine learning
technique in computer sciences. Such initial matrix estimates are consistent in terms of Frobenius
norm but do not have the pointwise or uniform convergence for their elements. Despite this, by
applying singular value decomposition (SVD) to these estimates, we can obtain estimates of the
associated factors and factor loadings that are also consistent in terms of Frobenius norm. In the
second step, we use the first-step initial estimates of the factors and factor loadings to run the
row- and column-wise linear regressions to update the estimates of the factors and factor loadings
which now possess pointwise and uniform consistency and can be used for subsequent analyses. In
the third step, we estimate the break point by using the celebrated idea of binary segmentation
as commonly used for break point estimation in the time series literature. Once the break point
is estimated, the full-sample is naturally split into two sub-samples. In the fourth step, we follow
the lead of Lin and Ng (2012) and Jin et al. (2022) to focus on each sub-sample before and after
the estimated break point and propose a sequential testing K-means algorithm to recover the
latent group structure and obtain the number of groups simultaneously. In the last step, we use
the estimated group structure to estimate the group-specific parameters. Asymptotic analyses
show that the break point, the number of groups and the group membership can be consistently
estimated in Steps 3-4, so that the final step estimates for the group-specific coefficients can enjoy
the oracle property. This means they have the same asymptotic distributions as the ones obtained
by knowing the break point and the latent group structures before and after the break points.

This paper relates to two branches of literature. First, our paper contributes to the panel data
literature on one-way heterogeneity, especially with either latent group structures or structural
breaks. As for the latent group structures, there are several popular ways to recover the latent
groups. The first approach is K-means algorithm. Lin and Ng (2012) apply the K-means algorithm
to linear panel data models with grouped slope coefficients and propose an information criterion
and a sequential testing approach to estimate the true number of groups. Sarafidis and Weber
(2015) analyze the unknown grouped slopes in the large N and fixed T" framework, and Zhang et al.
(2019) provide an iterative algorithm based on K-means clustering for panel quantile regression
model. Bonhomme and Manresa (2015) and Ando and Bai (2016) consider panels with grouped
fixed effects. The second approach is the Classifier-Lasso (C-Lasso) that has become a popular



clustering method since Su et al. (2016). This method is extended by Lu and Su (2017), Su and
Ju (2018), Su et al. (2019), Wang et al. (2019), and Huang et al. (2020) to various contexts. In
addition, clustering algorithm in regression via data-driven segmentation (CARDS) approach and
binary segmentation are also considered in Ke et al. (2015), Wang et al. (2018), Ke et al. (2016) and
Wang and Su (2021), among others. As for the panel data models with structural breaks, binary
segmentation has become a common approach to estimate the break point. See Bai (2010), Lin
and Hsu (2011), Kim (2011), Kim (2014) and Baltagi et al. (2017), among others. These papers
focus on the case of one break point in the model. In contrast, Qian and Su (2016) and Li et al.
(2016) allow for multiple breaks in linear panel data models with either the classical fixed effects or
the IFEs, and propose the adaptive grouped fused lasso (AGFL) approach to estimate the break
points. Compared to existing panel literature on one-way heterogeneity, we allow for two-way
heterogeneity in our model. In particular, we allow not only different membership structures in
different time blocks but also the change of number of groups over time. As a result, our model is
more flexible than the vast existing models that allow for only latent group structures or structural
breaks, but not both.

Second, this paper contributes to the recent burgeoning literature that models two-way het-
erogeneity in the slope coefficients of a panel data model. As mentioned above, there are two
approaches to model the two-way heterogeneity in the slope coefficients. One is to model them
as an additive structure so that both the individual and time effects enter the slope coefficients
additively, as in Keane and Neal (2020) and Lu and Su (2022). The other is to impose certain
low-rank structures on the slope coefficient matrices in which case one models each slope coeffi-
cient via the use of IFEs as used to model the strong cross sectional dependence in the panels. In
view of the low-rank structures, we can resort to the NNR that has attracted increasing attention
recently in panel data analyses. NNR has been used in recent researches in econometrics, see Bai
and Ng (2019), Moon and Weidner (2018), Feng (2019), Chernozhukov et al. (2020), Belloni et al.
(2019), Miao et al. (2022), and Hong et al. (2022), among others. But none of these papers impose
any latent group structures in the slope coefficients. With latent group structures and structural
breaks imposed, Okui and Wang (2021) allow the slope coefficients within each group to have
common breaks and the break points to vary across different groups, and they propose to estimate
the latent group structures, the structural breaks, and the group-specific regression parameters by
the grouped adaptive group fused lasso (GAGFL). Note that neither the number of groups nor
the group memberships is allowed to change over time in Okui and Wang (2021). In a companion
paper, Lumsdaine et al. (2022) allow the latent group membership structure and/or the values of
slope coeflicients to change at a break point, and propose an estimation algorithm similar to the K-
means of Bonhomme and Manresa (2015). Note that both Okui and Wang (2021) and Lumsdaine
et al. (2022) allow for at most one-way heterogeneity (individual FEs) in the intercept and neither
allows for IFEs to capture strong cross section dependence. In contrast, this paper proposes the

algorithm to detect the unknown break point and to recover the group structure based on linear



panel model with IFEs, which leads to a more general model. In addition, Lumsdaine et al. (2022)
first assume the number of groups is known in the estimation algorithm and then estimate the
number of groups via an information criterion but they do not establish the consistency result for
such an estimate. Instead, we estimate the number of groups and group membership simultane-
ously by the sequential testing K-means algorithm and establish the consistency of the number of
groups estimator.

The rest of the paper is organized as follows. We first introduce the linear panel model with
time-varying latent group structures in Section 2 and provide the estimation algorithm in Section
3. The asymptotic properties are given in Section 4. In Section 5, we propose an alternative
approach to detect the break point, provide the test statistics for the null that the slope coefficient
has no structure change against the alternative with one break point, and discuss the estimation
for the model with multiple breaks. In Sections 6 and 7, we show the finite sample performance
of our method by Monte Carlo simulations and an empirical application, respectively. Section 8
concludes. All proofs are related to the online appendix.

Notation. |||, Illp: Il [I*llmax lIll25 [l [l denote the norm induced by 1-norms, the
norm induced by 2-norms the norm induced by co-norms, the maximum norm, the Euclidean norm,
the Frobenius norm and the nuclear norm. ® is the element-wise product. |-| and [-] denote the
floor and ceiling functions, respectively. a V b and a A b return the maximum and the minimum of
a and b. The symbol < means “left side bounded by a positive constant times the right side”, and
an > b, means bya, ! = o(1). Let A = {A;;} as a matrix with its (i, ¢)-th entry denoted as A;;, and
we denote {A;}epjuoy to be the collection of matrix A; for all j € {0,1,---,p}. For a specific
AcR™n" Py = AAA)LA and My = I, — Py. When A is symmetric, Apax(A), Amin(A) and
An(A) denote its largest, smallest and n-th largest eigenvalues, respectively. The operators ~» and
-5 denote convergence in distribution and in probability, respectively. We also use [n] to denote
the set {1,--- ,n} for any positive integer n. Besides, w.p.a.1 is “with probability approaching 1”

and a.s. denotes “almost surely” for short.

2 Model Setup

In this paper, we consider the following linear panel model with IFEs:

Yi = @8,it + Xz{t@?t + €it, (2.1)
where i € [N], t € [T], Yi is the dependent variable, X;; = (X1, -+, Xpit) is a p x 1 vector
of regressors, 0% = (9(1)7“, e ,@2’#)’ is a p x 1 vector of slope coefficients, @8,“ = AVf is an

intercept term that exhibits a factor structure with rg factors, and e;; is the error term. Here, we
assume 7 is a fixed integer that does not change as (N,7T) — oco. Let A? = ()\[1), e ,)\(])V), and

FO = (f0,--, f9). Let Y = {Yi}, X; = {Xju}, 00 = {@g{it} and E = {e;;}, all of which are



N x T matrices. Then we can rewrite (2.1) in terms of matrices as follows:

p
Y=00+> X;069+E. (2.2)
j=1

We assume that the slope coefficients follow time-varying latent group structures, i.e.,

@?t = Z aktl{i S th},
ke[K]
where { G}, i, forms a partition of [ V] for each specific time ¢ with K; being the number of groups
at time t. Moreover, we assume that the group-specific slope coefficients ay; or the memberships
change at an unknown time point 71, i.e.,

al(:), for t=1,...,11,

a,(f), for t=T1+4+1,...,T,

At =

a G](cl), for t=1,...,711, kzl,...,K(l),
Kkt =
G;(f), for t=Ty+1,....T, k=1,...,K®,

with K and K being the number of latent groups before and after the break point, respectively.

Let 91(1) and g§2) respectively denote the individual group indices before and after the break:

= Y mlical) wma fP= Y mfica?}

keK() keK ()

Let r; be the rank of @2 for j € [p] U {0}. It is easy to see that @? exhibits a low-rank for all
j. By the SVD, we have

09 = VNTU)SHVY .= UV, j € [plu{o},

where L{]Q e RNx7i V]Q € RTx75, Z? = diag(o1,j,- -+, 0r;,5), UJQ = \/NZ/{JQE? with each row being
u%, and Vjo =T V]Q with each row being vg’j.

Note that we allow {@?t Z.]il to exhibit latent group structures before and after the break. For
a particular j € [p], the N x T matrix 9? may have no group structure before or after the break,

or no break, or more or fewer groups after the break. Let K ](-1) and K ](-2) denote the number of

N
groups before and after the break, respectively, for {@9 it} v Let gj@) = {Gge} e 7G§?(Z) },
’ 1= ’ g
(=1,2d he associated 1 Define N© — |G0] and 70 — Yei
= 1,2, denote the associated latent group structures. Deline ki = |Gp | and w5 = —g- for

¢ =1,2. Further define 7p := % Below we show that @? has low-rank structure in all cases.

Case 1. @? exhibits neither structural break nor group structure.
In this case, Kj(-l) = K](?) =1, and @?ﬂ.t = a; V(i,t) € [N] x [T]. By the SVD, we have
1

VT

1
sziLNERNX1, Ej:aj, Vj:

VN

= RTXI,



Case 2.

Case 3.

Uj=ajn € RV*L Vi=1un € RT>L

where 1g = (1,---,1)" € R™! for any natural number d. Obviously, rj = 1 under Case 1.
@2 exhibits no structural break but a group structure.

. 1 2 1 2 1 2 1 2
In this case, K\ = K\ = K, G{) = G} = Gpy, N = N = Ny, mil) = w?) =
mk,; Vk € [Kj], and G)%t = > oy, ;1{i € Gy } for t € [T]. Therefore, we have

k‘e[Kj]

Zke[Kj] ok, 1{i € G}
Z/{j7i =

, X5 = Z Th.j (a;m-)Q, Vj = —=ur,
\/Eke[Kj] Nk (O‘kvj)Z ke[K;] VT

Uj5 = Z ak,jl {Z S Gk,j}’ V] =T,
ke[K;]

where U ; is the i-th element in ¢/;. Obviously, 7; = 1 under this case.

69- exhibits both structural break and group structure.

. 1 2
(i) KV # K.
Under this scenario, we have different number of groups before and after the break.
" 1 2 1 2
(i) KJ( ) = K]( ) = K; and G,(w)- # GE&J)"
Under this scenario, we have the same number of groups before and after the break,

but the group membership changes after the break point.

1 2 1 2 1 2
(iii) K]( ) = K]( ) = K;, G,g) = G’(w) = Gy, ; for Vk € [Kj], and a,(w). # 04,(67; for at least
one k € [Kj].
Under this scenario, even though neither the number of groups nor group member-
ship changes after the break, there exists at least one group whose slope coefficients

change.

For any positive integer d, we use 04 to denote a d x 1 vector of zeros. The following lemma

lays down the foundation for the detection of break point in our model.

Lemma 2.1 For any j € [p] such that @9 lies in Case 3 above, we have rcmk(@?) < 2. When
rank(@?) = 2, we have

(i) ©f

1
L, 0
— U,V = U,V where Uy = U;S;/VT, Vy = VTV; = D;R;, Dy = | V7T o

0 ——
T—T, VIt T—T,

and R}Rj = Is;

:\/§f0r any t <Ty and t* > T1.

(i) | o - o
Rl e

v .
t*,5 ‘2

2



By Lemma 2.1 for Case 3 and the above analyses for Cases 1 and 2, we conclude that @(;- is a
low-rank matrix with rank equal to or less than 2. In view of the low-rank structure of the slope
matrices, we propose to adopt the NNR to obtain the preliminary estimates below. Moreover,
under Case 3, Lemma 2.1(ii) indicates that singular vectors of the slope matrix with rank equals

to 2 contain the structural break information.

3 Estimation

In this section we provide the estimation algorithm. We first assume that the ranks r; for j €
[p] U {0} are known, and then propose a singular value thresholding (SVT) procedure to estimate
them. After we recover the break point and the latent group structures, we propose consistent

estimates of the group-specific parameters.

3.1 Estimation Algorithm

Given rj, Vj € [p]U {0}, we propose the following four-step procedure to estimate the break point

and to recover the latent group structures before and after the break.

Step 1: Nuclear Norm Regularization. We run the nuclear norm regularized regression and

btain the prelimi timates § ©; ,ie.,
obtalin € preliminary estimates { ]}je{o}u[p} 1.e
2
5 1 P p
{0} jepuioy = argmin — |Y" — Y X;00, -6 +> vilel,, (3.1)
{&;} j=1 j=0

F

where v; is the tuning parameter for j € [p] U {0}. For each j, conduct the SVD:

ﬁéj = Z;ljf]jfij’», where f]j is a diagonal matrix with diagonal elements being the de-

scending singular values of éj. Moreover, let f/j consist the first r; columns of f)j and
V; = VTV;. Let ¥y ; denote the ¢-th row of V; for t € [T].

Step 2: Row- and Column-Wise Regressions. First run the row-wise regressions of Y;; on
(01,0, {01,j X}t }jepp) ) to obtain {t;;}jepugoy for i € [N]. Then run the column-wise regres-
sions of Y;; on (11@0, {ui,ij,it}je[p]) to obtain {bt,j}je[p]u{o} for t € [T] Let C;)j,it = Il‘j’;,j@tvj
for (i,t) € [N] x [T] and j € [p] U{0}. Specifically, the row- and column-wise regressions

are given by

2
: 1 & - .
{3} jepiugoy =, argmin *Z Yi *“Q,ovt,O*Z“;jvt:J’Xi:it ielnNl, (32)
Ui }ierluio}r © te[T) j=1
2
1 p
e = g 3 (Vi diio = Ythyins Xy | t<lr) @
{veibjemlutoy = e[ 3=1



Step 3: Break Point Estimation. We estimate the break point as follows

T
argn;ml}mzz{z<@m o)+ > (e-8) ] o

se{2 jelp] i€[N]

where é§ =1 Zt 1 j it and 6(28) @j,it~

Step 4: Sequential Testing K-means (STK). In this step, we estimate the number of groups
and the group membership before and after the break by using the STK algorithm. For
‘ (1 . . 9 . . i
each j € [p], define G)g»’i) = (Oji1, -, G)] le) (9() = (@jvijﬁl,-'- ,0;.ir), 61»(1) =
\/117(6&‘)/, e ,91(712/)’, and 52(2) = \/11?(@@/, e ,(;)1(?22/)’. Let z, be some predetermined
1 I I 2 I b

number which will be specified in the next subsection. Given the sub-sample before and

after the estimated break point, initialize m = 1 and classify each sub-sample into m
groups by K-means algorithm with group membership obtained as Q%) = {Gl(ﬁn}ke[m}
Next, we construct test statistic f%), compare it to zo, set m = m + 1 and go to the next
iteration if f%) > z4 and stop the STK algorithm otherwise. At last, define KO =m
and GO = A,(,?. In the next subsection, we will present each step of the STK algorithm

in detail.

m=m+1 g

Yes

K-means classification Construct test
with m groups: G4 statistic ()

FO 5z, -NO output: m, G

Figure 1: The flow chart of STK algorithm

Several remarks are in order. First, we assume the ranks of the intercept and slope matrices
are known in Step 1 but will propose consistent estimates for them by the SVT below. Second, we
obtain the preliminary estimates by nuclear norm regularization based on the low-rank structure of
the intercept and slope matrices in the model. These estimates are consistent in terms of Frobenius
norm but we cannot establish the pointwise or uniform convergence for their elements. Despite this,
we can conduct SVD to obtain preliminary estimates of the factors and factor loadings to be used
subsequently. Third, we conduct the row- and column-wise linear regressions to obtain updated
estimates of the factors and factor loadings where we can establish their pointwise and uniform
convergence rates. Fourth, with the consistent estimates obtained in the second step, we can
estimate the break point in Step 3 consistently by following the idea of binary segmentation. Fifth,
the STK algorithm in Step 4 will yield the estimated number of groups and group memberships

at the same time.



In the latent group literature, it is standard and popular to assume the number of groups in the
K-means algorithm is known and then estimate the number of groups by using certain information
criteria. In this case, one needs to consider not only under- and just-fitting cases, but also over-
fitting cases. It is well known that the major difficulty with this approach is to show that the
over-fitting case occurs with probability approaching zero. As for the STK algorithm, it ensures
us to focus on under-and just-fitting cases, which helps to avoid the theoretical difficulty caused
by K-means classification with a larger than the true number of groups. Besides, although we
adopt this sequential algorithm, the error from the previous iteration will not accumulate in the
following iterations owing to fact that the classification in each iteration is new and not based on

the K-means result in previous iterations.

3.2 The STK algorithm

In this subsection, we describe the K-means algorithm and the construction of test statistics f%)
in the STK algorithm for ¢ € {1, 2}.

First, we define the objective function for the K-means algorithm with m clusters at each
iteration. Let a,g) be a pTy x 1 and p(T — Tl) x 1 vector for £ = 1,2, respectively. We obtain the

group membership with m groups by solving the following minimization problem:

- (0) _ 1 } 50 () ‘2
{0 ¥ ekl 35)
8 .
which yields the membership estimates for each individual at the m-th iteration as
3 = argmin H 3O — a,ﬂfinH2 Vi € [N]. (3.6)

ke[m]

Let G, := {i € N] : 30, = k }.

Second, we discuss the construction of the test statistic based on the idea of homogeneity
test for several sub-samples. At iteration m, we have m potential subgroups (Gg@n, - G(E) m)
after the K-means classification for £ = 1 and 2. Let 7] = [Tl], T = [T]\[TI], 7A'1’_1 = 7'1\{T1},
722,,1 = 7A'2\{T}, 7A'17j = {1 + 4, ,Tl}, and 7’2,j = {Tl +1+74,--- ,T} for some specific j € ’72_1.
Based on these estimated subgroups, we can obtain the estimates of the coefficients, factors and

factor loadings for each subgroup in regime ¢ as follows:

({00} gy B D) = avemin 303 =i =00,
k,m

05,
{ fe}, G(Z) ety eG(‘j) teTy

where A,(fzn = {5\@) }‘eAEf) and F,ym {ftkm}teT For all i« € [N] and t € [T], define the

residuals

éit:i( —F A X effgm>1{te7}}.

10



/ N / ~ N
Let XV = (X“,- ,Xm) , X@ = ( e ,XZ-T) ,and Ty = T — T}. Define
O 5(0) _ (©) a(e)y
ek,m T AW Z ei,k,rrﬂ Mﬁ’éé; - I - ?F Fk m’
Glom| icc®, |
OO
R 1 /. ! R R Ay A, .
O = (R0) by X0, ol =5, (Hzim ) 39,
9 vy Té k,m E) vy ka‘ vy

Let 2 ( y being the t-th row of M (e) Xi(e). For each subgroup ngn with k € [m], we follow the lead
of Pesaran and Yamagata (2008) and Ando and Bai (2015) and define f,(f)m as follows:

~

1 (o)
Gien] Zieci, Stiom

(0) ’
Y =
k,m Gk,m \/%
where
s(0 (60 S0\ a0 (a0 YTraw) (50 50 @@k 2
Sikan = Tt (ei,k,m - k,m) Siiskem (szm) Siiskem <0i,k — b ) 1= 20 ‘ ,
k,m
AL 1 (£ o) [ oy
lezm = 7 Z Zi(t) Zit ezt Z k(j/St) Z (Zzt Zl(t)—Q—]e’Lte'L t+j T Zl(t) le(t) €it— jelt>
et 1672 1 t€Tr

and k(-) is a kernel function with Sp being the bandwidth. Noted that the above expression for

Q(E) is the traditional HAC estimator. Let f(g) = max (f(é) )2
i,k,m : m = ke[m] km )

We will show below that f%) is asymptotically distributed as the maximum of m independent
x%(1) random variables under the null hypothesis that the slope coefficients in each of the m
sub-samples is homogeneous, while it diverges to infinity under the alternative. Let z, denote be
the critical value at significance level «, which is calculated from the maximum of m independent
x2(1) random variables. We reject the null of m subgroups in favor of more groups at level a if
oS .

3.3 Rank Estimation

To obtain the rank estimator, we use the low-rank estimators from (3.1) and estimate r; by the
singular value thresholding (SVT):

n= 3 {w(@) 20 (ufol,) "} wemun

where o; (A) denotes the i-th largest singular value of A and N AT = min(N,T). By arguments
as used in the proof of Proposition D.1 in Chernozhukov et al. (2020) and that of Theorem 3.2 in
Hong et al. (2022), we can show that P(7; =r;) — 1 as (N,T) — oo.

11



3.4 Parameters Estimation

Once we obtain the estimated break point, the number of groups and the group membership
before and after the estimated break point, we can estimate the group-specific slope coefficients

{ag)} . along with the factors and factor loadings as follows:
ke[K(®)]

AO B0 40 _ : (0)
<A v ,{ak }ke[f(“)]) = argmin L <A,F,{ak }ke[f((f)]> (3.7)

(€) _ 1 KO A<,_/ _ /(ﬁ))2 .
where L (A, Fv{ak }ke[k(@]> = NT, &k=1 Zieé](f) D, (Yie = Nifi — Xjyay” ) - Here, we ig-
nore the fact that the prior- and post-break regimes share the same set of factor loadings and
estimate group-specific parameters separately for the two regimes at the cost of sacrificing some
efficiency for the factor loading estimates. Alternatively, we can pool the observations before and

after the break to estimate the parameters as follows:

(A’ F, {&’(“1)}%[1”((1)] ’ {&f)}ke[f(@)]) = argminl. (A’ B {a’(fl)}ke[f((l)] ’ {ag)}ke[m”])

where

- (A’ F {“’(cl)}ke[mn] ’ {ag)}kdk(?)]) - (A’ " {a’(j)}ke[mU}) o (A’ " {af)}ke[f(@)]) '

(3.8)

In either case, as one can imagine, due to the presence of group structures, the establishment of
the asymptotic properties of the post-classification estimators of the group-specific slope coefficients
becomes much more involved than that in Bai (2009) and Moon and Weidner (2017). For this

reason, we will focus on the estimates defined in (3.7).

4 Asymptotic Theory

In this section, we study the asymptotic properties of the estimators introduced in the last section.

4.1 Basic Assumptions

Define e; = (ei1,--- , e;7)" and Xii= (Xji,- - ,ijiT)/. Let Vjo be a T' x r; matrix with its ¢-th

row being v?’

15> and UJQ be the N x r; matrix with its i-th row being u?’] Throughout the paper, we

treat the factors {Vjo} as random and their loadings {U JO} as deterministic. Let
jelplu{o} j€lplu{0}

9 = % denote the mini -field ted by {V? . Similarly, let

o ({ f }je[p}u{0}> enote the minimum o-field generated by { f }je[p}u{o} imilarly, le

4 =0 (@, {Xistien] s<t41 - {eis}z‘e[N],sgt) Let M and C be generic bounded positive constants

which may vary across lines.

Assumption 1 (i) {eit, Xit}eq) are conditionally independent across i given .

12



(it) E (eit|Xir, ) = 0.

(i1i) For each i, {(ei, Xit),t > 1} is strong mizing conditional on 2 with the mizing coefficient

ai(-) satisfying max;c|n i(2) < Mo for some constant a € (0,1).

(iv) There ezists a constant C > 0 such that

7 <Ca.s. and 7 < C a.s.
1TZ§'5 rel)iel) N | v > ¢

ZE[N]JG[p te[1] V]

for &t = e, X and Xj e Vi € [p].
(v) max;enterm E [|§it|q !@} < M a.s. for some q > 8 where & = e, Xj i and Xj e Vi € [pl.
(vi) As (N, T) — 0o, VN (log N)>T~' = 0 and T(log N)2N—3/2 = 0.
Assumption 1* (i), (iv) and (v) are same as Assumption 1(i), (iv) and (v). Besides,
(ii) B (ext|%-1) = 0 V(i,t) € [N] x [T], and maxe(n]sepr] E (¢%|%-1) < M a.s..
(ii) {eit};eqn 15 conditionally independent across t given 9.

Assumption 1(i) imposes conditional independence on {e;, Xit}te[T} across the cross sectional
units. Assumption 1(ii) imposes the moment condition. Assumption 1(iii) impose conditional
strong mixing conditions along the time dimension. See Prakasa Rao (2009) for the definition
of conditional strong mixing and Su and Chen (2013) for an application in the panel setup. As-
sumption 1(iv)-(v) imposes some conditions which restricts the tail behavior of &;. Note that we
don’t restrict either the regressors or error terms to be bounded. Assumption 1(vi) imposes some
restrictions on N and T" but does not restrict IV and T" diverge to infinity at the the same rate. It
is possible to allow N to diverge to infinity faster but not too faster than 7', and vice versa.

Assumption 1* is for the study of dynamic panel data models. To be specific, Assumption
1*(ii) requires that the error sequence {e;,t > 1} is a martingale difference sequence (m.d.s.) with
respect to the filter ¢, which allows for lagged dependent variables in X;;. Assumption 1*(iii)
imposes the conditional independence of error term across t. In the panel for the least-squares
based PCA estimation, there will be the endogeneity issue if we allow for both dynamics and

serially correlated errors.

max

Assumption 2 mnk(@?) = 7 for j € [p]u{0} and some fived 7, and maxc[,u{0} H@ ‘
M.

Assumption 2 imposes the low-rank conditions on the coefficient matrices, which facilitates the
use of NNR to obtain the preliminary estimates in the first step. As discussed in the previous

section, we see that the low-rank assumption for the slope matrices is satisfied for the model

13



in Section 2. Moreover, we follow Ma et al. (2020) and assume the elements of the coefficient
matrices are uniformly bounded to simplify the proofs. The boundedness of the slope coefficients
is reasonable given that their cardinality does not grow with the sample size. The boundedness

assumption for the intercept coefficient can be relaxed at the cost of more lengthy arguments.

Assumption 3 Let 0;; denote the I-th largest singular values of @9 for j € [p]U{0}. There exist

some constants C, and c, such that

oo > O, > limsupmax oy ; > lim inf mino,. ; > ¢, > 0.
7 N g€l NTjep) 777

Assumption 3 imposes some conditions on the singular values of the coefficient matrices. It
implies that we only allow pervasive factors when these matrices are written as a factor structure.
This condition can be easily verified given the latent group structures of the slope coefficients.

Let @? = R;%;S} be the SVD for @?, Vj € [p] U {0}. Further decompose R; = (R;,, Rj0),
Sj = (Sjr,Sjo) with (R;,, Sjr) being the singular vectors corresponding to nonzero singular values
and (Rj,5;0) being the singular vectors corresponding to zero singular values. Hence, for any
matrix W € RV*T we define

Pi- (W) = RjoR; ,WS;0S)g, P;j(W)=W —P;- (W),

where P; (W) can be seen as the linear projection of matrix W into the low-rank space with
7334‘ (W) being its orthogonal space.
Let Ag, = O — @? for any ©;. Based on the spaces constructed above, with some positive

constants C and Cq, we define the restricted set for full-sample parameters as follows:

R<cl,02>:={<{A@j}j6mu{0}>: > [Prae| o X P2,

j€p]u{0} J€p]U{0}
S lel > @FNT}. (4.1)
J€p]u{0}

Lemma B.4 in the Appendix shows that our nuclear norm estimators are in a restricted set
larger than (4.1), which eliminates the restriction for the Frobenius norm in the R (Cy,C2). The
restrictive set means the projection to the orthogonal low-rank space of the estimator error can
not be larger than its projection to the low-rank space. Theorem 4.1 below will greatly rely on

this property.
Assumption 4 For any Cy > 0, there are constants C3 and Cy such that uniformly for ({Ae, }jepufoy) €
R(3,C2), we have

2

p
Do+ Ao, 0 X >C5 > |Ae, |5~ CaN+T) wp.a.l.
=1 P e}

14



Assumption 4 imposes the restricted strong convexity condition, which is similar to Assumption
3.1 in Chernozhukov et al. (2020). The latter authors also provide some sufficient conditions to
verify such an assumption.

Let r = Zje[p}u{o} rj. Define the following r x r matrices:

Zqﬁ?tgb Vi € [N] and ¥, = Z@ZJ Y vt e [T),

ZE[N

0 07 / (V] / 0 _ 0r o7 /
where ¢it = (Ut()vvt,le,ib T 7vt,po,it) ) ¢it - ( 1,00 Wy, 1X1 (2R vui,po,it) .

Assumption 5 There exist constants Cy and cg such that

00 > Cy > limsup max Apmax (V) > lim inf min Amin (¥4) > ¢4 > 0,
T  te[T] T te[T]

> Cy > i Amax(P;) > liminf min Apin(®;) > ¢4 > 0.
o0 » 1m]\§uplrg[a>§ a(Z)_m}\fm llél[an} (®;) > ¢y

Assumption 5 is similar to Assumption 8 in Ma et al. (2020).

4.2 Asymptotic Properties of the NNR Estimators and Singular Vector Esti-

mators
Let nn1 = \/% and )y 2 = 7”‘)}5\]\/%(NT)1/‘1. Let 61 ; denotes the k-th largest singular value of

(:)j for j € [p]U{0}. Our first main result is about the consistency of the first-stage NNR Estimators
and the second-stage singular vector estimators.

Theorem 4.1 Suppose that Assumptions 1-4 hold. Then ¥j € [p] U {0}, we have
() = Héj - @?HF = Op(nn31), maxgep] |0k, — kil = Oplnna), and HVjO - ‘NGOJ'HF =
Op(ﬁmv,l) where Oj is an orthogonal matriz defined in the proof.

If in addition Assumption 5 is also satisfied, then we have

4,5 — Oju = Op(nN,2),

(it) max ’

‘2 Op(nN,2), IQFT}THWJ_OJ'”?J )

0
ng

(111)  max ‘G)j,it — 6%, = Op(nn,2).

1€[N],te[T] Jiit

Remark 1. Theorem 4.1(i) reports the error bounds for (:)j, Ok,j, and f/] The logT term in
the numerator of 7y 1 is due to the use of some exponential inequality for strong mixing process.
Theorem 4.1(ii) and (iii) reports the uniform convergence rate of the factor and factor loading
estimators. The extra (N T)l/ 7 term in the 7y 2 is by the nonboundedness of X ;; in Assumption

1(v), and it disappears when X} ;; is assumed to be uniformly bounded.
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4.3 Consistency of the Break Point Estimate

Recall that g(l) and g@) denote the true group individual ¢ belongs to before and after the break,

7 i

respectively. To estimate the break point consistently, we add the following condition.

2
Assumption 6 (i) \/]{] ZiE[N] Hagm — ozg@))H = Cs(nT, where C5 is a positive constant and
5 i )2

CNT > TN2-

(it) 77 =T — 7€ (0,1) as T — cc.

Remark 2. Assumption 6(i) imposes conditions on the break size in order to identify the
break point. Note that we allow the average break size to shrink to zero at the rate slower than
\/ lO%%(NT)MI. This rate is of much bigger magnitude than the optimal (NT)_l/Q—rate that
can be detected in the panel threshold regressions (PTRs) for several reasons. First, in PTRs, the
slope coefficients are usually assumed to be homogeneous so that each individual is subject to the
same change in the slope coefficients and one can use the cross-sectional information effectively.
In contrast, we allow for heterogeneous slope coefficients here and the change can occur only for
a subset of cross section units but not all. In addition, in the presence of latent group structure,
we not only allow the slope coefficients of some specific groups to change with group membership
fixed, but also allow the slope coefficient to remain the same for some groups while the group
memberships change after the break. Second, our break point estimation relies on the binary
segmentation idea borrowed from the time series literature where one can allow break sizes of

bigger magnitude than 7—1/2

in order to identify the break ratio consistently but not the break
point consistently. As we can see, even though we require bigger break sizes, we can estimate the
break date consistently by using information from both the cross section and time dimensions.
Third, as mentioned above, the additional term log(N V T') in the above rate is mainly due to the
use of some exponential inequality and the term (N T)l/ 7 is due to the fact that we only assume
the existence of ¢-th order moments for some random variables.

The following theorem indicates that we can estimate the break date T consistently.

Theorem 4.2 Suppose Assumptions 1-6 hold, with the true break point being T1 and the estimator
defined in (5.4). Then P (Tl = T1> — 1 as (N,T) — oo.

Theorem 4.2 shows that we can estimate the true break date consistently w.p.a.1 despite the

fact that we allow the break size to shrink to zero at certain rate.

4.4 Consistency of the Estimates of the Number of Groups and the Latent

Group Structures

To study the asymptotic properties of the estimates of the number of groups and the recovery of

the latent group structures, we first add the following definition.
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Definition 4.3 Fiz K > 1 and m < K®. The estimated group structure Q%) satisfies the
non-splitting property (NSP) if for any pair of individuals in the same true group, the estimated

group labels are the same.

Definition 4.3 describes the non-splitting property introduced by Jin et al. (2022). The latter
authors show that the STK algorithm yields estimated group structure enjoying the NSP.

To proceed, we add following assumptions.

Assumption 7 (i) Let ks and kg be different group indices. Assume that

min
1<ks<kger <K®)

‘a;? — oz]gi)* HQ > (s, L e{1,2}.

G

11) Let e the number of individuals in group k, € . Define m;,” = == forf =1,2.
Let N\ be the number of individual k, Vk € [KO)]. Define n\") = 2= for 0 =1,2
Assume K is fized and

oo > C > limsup sup TrIEf) > liminf inf 7T](f) >c>0,4=1,2.

N ke[K®] N ke[K®)]
(iii) For any combination of the collection of n true groups with n > 2, we have
. 2
T,
TS 00| Y (ol o) oo =12
\/N s=1 s*#£s 9

Remark 3. Assumption 7(i) and 7(ii) are the standard assumption for the K-means algorithm,
which are comparable to Assumption 4 in Su et al. (2020). Assumption 7(i) assumes that the
minimum distance of two distinct groups is bounded away from 0. This greatly facilitates the

subsequent analyses. For Assumption 7(iii), it can be shown to hold under mild conditions. Below

)

we explain this assumption in detail. When n = 2, it’s clear that
. 2

7%22 () 0 __® 7 ( 0

TS NOIS (o )| =L (i

I~ ks kg ks I~ k

N s=1 s*#£s 9 N '

(0) (0)
S C’ng(Nkl +Nk2 )

VN

by combining Assumptions 6(ii), 7(i), and 7(ii). When n > 2, for a special case such that the

2
(€
2 + Nk?

« ¢
‘%;_ag

¢ 0)
ol ol

= O(TVN)

> (ag)* — ag)) equals 0 for a specific s = so € [n], it’s clear that it will be non-zero
s*#s ® °

term

for Vs € [n]\{so}. Hence, if we assume || > (a,(f)* — al(fs)) is lower bounded by a constant for
s*#£s 8 9
Vs € [n]\{so}, Assumption 7(iii) will holds naturally. Except this special case, similar arguments

follow for other cases.
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Assumption 8 Let T1 = [Th], T2 = [T)\ [T1].
. Pl 0,007 ,0,(0) P w(0)
(i) T%Etenf,? Pl EF) >0, as T — oo. @Ak( Ak( — 25\7,{ >0 as N — oo, where
Ag’(e) is a stack of \) for all individuals in group k and k € (K],

(ii) There exists a constant C' > 0 such that maxc(n) je[p) T%z Zten & < C a.s. for & = ey and
Xjit, Vi € [pl.

Assumption 8(i) imposes some standard assumptions on the factors and factor loadings. As-
sumption 8(ii) is similar as Assumption 1(iv), which strengthen the Assumption 1(iv) to hold for
two time regimes.

The next theorem reports the asymptotic properties of the STK estimators.

Theorem 4.4 Fiza = ay € (0,1). Suppose that Assumption 1* and Assumptions 2-8 hold. Then
for € € {1,2}, we have

(i) if m = K,

~(€ 4
(a) Zyg%l {gi(J)((z) # gg )} =0 w.p.a.1,

~(
(b) Tl
variables,

(c) P (fdf) < K@)) >1—a+o(l),

) is asymptotically distributed as the mazimum of K independent x2(1) random

(ii) if m < KO, T = 00 w.p.a.1. ThusP (f(@) v Kw) < a+o(l).

Remark 4. Theorem 4.4 studies the asymptotic properties of the STK algorithm. At iteration
m such that m < K, w.p.a.1, the test statistics f‘,(q? diverges to infinity, which means the iteration
will continue at (m 4 1)-th iteration. At iteration m such that m = K| the test statistics f%)
is stochastically bounded and the iteration stops w.p.a.l provided a = ay — 0. It follows that
P (f((g) = K(f)> — 1 as along as we set ay — 0 as N — oco. As aforementioned, Theorem 4.4
ensures the application of K-means algorithm only for the under-fitting and just-fitting cases and
it helps us to avoid the theoretical challenge in handling the over-fitting case in the classification.

Remark 5. To allow the dynamic panels, we focus on Assumption 1%, where the error term is
ol

martingale difference sequence. Under this assumption, the HAC estimator €,

2 () A(£)) A . . .
T% > tets zi(t)zgt),e%t. If we allow the serial correlated error in the non-dynamic panels, same results

degenerate to

in Theorem 4.4 hold. We skip the proof for the non-dynamic panels with serial correlated error
for brevity. For the kernel function and bandwidth, we can follow Andrews (1991) and let & (-)

belongs to the following class of kernels:

K= {k() R [-1,1] | kK(0) =1, k(u) = k(—u), /\k(u)| du < 00,
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k(-) is continuous at 0 and at all but a finite number of other points}.

See, e.g., Andrews (1991) and White (2014) for detail.

4.5 Distribution Theory for the Group-specific Slope Estimators

For ¢ € {1,2}, let {A*(f)}k Ko be the oracle estimators of the group-specific slope coefficients
€
before and after the break point by using the true break and membership information for all

individuals. To study the asymptotic distribution theory for {&g)}k , £ € {1,2}, we only

cK(©
need to show that for the oracle estimators {&Z(O}%K(D based on Theorems 4.2 and 4.4 by
extending the result of Bai (2009) and Moon and Weidner (2017).

To proceed, we define some notation. For ¢ € {1,2}, we first define the matrix notation for
each subgroup. For j € [p], let X\)) = (Xju1,-- . Xjun)s X2 = (Xjumyn)y - Xjar)' ef) =
(€1, - ,emy) and e( ) = = (eim41)s ,eiT)/. Then we use Xﬁ e RV xTe and E,(f) c RV %I
to denote the regressor and error matrix for subgroup k € [K (5)] with each row being X J(»ﬁ) and

. (£) . . .
6,@, respectively. Let Xj(,i;) =M Ag,(l)Xf;)CM ro.o € RN T with entries Xj(,l;ii),it7 which follows by

¢ ¢ ¢
0= (M X0

!
ok it) . Further define

0 1
BSVT,l,j,k = Wt {PFO 0E (E 7, k“@)}
k

’ 1 =L 0,0, 0,0\t 40,0
B\ o = 0 [1[«: (EVEY|2) My X0F0O (PO FOO) T (420 ) AR )’} :
1 -1 _1
B%)T ik = . o [E ( E,(f) Ez(f),\ 9> Mpowxﬁ AZ,(Z) ( Ag,(e)/ Ag,(z)) ( FO.(0) Fo,(z)) Fo,(e)/] 7
k

(0 (0 (©) !
BN:rmk; = <BNTm,17k"" BNTmpk) , Vme{1,2,3},

Z Z kez)t Xk zt

zeG“’) teTs
Let WSV)Tk be a p x p matrix with (j1, j2)-th entry belng tr (MFO (z)X( » M A? (g)X( ) > Then
we define the overall bias term for each subgroup as IB%SV)Tk = —p,(f)]B%EV)TyLk — (p,@) IB%%)T72J€
Op) ith 9 = /Y. To state the mai It in this subsecti dd the followi
P By, With p7 = 7~ To state the main result in this subsection, we a e following

assumption.
Assumption 9 (i) As (N,T) — oo, T(logT)N*4/3 0.

(it) Pimy 1) o0 [N,ﬁ‘})n Ziecl(f) Siern XuX)| >0, £e{1,2},ke KO,
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(iii) For £ € {1,2} and k € [K")], separate the p regressors of each subgroups into py “low-rank
regressors” X(,)C such that rcmk( x )) =1, Vje{l,--- ,p1}, and “high-rank regressors” XEQ
such that rank(Xg.J)g) >1, V¢ {p1+1, -+ ,p}. Let pa := p—p1. These two types of regressors
satisfy:

. . . . 0) L P
(iti.a) Consider the linear combinations b- X, , == > 0 4

with py-vectors b such that ||b|l, = 1 and b = (by, 41, ,b,) . With a positive constant

ijﬁ for high-rank regressors

Cy, we assume that

[ (0%

)/
min n >C, w.p.a.l.

{”bH2:1} n=2rg+p1+1 NTE
(i1i.D) For Jj € [p], write Xg,i = w](,Z J(Z,z, ith N() vectors w]@ and Typ-vectors U]('e). Let
(wlk, z(a?k) e RVxp1 (0 = (vg),... v}f?) e RToxp1 Mw,(f) = [ng[) _

le:Z) ( ,(c) (8)) w](c " and M = I, — v® (U(Z)/U(Z))_ v’ For a positive constant

-1

Cp, we assume that (N,EZ)) A%(e)/Mw(e)A%(g) > Cgl,, and T[IFO’(@’MM@)FO’(@ >
k

Cgl,, w.p.a.1.

(iv) ForVj € [p], £ €{1,2}, ke K®,

Z Z Z Z Z ‘OOU (%1 J@tzaemXJm)‘:O (1),

ZEG(f) t1€Te t2€T; 51€T0 52€Te
where Xj i = Xji — E(Xju|2).

Assumption 9 imposes some conditions to derive the asymptotic distribution theory for the
panel model with IFEs which allows for dynamics. Assumption 9(i) strengthens Assumption 1(vi)
a bit. Assumption 9(ii) is the standard non-collinearity condition for regressors, which is analogous
to Assumption 4(i) in Moon and Weidner (2017). Assumption 9(iii) is the identification assumption
which is comparable to Assumption 4 in Moon and Weidner (2017). With strong mixing condition
shown in Assumption 1(iii), we can verify Assumption 9(iv).

The following theorem establishes the asymptotic distribution of {d,(f)

}keK(@ '

Theorem 4.5 Suppose that Assumption 1 or 1* and Assumptions 2-9 hold. For { € {1,2}, the

()

estimators {dk } are asymptotically equivalent to the oracle estimators {@Z(E)}
k keK®

cK®)
we have
dgﬁ) . agﬁ)
J4 l . l
WD, : — By~ A (0,90)),
A(f) (5)
K(‘-’> K(D
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such that Dg\,)T = diag (\/ /N Te) W( — diag <W§V)T17 .. W%)T K(@)) B%)T —

l ) ¢ y
dzag( B, ,B%K(@) and Q()deg(QU 5 Qﬁ({@)

Remark 6. Theorem 4.5 establishes the asymptotic distribution for the estimators of the
group-specific slope coefficients before and after the break. It shows that parameter estimates
from our algorithm enjoy the oracle property given the results in Theorems 4.2 and 4.4. In the
appendix, we sketch the proof by following Moon and Weidner (2017) and Lu and Su (2016).

5 Alternatives and Extensions

In this section we first consider an alternative method to estimate the break point and then discuss

several possible extensions.

5.1 Alternative for Break Point Detection

The algorithm proposed in Section 3 uses low-rank estimates of @Q to find the break point estimates.
However, by Lemma 2.1(ii), we observe that the right singular vector matrix of @0 ie. V0 contains
the structural break information when r; = 2. For this reason, we can propose an alternatlve way

to estimate the break point under the case that the maximum rank of slope matrix in the model

0
Vg — . / . Ojve,;
being 2. Let 0y ; = ool and vf = (Ut,l’ ,047,)", with the true values being vy = [
/ .
and v} := (v, ,vzj'p) , Tespectively.

Step 3*: Break Point Estimation by Singular Vectors. We estimate the break point as

}, 651)

follows:

*7)

T = argmin —
s€{2,,T— 1}T{

where ¢*(1)s = =15 o and 0*(2)5 = 0F.

The following two theorems state the consistency of v; and T1, respectively.
Theorem 5.1 Suppose that Assumptions 1-5 hold. Then ¥j € [p] U {0}, we have

max ||[0f — v)|, = O .
teln oy tH2 p(77N,2)

Theorem 5.2 Suppose that Assumptions 1-6 hold. Then P <T1 = T1> —1as (N, T) = o0

Since the singular vectors of slope matrices contain the structural change information, Theorem
5.1 indicates that we can consistently estimate the break point by using the factor estimates instead
of the slope matrix estimates in (3.4). Given Theorem 5.1 and Lemma 2.1(iii), we can prove

Theorem 5.2 with arguments analogous to those used in the proof of Theorem 4.4.
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5.2 Test for the Presence of a Structural Break

In Section 2, we consider time-varying latent group structures with one break point. In this
subsection, we propose a test for the null that the slope coefficients are time-invariant against the
alternative that there’s one structural break as assumed in Section 2.

Since various scenarios can occur once we allow for the presence of a structural break in the
latent group structures, and the number of group may and may not change under the alternative
and so do some of the group-specific coefficients. As a first try, one may ignore the information on
the latent group structures and test for the possible time-varying feature of the slope coefficients.

In this case, we can rewrite @?t as follows:
@?t = @? + Cit,
where ©Y := % Zte[T] 0Y. Then we specify the null and alternative hypothesis respectively as

Hy : ¢ty=0 forallie[N], and
Hy : ¢it #0 for some ¢ € [N]. (5.2)

To construct the test statistics, we can follow the idea of Bai and Perron (1998) and consider a
sup-F test. Let 7¢ := {T1: €T <T) <(1—¢)T}, where ¢ > 0 is a tuning parameter that avoids
breaks at the end of the sample. Define

Fyr(1]0) := max sup F;(T1),
ZE[N] Ti€Te

where

T—2p 1

F(t) = =2 [50m) - 5 @] [Bm)] - [50m) - 42 @]

5}1) (T1) and Bi(z) (T1) are the PCA slope estimators of ©Y in the linear panels with IFEs for each
individual ¢ with the prior-break observations {(i,t) : i € [IN],t € [T]} and post-break observa-
tions {(i,t) : i € [N],t € [T]\[T4]}, respectively," and ¥;(T;) is the consistent estimator for the
asymptotic variance of Bgl)(T 1) — Bi@) (T1). Following Bai and Perron (1998), we conjecture that

the asymptotic distribution for sup F;(77) is associated with the p-vector of Wiener processes on
T1€Te
[0,1], based on which one can derives the corresponding distribution of Fn7(1]0).

Alternatively, we can estimate the model with latent group structures by assuming the pres-
ence of a break point at 77. Then we obtain the estimates of the group-specific parameters
{agl) (T 1)} s prior to the potential break point 77 and those of the group-specific parame-

j€
ters {a§-2) (Tl)} ) after the potential break point T7. It is possible to construct a test statistic
JjE
based on the contrast of these two sets of estimates or the corresponding residual sum of squares

(RSS) and then take the supremum over T; € 7.. As one can imagine, this approach is also quite

!See Section C in the appendix for the detail of the PCA estimation in linear panels with IFEs.
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involved as one has to determine the number of groups before and after the break, K1) and KM,
at each T7. It is not clear how the estimation errors from these estimates and those of the factors
and factor loadings with slow convergence rates affect the asymptotic properties of the estimators
of the group-specific parameters.

Last, it is also possible to estimate the model with latent group structures under the case of
no structural change to obtain the restricted residuals. If there exists a structural change in the
latent group structure, it should be reflected into the restricted residuals obtained under the null.
Then we can consider the regression of the restricted residuals on the regressors and construct an
LM-type test statistic to check the goodness of fit for such an auxiliary regression model as in
Su and Chen (2013). See also Su and Ullah (2013) and Su and Wang (2020) for similar ideas for

model specification testing. We leave this for future research.

5.3 The Case of Multiple Breaks

In Section 2, we only consider a one-time structural break in the latent group structures. In
practice it is possible to have multiple breaks especially if T is large. Here we generalize the model

in Section 2 to allow for multiple breaks. In this case, we have

(algl), for t=1,...,11,

oz,(f), for t=T1+1,...,T5,
Okt =

a,(cbﬂ), for t=T,+1,...,T,

where b > 1 denotes the number of breaks.

To estimate the number of breaks and the break points 71, - - - , T3, in principle we can follow
the sequential method proposed by Bai and Perron (1998). First, using the full-sample data, we
can construct Fyr(1|0) defined in the previous subsection and estimate the break point as in
(3.4). Second, for each regime before and after the estimated break point, we test the hypothesis
in (5.2) and estimate the break point for each regime separately. At last, we repeat this sequential
method until we can not reject the null for all sub-samples. At the end, we can obtain the break

point estimates {Ta} i where b is the estimated number of breaks. We conjecture that we can
ac

establish the consistency of b and {Ta} .

After we obtain the estimated number of breaks and break points, for each sub-sample
{(i,t) i [N te {Tyy +1, T}} ,

a € [b+ 1] with Ty := 0 and AI;H

Section 3 to obtain the estimated group structure for each sub-sample.

:= T, we can continue Step 4 in the estimation algorithm in
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6 Monte Carlo Simulations

In this section, we show the simulation results of low-rank estimates, break point estimates, group
membership estimates and the number of groups estimates with 1000 replication, and we choose
the tuning parameter v; by the similar procedure described in Chernozhukov et al. (2020). We
will focus on the linear panel model Y = N, fi + X/,0; + e, where X = (X144, Xo4) and
Oit = (©14¢,02,it)".

6.1 DGP

We focus on the following four main DGPs:

DGP 1: [Static panel with homoskedasticity] X ;; ~ i.i.d. U(—2,2), Xa ~ t.i.d. U(-2,2),
error term e;; ~ i.i.d. N'(0,1). For ©1, we randomly choose the break point 7} from
0.4T to 0.6T.

DGP 2: [Static panel with heteroscedasticity] Compared to the DGP 1, error term e;; ~
i.i.d. N'(0,02%) such that o}, ~i.i.d. U(0.5,1). The settings for the regressors and break

point are the same as those in DGP 1.

DGP 3: [Serially correlated error| Compared to the DGP 2, error term e; = 0.2e; 41 + 1,
where 7;; ~ i.i.d. N'(0,1) and all other settings are the same as in DGP 2.

DGP 4: [Dynamic panel| In this case, X1 4 = Y; ;-1 with Y o ~ 0.i.d N(0,1). Xo ;4 ~ i.i.d.U(-2,2),
and e;; ~ i.i.d. N'(0,0.5).

For each DGP above, \; and f; are each i.i.d. N'(0,1) and mutually independent. We define

the slope coefficient based on three subcases below.

DGP X.1: In this case, the group membership and the number of groups don’t change after
the break point and only the value of the slope coefficient changes. We set the
number of groups to be 2, the ratio of individuals among the two groups is IV; :
Ny =0.5: 0.5, and the group membership G is obtained by a random draw from
[N] without replacement. For DGP 1.1, 2.1 and 3.1,

0.1, i€Gy, te{l,--- T},
0.9, i€Go, tc{l,--- ,T1},

2log(N VT
, 2log(NVT)

VNAT
2log(N Vv T)

VNAT

Ot = O2it = { 0.1 ieGy, te{li+1,---,T},

0.9 + i€Gy te{Th +1,---,T}.
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For DGP 4.1, ©3;; is same as other DGPs X.1 for X € {1,2,3}, and

(0.1, i€Gy, te{l,--- T},
0.7, i€Go, tc{l,--- T},

= log(NVT
Gl,zt— Ol—i-M 1 € G, tE{Tl'i‘lf" ,T},

i € Ga, t€{T1+1,-~-,T}.

DGP X.2: Compared to DGP X.1, the values of the slope coefficients for different groups
do not change after the break point, but the group membership changes. The
number of groups is 2, the ratio of individuals among the group groups is still
Ny : Ny = 0.5 : 0.5. Nevertheless, {Ggl),Ggl)} is different from {Gg2),Gg2)} SO
that elements in both Ggl) and GgZ) are independent draws from [N] without
replacement. In addition, for DGPs 1.2, 2.2, and 3.2,

(01, iecW, te{1,--, 11},
09, ieGY, tef1,... T},
0.1, ieG? te{T+1,--- T},
09, ieGY te{Ty+1,--- T}

O14 =O94 =

For DGP 4.2, ©3 ; is defined same as other DGPs X.2 for X € {1,2,3}, and

01, ieGV tef{l,-- Ty},
07, ieGV, tef{l,-- Ty},
01, ieG? te{n+1,- T}
07, ieGP te{Ty+1,--- T}

O1,it =

DGP X.3: Under this scenario, the number of groups changes after the breaking. We set
Nl(l) : N2(1) =0.5:0.5 and N1(2) : N2(2) : Né2) =0.4:0.3 : 0.3 before and after the
break, respectively. Specifically, for DGPs 1.3, 2.3, and 3.3, we have

0.1, ieGV, tef1,... T},

09, ieGY, tef1,... T},

@171‘,5 = @271‘75 =401, =€ G?), te {Tl +1,--- ,T},

0.5, eGP te{Ti+1,---,T}

(0.9, ieGY, te T +1,---.T)
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For DGP 4.3, ©3; is defined same as other DGPs X.3 for X € {1,2,3}, and

(01, ieG®, te{l,-- ,Tu},
07, ieGV, tef{l,-- Ty},
Q=401 ieG? te{n+1,.-. T}
04, ieGP te{n+1,-- T},
0.7, ieGY, te{Ty+1,--- T}

6.2 Results

Table 1 shows the frequency of correct rank estimation results for fixed effect and slope matrices
estimates from SVT in Section 3.3. From Table 1, we notice that the true rank of both fixed effect
matrix and slope matrix can be perfectly estimated for the sample sizes under investigation. Table
2 gives the results of break point estimation in Step 3 based on different (N,T) combinations.
Clearly, the break points can be perfectly estimated even when the break size is small as in DGP
X.1 for X=1,2,3, and 4.

Table 3 shows the group membership estimation results. With known number of groups, the
STK algorithm degenerates to the traditional K-means algorithm. The “Infeasible” part gives the
frequency of correct group membership estimation before and after the estimated break point, Gg
and G 4, based on the known true number of groups and K-means algorithm. Obviously, K-means
classification exhibits excellent performance in this case.

However, without prior information on the true number of groups, STK algorithm is able
to estimate the group membership and the number of groups simultaneously. In this case, the
frequencies of correct estimation of the group membership and that the number of groups are
shown in the “Feasible” part in Table 3 and in Table 4, respectively. Table 5 presents more results
for the estimation of the number of groups. For DGPs 1.X and DGP 2.X where we have static
panels with independent errors, the results show that the group membership and the number of
groups can be well estimated with nearly 100% correct rate under different (N, T) combinations.
For DGPs 3.X and 4.X where we have static panels with serial correlated errors and dynamic
panels, respectively, the frequency of correct estimation of the group membership and the number
of groups estimation are not great when T is small, but they are gradually approaching 1 when as
T increases. One reason for this is that we need to use HAC estimates of certain long-run variance
object in the STK algorithm and it is well known that large T is required in order for the HAC

estimates to be reasonably well behaved.

7 Empirical Study

Foreign direct investment (FDI), the inflow of the investment from one economy to the other, is

an important indicator to stimulate the economic growth. According to the literature, however,
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Table 1: Frequency of correct rank estimation

100 200 100 200
T 100 200 100 200 T 100 200 100 200
ro=1 1.00 1.00 1.00 1.00 ro=1 1.00 1.00 1.00 1.00
pePi1i1 T =2 100 100 1.00 100 pgpgy T =2 100 1.00 100 1.00
ro=2 100 1.00 1.00 1.00 ro=2 100 1.00 1.00 1.00
ro=1 100 1.00 1.00 1.00 ro=1 100 1.00 1.00 1.00
ro=2 1.00 1.00 1.00 1.00 ro=2 100 1.00 1.00 1.00
ro=1 1.00 1.00 1.00 1.00 ro=1 100 1.00 1.00 1.00
ro=2 1.00 1.00 1.00 1.00 ro=2 0998 1.00 1.00 1.00
ro=1 1.00 1.00 1.00 1.00 ro=1 100 1.00 1.00 1.00
pep 21 T =2 100 100 1.00 100 pgp4q T =2 100 1.00 1.00 1.00
ro=2 1.00 1.00 1.00 1.00 ro=2 1.00 1.00 1.00 1.00
ro=1 1.00 1.00 1.00 1.00 ro=1 1.00 1.00 1.00 1.00
DCGP 2.2 T1= 100 1.00 1.00 1.00 pgpag =2 100 100 1.00 1.00
ro=2 1.00 1.00 1.00 1.00 ro=2 100 1.00 1.00 1.00
ro=1 1.00 1.00 1.00 1.00 ro=1 1.00 1.00 1.00 1.00
DGP 23 1= 100 100 100 100 pgpgg 7 =2 100 100 1.00 1.00
ro=2 1.00 1.00 1.00 1.00 ro=2 100 1.00 1.00 1.00
Table 2: Frequency of correct break point estimation
N 100 200 N 100 200
T 100 200 100 200 T 100 200 100 200
DGP1.1 1.00 1.00 1.00 1.00 DGP3.1 100 1.00 1.00 1.00
DGP 12 0999 1.00 1.00 1.00 DGP3.2 100 1.00 1.00 1.00
DGP1.3 100 1.00 1.00 1.00 DGP3.3 100 1.00 1.00 1.00
DGP21 100 1.00 1.00 1.00 DGP4.1 1.00 1.00 1.00 1.00
DGP22 1.00 1.00 1.00 1.00 DGP4.2 100 1.00 1.00 1.00
DGP 23 100 1.00 1.00 1.00 DGP43 100 1.00 1.00 1.00
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Table 3: Frequency of correct group membership estimation

100 200 100 200
100 200 100 200 100 200 100 200
Gp 100 100 100 100 Gy 100 100 100 1.00
DGPLL ¢ 100 100 100 1.00 DGPLL ¢ 100 100 100 1.00
1. 1. 1. 1. 1. 1. 1. 1.
bep s CGB 10O 00 00 00 bep s B 100 00 00 00
Ga 100 100 1.00 1.00 Ga 100 100 1.00 1.00
Gp 100 100 100 100 Gp 100 100 100  1.00
DGP L3 o 0989 0999 0978 0.999 DGP L3 o 0989 0999 0978 0.999
Gp 100 100 1.00  1.00 Gp 0991 0.999 0983 0.999
DGP21 ¢/ 100 100 100 100 DGP 21 ¢ 0993 0998 0985 0998
Gp 100 100 100 100 Gp 098 0999 0992 0.999
DGP 2.2 B DGP 2.2 B
Ga 100 100 1.00 1.00 Ga 0992 0999 0977 0.998
. Gp 100 100 100 100 . Gp 0992 0999 0961 0.999
Infeasible  DGP 2.3 o = (998 100 0999 1.00 Feasible DGP23 o 439 (999 0992 0.999
Gp 100 100 1.00  1.00 Gp 0989 0.997 0967 0.998
DGP31 o, 100 100 1.00 1.00 DGP3.1 ¢ 0976 0997 0977 0994
Gp 100 100 100 100 Gp 0985 0996 0962 0.993
pGp32 P DCP 3.2 B
Ga 100 100 1.00 1.00 Ga 0985 0994 0973 0.998
Gp 100 100 1.00  1.00 Gp 0985 0998 0973 0.995
DGP3.3 ¢, 0981 0997 0982 0999 DGP33 ¢ 0971 0994 0968 0998
Gp 100 100 100 100 Gp 0975 0.998 0957 0.998
DGP4l o 100 100 100 1.00 DGP 41l o 0992 0999 0987 0.998
Gp 100 100 100 100 Gp 0994 0998 0952 0.997
DGP 42 B DGP 42 B
Ga 100 100 1.00 1.00 Ga 0977 0.999 0985 0.999
Gp 100 100 1.00 1.00 Gp 098 0.998 0948 0.999
DGP43 ¢ 100 100 100 100 DGP43 ¢ 0982 0998 0983 0998
Table 4: Frequency of correct estimation of the number of groups
100 200 100 200
100 200 100 200 T 100 200 100 200
KM =2 0999 100 100 1.00 KO —2 0924 0980 0.788 0.983
DGP LI @ _9 0998 100 0999 100 PCEP3L p@ _9 (0823 0979 0832 0.960
1) — . . . . 1) = . . ) .
bap1a KU=2 L0 100 100 L00 oo, KO=2 0868 0985 0759 0940
K®—2 100 100 100 0999 K® —2 0897 0971 0829 0.987
KO =2 0999 1.00 100 1.00 KD —2 0889 0988 0802 0.965
DGP L3 p@_3 100 0999 100 100 POEP33 g@_3 0932 0977 0907 0988
KM =2 0933 0990 0.864 0.989 KM =2 078 0980 0.679 0.984
DGP 21 @ _9 0936 0987 0901 0990 PEPAL 5@ _9 (938 0991 0895 0.983
KO =2 91 ) .94 .994 KM =2 . . ) .
bGP 29 2 0.919 0995 0940 0994 | 2 0933  0.988 0.630 0.975
K® =2 0930 0993 0809 0.982 K® =2 0758 0988 0870 0.989
KO =2 0940 0.989 0.724 0.990 KO =2 0877 0.991 0657 0.991
DGP 23 @ _3 o046 0995 0952 0992 PCPA3 p@) _3 (0900 0987 0874 0.980
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Table 5: Determination of the number of groups

) K@

DGP N T 2 3 4 >4 2 3 4 >4
100 0.999 0001 000 0.00 0.998 0.002 0.00  0.00

100 550 1,00 000 000 000 1.00 000 000 0.0

DGP 1.1 o 100 100 000 000 000 0999 0001 000 0.00
200 1.00 000 000 000 1.00 000 000 0.00

oo 100 1.00 000 000 000 100 000 000 0.0

DeP 1 200 1.00 000 000 000 1.00 000 000 0.00
o 100 100 000 000 000 100 000 000 0.0

200 1.00 000 000 000 0.999 000l 0.00  0.00

Lop 100 0999 0001 000 000 000 1.00 000  0.00

200 1.00 000 000 000 000 0.999 0.001 0.00

DGP 1.3 100 1.00 000 000 000 000 1.00 000  0.00
2000 900  1.00 000 000 000 000 1.00 0.00  0.00

100 0.933 0058 0009 000 0.936 0.060 0003 0.001

100 950  0.990 0010 000 000 0.987 0013 000 0.00

DGP 2.1 o 100 0.864 0126 0010 000 0901 0.09 0.009 0.00
200 0.989 0011 0.00 000 0.990 0.010 0.000 0.00

Loy 100 0919 0074 0007 000 0.930 0.067 0.003 0.0

e 2.2 200 0.995 0.003 000 0002 0.993 0.006 000 0.001
o 100 0940 005 0004 000 0809 0161 0027 0.00

200 0.994 0006 000 000 0.982 0018 000 0.00

oo 100 0940 0055 0005 000 000 0946 0039 0015

200 0.989 0011 000 000 000 0.995 0.002 0.003

DGP 2.3 100 0.724 0230 0046 0.00 000 0.952 0031 0.017
2000 990 0.990 0010 000 000 000 0.992 0.006 0.002

100 0.924 0064 0012 000 0.823 0.144 0033  0.00

100 500 0.980 0019 0001 000 0.979 002 0001 0.00

DGP 3.1 oo 100 0788 0189 0023 000 0832 0143 0025 0.00
200 0.983 0.017 0.00 000 0.960 0.038 0.002 0.00

Lop 100 0868 0109 0023 000 0.897 0.099 0.004 0.00

P 5.2 200 0.985 0.008 0.003 0004 0.971 0.021 0.006 0.002
100 0.759 0198 0042 0001 0.829 0.147 0.024 0.00

2000 900 0.940 0055 0005 000 0.987 0013 0000 0.00

Loy 100 0889 0100 0011 000 000 0932 005 0013

200 0.988 0.009 0.003 000 000 0.977 0013 0.010

DGP 3.3 100 0.802 0.175 0023 000 000 0.907 0.073 0.020
2000 900  0.965 0.035 0.000 0.000 0.000 0.988 0.010 0.002

100 0.786 0.116 0.086 0.012 0.938 0.991 0.895 0.983

100 950  0.980 0.011 0.007 0.002 0.054 0008 0.091 0.016

DGP 4.1 o 100 0.679 0160 0.52 0009 0.007 0001 0.014 0.001
200 0.984 0.009 0.006 0001 0.001 0.000 0.000 0.000

100 0.933 0051 0012 0004 0.758 0.141 0.089 0.012

bGP 42 100 900 0.988 0006 0004 0002 0.988 0.005 0006 0.001
oo 100 0630 0158 096 0016 0.870 0080 0043 0.002

200 0.975 0.013 0.012 0000 0.989 0.009 0.002 0.000

oo 100 0877 0076 0042 0005 0000 0.900 0.055 0.045

200 0.991 0.006 0.002 0001 0.000 0.987 0.010 0.003

DGP 4.3 by 100 0657 0191 0120 0023 0000 0.874 0072 0.054

200 0.991 0.005 0.004 0.000 0.000 0.980 0.012 0.008
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the effect of the FDI to the economic growth is different across economies. For instance, Adewumi
(2007) discovers that the contribution of FDI to economic growth is positive in most of the African
countries but not significant during the time period 1970-2003, and Juma (2012) shows the positive
and significant effect of the FDI to the economic growth in Sub-Saharan Africa. For the relationship
of FDI and economic growth, in general, some argue that FDI leads to economic growth and
productivity increases in the economy as a whole and hence contributes to the differences in
economic growth and development performance across countries, but others stress the risk of FDI
destroying local capabilities and extracting natural resources without adequately compensating
poor countries. Moreover, some argue that the impact of FDI is not only positive or negative, but
also depends on the type of FDI, economic conditions and policies; see, e.g., Dirk Willem (2006).

Inspired by the above observation, we aim to study the relationship of FDI and economic

growth rate. We consider the following linear panel data model with IFEs:
G’I“OU)thit = )\;ft + 917itGrowthi7t,1 + @27itFDIit + €ty (71)

where J\; is the individual fixed effect, f; is the time fixed effect, Growth;; is the economic growth
measured by the growth rate of real GDP. FDI;; is the ratio of foreign direct investment to GDP
for country ¢ at year t.

We obtain the data from the World Bank Development Indicators (WDI) historical database
for 166 countries and regions from 2000-2019. Based on model (7.1) and the rank estimation result,
71 = 2 and 79 = 1, we want to detect the break point and recover the group structure before and
after the break point.

Based on our estimation algorithm, result shows that the break point takes place at year 2006.
It’s well known that the Great Recession was observed in 2008, which is owing to the subprime
mortgage taken place in 2006. We conjecture that our estimated break point is owing to the the
subprime mortgage. Furthermore, group structure estimated before and after the break is shown
in Table 6, Figures 2 and 3. We notice that there are five different groups from year 2000 to 2005
and four groups from year 2006-2019. After the break, not only the group membership changes
but also one group is vanishing compared to the time period before the group. Consequently,
we may conclude that the effects of FDI and previous growth rate on the economic growth rate
are different across time and countries. Especially, the effects across different countries do not
simply depend on whether they are developed or developing countries or they belong to the high
income and low income countries. Indeed, the last group in the left hand side of Table 6 includes
both developed countries like United States, United Kingdom, and Singapore and developing
countries like Thailand. We conjecture that it may due to some unobservable heterogeneity like

the geographic or the spatial correlation.
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Table 6: Classification before and after the break date

Before the break After the break
Australia, Austria, Bahrain, Belize, Benin, Bosnia and Herzegovina, Botswana, The Demo- Algeria, Angola, Antigua and Barbuda, Bahrain, Benin, Cambodia, Cameroon, Cote
cratic Republic of the Congo, Costa Rica, Denmark, El Salvador, Finland, France, Gabon, d'Ivoire, Cyprus, Equatorial Guinea, Guyana, Kazakhstan, Kuwait, Malawi, Mauritius,

Ghana, Guatemala, Haiti, Isracl, Kiribati, Lebanon, Malaysia, Maldives, Malta, Mexico, Nepal, New Zealand, Pakistan, Panama, Romania, Rwanda, Solomon Islands, Spain, Sri

Netherlands, Paraguay, Sierra Leone, Togo, United Arab Emirates Lanka, St. Vincent and the Grenadines, Togo, Uganda, Zimbabwe

Angola, Azerbaijan, Chad, Comoros, Dominican Republic, Equatorial Guinea, Guyana,

Albania, Azerbaijan, Bangladesh, Bolivia, China, The Democratic Republic of the Congo,
Egypt, Ethiopia, Greece, India, Indonesia, Jordan, Laos, Lebanon, Myanmar, Nigeria,
Barbados, Albania, Algeria, Argentina, Bangladesh, Bermuda, Cambodia, Cameroon, China, Philippines, Poland, Tajikistan, Tanzania, United Arab Emirates, Uruguay, Uzbekistan,
Cote d'Ivoire, Cyprus, Czech Republic, Dominica, Ethiopia, Germany, Iceland, India, In- Vietnam, Zambia

Papua New Guinea, Rwanda, Sudan, Uruguay

donesia, Iran, Ireland, Jamaica, Jordan, Kazakhstan, Kenya, Laos, Lesotho, Mauritania, ) N N R .
Myanmar, New Zealand, Niger, Norway, Pakistan, Samoa, Senegal, Seychelles, Solomon Belarus, Belize, Bermuda, Bosnia and Herzegovina, Brunei Darussalam, Bulgaria, Cabo

Islands, Suriname, Tanzania, Trinidad and Tobago, Uzbekistan, Vanuatu, Vietnam, West Verde, Colombia, The Republic of Congo, Croatia, Dominican Republic, Ecuador, Eswatini,

Georgia, Ghana, Guatemala, Hungary, Iceland, Treland, Israel, Italy, Jamaica, Korea, Latvia,
Lesotho, Mongolia, Morocco, Mozambique, Nicaragua, North Macedonia, Oman, Papua New
Guinea, Peru, Portugal, Samoa, Senegal, Suriname, Trinidad and Tobago, Tunisia

Bank and Gaza, Zambia

Antigua and Barbuda, Belarus, Bolivia, Brazil, Brunei Darussalam, Bulgaria, Cabo Verde,
Colombia, The Republic of Congo, Croatia, Ecuador, Egypt, Eswatini, Georgia, Greece,

Hungary, Iraq, Italy, Korea, Kuwait, Latvia, Malawi, Mauritius, Mongolia, Morocco, Mozam- Barbados, Argentina, Armenia, Australia, Austria, Bahamas, Belgium, Botswana, Brazil,
bique, Namibia, Nepal, Nicaragua, Nigeria, North, Macedonia, Oman, Panama, Peru, Burkina Faso, Canada, Central African Republic, Chad, Chile, Comoros, Costa Rica, Czech
Philippines, Poland, Portugal, Romania, Slovenia, Spain, Sri Lanka, St. Vincent and the Republic, Denmark, Dominica, El Salvador, Estonia, Fiji, Finland, France, Gabon, Gam-
Grenadines, Tajikistan, Tunisia, Uganda, Zimbabwe bia, Germany, Grenada, Guinea-Bissau, Haiti, Honduras, Hong Kong (China), Iran, Iraq,

Japan, Kenya, Kiribati, Kyrgyz Republic, Lithuania, Macao (China), Madagascar, Malaysia,
Maldives, Mali, Malta, Mauritania, Mexico, Moldova, Namibia, Netherlands, Niger, Norway,

Armenia, The Bahamas, Belgium, Burkina Faso, Canada, Central African Republic, Chile,
Estonia, Fiji, The Gambia, Grenada, Guinea-Bissau, Honduras, Hong Kong (China), Japan,

Kyrgyz Republic, Lithuania, Macao (China), Madagascar, Mali, Moldova, Russian Feder- Paraguay, Russian Federation, Saudi Arabia, Seychelles, Sierra Leone, Singapore, Slovak Re-
ation, Saudi Arabia, Singapore, Slovak Republic, South Africa, St. Kitts and Nevis, St. public, Slovenia, South Africa, St. Kitts and Nevis, St. Lucia, Sudan, Sweden, Switzerland,
Lucia, Sweden, Switzerland, Thailand, Tonga, Turkey, Ukraine, United Kingdom, United Thailand, Tonga, Turkey, Ukraine, United Kingdom, United States, Vanuatu, West Bank
States and Gaza
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Figure 2: Group classification by countries using data 2000-2005

8 Conclusion

This paper considers the linear panel model with IFEs and two-way heterogeneity such that the
heterogeneity across individuals is captured by latent group structures and the heterogeneity across
time is captured by an unknown structural break. We allow the model to have different group
numbers, or different group membership, or just the value of slope coefficient changing for some
specific groups before and after the break. To estimate the unknown structural break, the number
of groups and group membership before and after the break point, we propose an estimation
algorithm with initial estimates from nuclear norm regularization followed by row- and column-
wise linear regressions. Then, the break point estimator is obtained by binary segmentation and the
group structure together with the number of groups are estimated simultaneously by sequential
testing K-means algorithm. Asymptotic theory shows that the structural break estimator, the
number of groups estimators and group membership estimates before and after the break point

are consistent, and the final slope coefficient estimators have the oracle property.
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Figure 3: Group classification by countries using data 2006-2019

With latent group structure across individuals in the cross-sectional span, we also discuss a test
for the null that the slope coefficient is homogeneous across t against the alternative that the slope
coefficient shows one structural break. Following this, we propose a way to generalize our model
having multiple structural breaks, which opens up the opportunity to have the comprehensive
analyses of multiple structural breaks together with the time-varying latent group structure for

the future research.
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A  Proofs of the Main Results

A.1 Proof of Lemma 2.1

(i) Recall that gj@ = {G(f)

1.0 7G(I§17j}. For the special case when gj(.l) = g](?) and a](f]) = ua,(f; such that

it is a constant, the group structure does not change, the break size is same for all groups, and r; = 1.
Except for this case, below we will show that r; = 2.
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where U; = A;B; 2L € RNX2 V), = N s ()

= 7= L R; € RT*% and &; = VTS; € R?*2. Tt
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is easy to verify that
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Now, let U; = U;%;/vT and V; = VTV;. We have ©% = U;V;T and V; =

Or—1y ﬁLT—Tl
D;R;. This proves (i).

(ii) Given R; is an orthonormal matrix, this follows from (i) automatically. B
A.2 Proof of Theorem 4.1

A.2.1 Proof of Statement (i).

Let R(Cl) = {{A@ }je [pJu{0} € R Z]E[p Ju{0} ||P A@ )H* S Cl Z]E[p]u{o} ||PJ(A@J)||*} By Lemma

B.4, we notice that
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{{ © }je[mum} ( )}

Recall from (4.1) that
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When {A@ } € R(3) and {A@} ¢ R(3,C2), we have

j€lplu{o} 7 jelplu{o}

~ 2
Jou [, < o

Jj€lplu{0}
which gives
LHA <% viepuo
UNT P9l = YN 5T '
So it suffices to focus on the case that {A } € R (3,Cs).
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Define the event

h n(cs) = {||E||Op <es (\/Nv \/TlogT> X 0B, < e (\/Nv \/TlogT) Ve [p]}

for some positive constant c3. By Lemma B.3, we have P(#°y (c3)) < € for any € > 0. By the definition of
{éj} in (3.1), we have
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where the second inequality holds by the definition of event <4 (c3), the fact that |tr (AB)| < || 4], || Bl
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where the first inequality holds by Assumption 4, the second inequality is by (A.1), the third inequality is
A@ H < rank(Pj(A@j)) j(A@j) - with rank(’P(A@ )) < 27 by Lemma D.2(ii) in
Chernozhukov et al. (2020), the fourth inequality is by the fact that HA@ P;(Ae,) F+H7>jl(A@j) i
(see, e.g., Lemma D.2(ii) in Chernozhukov et al. (2020)), and the last inequahty holds by Jensen inequality.

Consequently, we can conclude that
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In addition, maxye(, | |0k,; — ok,5| = Op(nn,1) by the Weyl’s inequality with ny 1 = \/7%'
Now, we show the convergence rate for the singular vector estimates. For Vj € [p] U {0}, let D; =

6, =V;5;V, and DY = 0909 = VIXIVY. Define the event

(i) ={ =0 -
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for a large enough constant M. By the above analyses, we have P (,%CN(M)) < e for any € > 0. On the
event o/ n (M), we observe that
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With Lemma C.1 of Su et al. (2020) and Davis-Kahan sin® theorem in Yu et al. (2015), we are ready to

show that for some orthogonal matrix O;,
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for C7 = Q‘fcjvé 2‘[ where the second inequality in line two is due to the fact that 7y is sufficiently small

and Cg is some positive constant.
Then ‘ vy — V;0, ‘F < C7V/Tnn 1 by the definition of V; and V;. Together with the fact that P(ay (M) —

0 by Theorem 4.1(i), it implies % HVjO — f/jOjHF =0,(Tnna)-

A.2.2 Proof of Statement (ii).

Define

> nLp 2,37

!/
o_ [0/ or 1/ A R 0 A _ (A’ A/
u; = [Ui,of" u; ] v Big =05t —ug g, Dy = (Ai,of" aAi,p) )

- / - oo
it = [(Oéﬁt,o)/ (O 1 X1 a) - (O;ﬁt,po,it),} , and D= — ) ¢dudy,.

S|~
Ngl

Let Vi 1= Yis — (Oguly) @0 — S20_1 (Oju;) ©0,;X 4. By the definition of {i;;} in (3.2), we have

2
1 )~ - o~ 1 Y2
0> T Yit — ;000 — Zui,jthXj»it B Z Yii

j=1 te[T]

2
— % <~it - (Ul 0 — Opu? 0) Vg0 — Z (U” - Oju?,j)’f)t,ij,it) — % Z f’ﬁ
te[T] JE[P] te[T)
= % |:<A;,uq§zt)2 -2 ( QS”) ( it — ’LL ¢2t>:| s
te[T]

in (2 S dudle ) <1 30 (Budi) < 20 ALdu (Y~ i)

te[T) te(T) te(T]




S 1S Aot (- )

te(T)
I ’
= Z ¢ i€t Ai,u + 2 ;1 Z (Qsm‘ ¢ ) €it Ai,u - % Z Q%tAi,u |:U(ZJ/ (&m‘ - ¢?t>:|
te[T te(T] te[T]
= 2Gi,1Ai,u + QGLQ - 2Gi’3. (A3)

We first deal with G; ;. Conditional on 2, the randomness in G; ; comes from {e;, Xit}tE[T]’ which is

the strong mixing sequence by Assumption 1(iii). Besides, we observe that
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combining Lemma B.7(ii), Assumption 1(v). Following similar arguments, we have
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where the first inequality is by Davydov’s inequality, saying that
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for any strong mixing sequence (z:,t € [T]) with mixing coefficient «(-) and % + % 4+ 1 = 1. See also in
Lemma A.4, Su and Chen (2013).

Following this, for some constant Cg, we have
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enough constant M. For a positive constant Cy, it yields that
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where the last inequality holds by Bernstein’s inequality in Lemma B.6(ii) and the fact that P (;zf?f N(M )) =
o(1). Tt follows that
Gl
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where the second inequality holds by Cauchy’s inequality and the last equality is by Lemma B.7(iv) and
Assumption 1(iv)

For G, 3, we have

Gl _ [ S o [ (0= )]
| !

bit — ¢

7 3 [

= Op(nv 1 (NT)1), (A.6)

1
2z€[N] HQie[Irﬁfit)é[T] T Z ’
te[T)

where the inequality holds by Cauchy’s inequality and the last line is by Lemma B.7(i) and (iv).

Combining (A.3)-(A.6) and Lemma B.8 yields
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The union bound of ¥ ; can be obtained in the same manner and we sketch the proof here. Define
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Following the steps to derive (A.3), we can also obtain
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where the first line is by conditional Bernstein’s inequality for i.i.d. sequence and the last two lines are by

the analogous arguments in (A.5) and (A.6). It follows that
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where the last equality combines results from Theorem 4.1(ii) and Lemma B.7(i). W

A.3 Proof of Theorem 4.2
To prove P (Tl T1) — 1, it suffices to show: (i) P (Tl < T1) — 0 and (ii) (Tl > T1) -0
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t=1 t=1
1 d 1 <
2 - )
O = —— . > Ot = T > {99,% + <@mt - @?,n)]
t=s+1 t=s+1
T1 —S (1 T— 2
Oé((i)7 + T—s ((g) +A9+ l( )

T —s

with 04(2) ~and a((g> being the j-th element of o (1> and a((g), respectively. It yields
g; d 9;

Ot =005 =65 —alld —A.i(j) = Au(l) ~ Bus(s), <5, and

5(28) _¢ Ty —s (1) )
Q)i — 05, =61 — T3 %0 " T =5 %@, iy

-1 ( . aﬁ;)’j) + 8uj) — Ay, ()

ifs+1<t<Ty

_ T—s agg), B
7,1:1:: <OZ(2(%) - Oé(1(3>_j> + Azt(]) — As+,i(j) if Tl + 1 § t S T
Then, we have
>\ 1 = (1572 > N w12
[Gj,it - @;;)] = Z [Ait(]) - As,i(])] )
t=1 t=1
and
d S012 s [T-T - 2
> [Oue -6 = 30 |G (ol —oh, ) + A - Bt
t=s+1 t=s+1 s
T T s 2
1— 2 1 . ~ .
> [T o (a(q(l) —a®) j) + Al - Aw(y)}
t=T,+1 i v
S e O ) b3 [8u) - A )
= 2 &) @) it 54,
(T —s) gi ’ t=s+1
T-T ( o ) v X
+2 T ( W ;T o ) Z [Azt(]) Ay, (])}
v © p=st1
T
(T-T)(T1—s)? [ (2 o\ o 12
(T 7 S)Q o 52) j - agl(l),j + Z I:Alt(]) - A@_,i(])}
t=T1+1



T
T, —s . _ .
rag (ol - “&,j) > [Aul) — Aea)]

i i t=T1+1
(Th —s) (T —TY) oD o® ? d . ~ 12
= T _s o T Y@ + t§1 (A () — As, i(4)]
Ty
-7 ( 2 N
2 5 < ;T O‘Q1§3>’j z [Au(j) — A, i(j)]
t=s+1
Ti—s( (2 8 4
1 2 1 . X .
e (agi”u‘ B agi”,j) t*;i-l [Ai(7) = As,i(9)] - (A.8)
=141

= (15)]2 T - = (25)]2
Define L(s) = pNT D ielp] 2oie[N] | 2ot=1 { it — O } + 2 imet1 [@j,it -0 } . Then we have

Tl—s T Tl) 1) (2 2
D IPI (ﬂm ag;%),J

Jjelpl i€[N]
DI INT 2 2 S (8l - A )
Jep]ze N]t=1 Je[p]ZG[N]t s+1
T1
+7 Z Z ( (2> a(z(;) ) Z (At (5) — Ay i(d)]
JG [p] i€V t=s+1
T _ T 5
1— 2 1 N & .
v 25 Z = ( @ —al) ) S [Aal) - Aes()] =S Lels). (A9)
Jjelpli€[N t=T1+1 =1
Obviously,
L(Ty) = Lao(Th) + Ls(T1). (A.10)

Note that the event Ty < T implies that there exists an s < T} such that L(s) — L(T}) < 0, which means
we can prove (i) by showing that P (3s < Ty, L(s) — L(T1) < 0) — 0. By (A.9) and (A.10), we observe that

L(s) = L(T1) = La(s) + [La(s) — La(T1)] + [Ls(s) — La(T1)] + La(s) + Ls(s)
= Ay (s) + A2 (s) + A3 (s) + Aa (s) + A5 (5). (A.11)

Recall that ny 2 = \/%(NT)UQ. Let % = ks and note that 0 < % <k, < T2

— T

= 1. We analyze
the five terms in (A.11) in turn.
For A; (s), we have

(Ty — s) (T —Ty) e @\’
ZZ T _ 5 Q) T (g
g 5]

T imiem : e
T 5 ( (1) @ \°
1 — 1 2
Sk =UEET S DI CHIET
N e
I —s 1 (1) (2)
:T—S( *TT)]TZ afl)fagl@) )




1—7
= ! - f)DNa = k,O(C3 ), (A.12)
2
where Dy, 1= ﬁ Zie[N] 04(1(2> - Oé(%; and the last equality holds by Assumption 6.
9; 9; 2
For A (s), noting that
T _T T 1 T
X . 1 . .
Ar () — A i(y =T ZAzt Z Z Ap(h)| = T ZAit(])Jr* Z A (F),
1 =1 t—st1 g — S et
we have
1AL, i (7) = sA%; (G) = (Th — 5) A%, ; (7) + s [AF, ; (5) — AL, ()]
= (T1 = ) A%y 3 (5) + 5 [Aryi () + Bsi(7)] [Aryi () = Asi ()]
T T S T
A . X . X ) } 1 .
= (11 — ) A%, (7) + [Dryi () + As ()] [ > Aulh) - T > Au()
t=s+1 L)
It follows that
s 5 T )
- Xy {Z [2i(0) ~ Bes@)]” — 3 [Auls) ~ Ay i ()] }
JElp] i€[N] L t=1 t=1
T
pNT >0 {Z —sA3, () = DAL () + Tidg, (j)}
jelplie[N] \t=1 t=1
S DIDY { S0 830+ 118, () - B2, <j>}
J€[p] i€[N] t=s+1
=~ ZZZA +HSNZZT1,'
Jeplle[ Jt=s+1 ]EP]ZG N]
Z Z ATl, +A5 l lt
Je[pIZE[N] e
1
Z Z (A7, i () + Asi(h)] iZAit(])
Je[p]ZG[N] t=1
= rsOp (77N,2> = s0p(CR7): (A.13)
where the second last equality holds by the fact that
Ai(5)] =0 A4
Z_G[N];g?ﬁje[p]l (7)) = Op (1 .2) (A.14)
from Theorem 4.1(iii) and
_ 1<
max |Ag;(j)| = max |- Ai(i)] < max Ai(§) =0 9),
Sy A0 = ey |5 t; D)= e i e S0 = O (v2)
1 &
max |Ap ()= max |= Ai:(5)| =0 . A15
ey Ana Ol = max 170 ; (7)) = Op (m2) (A.15)
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Similarly, noting that

T T
~ . = . 1 . 1 )
A () = Boral) = =g 20 Bali) == 2 Buli)
t=T1+1 t=s+1
1 1 T r r
<T T, T—s) Z Azt(ﬂ)"‘iT Z A (j) — Z Aii(7)
t=T1+1 t=T1+1 t=s+1
T o)
T1 — S 1
A A
(T Tl) (T S) Z 1t(.7) T S Z 1t(,])
t=T1+1 t=s+1
and
(T Tl)AT1+1(j)_( )Angz()
= (s =T A%, () + (T =) A%, () — A2 ()]
=(s—T) A%, () + (T —s) [Br, . (G) + AS+ i(7)] [Am i () = A, ()]
T
(S_Tl)ATH_z( ) [AT1+Z(j)+AS+Z T T Z Azt Z Azt(]) ]
L4 t=s+1
we have
T ) , T )
Z Z { Z Azt(]) As+ z(])} Z [Azt(J) AT1+,z (])] }
JG[p i€[N] (t=s+1 t=T,+1
1 ) T
-7y { S ALG) - (T -9)A ()~ Y AL(G)+(T-T) A, u)}
b j€lp)ie[N] \t=s+1 t=T)+1
1 &l _ _
= 8T { S ARG+ (T-T) A% () - (T-9)A,, m}
j€[p] ie[N] \t=s+1
T
1
:HSPN(TI_S)ZZ 2 AU ZZ T
JElp] i€[N] t=s+1 Je[p] i€[N]
1 _ o
ths SN [An () + Al Z Ai(j
P jemiemv e
Z Z AT1+7, j +As+, Tlfs Z Azt
Je[p i€[N] t=s+1
= rsOp (77N,2> = ks0p(CR7); (A.16)

where the second last equality holds by (A.14) and the fact that

T

A 1
max AS i - = max A’L . _ O 7
i€[N].j€lp) [Bay 4] ieNlgep | T — s t§1 t(J) p (M ,2)
max |A i(j)] = max Au(j)] = ) A 17
i€[N],j€[p] | s (j)| i€[NT,j€[p] Ly ;ﬂ v Op (mv2) ( )

11



Last, we notice that

Ay (s) + A5 (5)

T-T L2 T — s T
@ — a1 N A . 1= .
Z > (O‘ W, <3> j> {TS Do [l —Ae )] = D [Bul) -
JG[P] i€[N] e t=s+1 =Tl
T T
2 1 2 T— T1
S IR (R I = DT B pipt et
j€lp] i€[N] ‘ ‘ t=s+1 t=T,+1
1— TT 1 1 2
S S D ID M (L I R et
j€[p] i€[N] S5 1
1—7p 1
Ty (o, ~oB,) g 2 ut
T P jepriem N T : LT
2
l—m |1 o @
< 2% @ m =@ N Z Z Z Aul(j
T €[N] ! vz i€[N] p ]e[p | t=s+1
2
l—mp |1 o _ ol
AT W Y T Y@ Z Z Z Air(j
T i€[N] ! Loz €[N] ]e[p ] =Ty +1
1—7mr

=KsT 5 CNTO (nn,2) = Ks0p(CFrr)s

where the first inequality holds by Cauchy-Schwarz inequality.
Combining (A.11), (A.12), (A.13), (A.16), (A.18) and Assumption 6(i) yields that

L(s)— L(Ty) = HS%DNa + H50P(<NT)

Then for any s < T,

. 1 1—7p 1
pim (N 1) 500 —5— [L(s) = L(T1)] = plim T)»co ] _ s (2 Do 2 (1=7)Dqo >0,
KsCxT T CNT

where D, ::plim(MT)_)ooéDNa > 0 by Assumption 6(i). This implies that

P (T1 < Tl) <P(3s < Ty, L(s) — L(T1) < 0) — 0.

By analogous arguments, we prove (ii) in the following part. When s > T}, we have

1 5 . 1 i . 1 S — T]_ 2
s Z@jxit s Z {G?,it + (QJM @? zt)} T (<3> i + s ((Z> +A, ()
t=1 t=1 e

T T
= (95 1 . 1 . 9
;71') = T —s Z @Jﬁit = T_s Z [@?,it + (Gj,it - G?,it)} - O‘((3> + AS+, ( )
t=s+1 t=s+1

It follows that

. . ﬂ?(d&sﬂﬁ;)+AMﬁ—Amo>iHStgﬂ
Ot — @(vlvs) _ 9;J 9; 5]

" 2 1 = , and
% (afﬂ;)d - Oé_f](2> j + A (j) — Asi(F) f+1<t<s

(A.18)

(A.19)



Ojit — 62 =0t () — As, (), s<t<T.

Jst

As in (A.8), we obtain that

i 9;

t=Ty+1
T [ (2 a - -
+2— |y —ayg, Z [Azt(])_Asz(])]
’ t=Ty+1
(s—1T)T (1 (2) ? - . < 72
= (o —al )+ Zj [2i:(j) = Bsa(5)]
T1 T
Ti(s=T) () @) 1 ; 1
+2 s aggl))j _ag§2)7j T Z Au(j) — s— T, Z At (7)
t=s+1 t=T1+1
and
T : 2] T ) ,
S 65— 68 = 30 [Aul) - A, )]
t=s+1 t=s+1
It follows that
Ty(s—T1) 1 W o
L(s) — L(Th) = TPTV 4 ‘ Oéggn - aggz) )
€[N
1 s _ g _ )
T D D { [A0(5) = Asi(D]” =D [AulG) = Ary i (4)] }
b jelplie[N] L t=1 t=1
1 L A )
+ NT Z Z { Z [Alt(]) - AS+7i(j)] - Z [Azt(.]) - AT1+,i (j)] }
P e iem L=t T
Ti(s—T1) 1 1 & 1 T
1(s— 11 1 2
+ > > olt) =o'l ) |+ > Aull) - — > Au)
sT pN ) HY/ 9; hJ S 1
Jj€lp]i€N] t=s+1 t=T7 +1

where By (s) parallels Ay (s) + A5 (s) in (A.11). Let &y = 2% € [%,1— 7] . Following the analyses of

Ay (s)’s, we can readily show that

TT:
By (s) = Rs;%DNQ = isOp(CRp)s Be(s) = EsOp (N} 2) = Rs0p(CRop) for £=2,3,
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and By (s) = ksOp (NN 2(NT) = Fs0p(CRp). It follows that for any s > T,

1 "r 1
P 1) 00 = [L(5) = L(T1)] = Plimy, 1) o0 11 ——Dpno > 7Dy > 0.
SCNT CNT

This implies that
P (T1 > Tl) <P(3s> T, L(s) — L(T1) < 0) — 0. (A.20)

Combining (A.19) and (A.20), we can conclude that P (Tl = Tl) -1 1

A.4 Proof of Theorem 4.4

By Theorem 4.2, P (Tl = Tl) — 1. It follows that we can prove Theorem 4.4 by conditioning on the event
that {Tl = Tl}. Below we prove the theorem under the event that {Tl = Tl}.

. . . [ . . / .
Define @0’(1) _ (93‘,1‘1»"' ’ej,iT1> L O%® (@j7i7T1+1’ . 7@”.:,1) 7 ﬁi () 1 (@ (1)/’ . 7@0,(1)/)/7

VX \/Tl D,
and 50 @ = JIT?(Q?ZEQ)/, e 7@2252)/)’. Noted that in the definitions of BS’(D and ﬂf( ) we use the true

break date T; rather than the estimated one compared to ﬁ.i(l) and Bi(z) defined in Step 4. As in (3.5) and
(3.6), we further define

0,(0) _ o L - ‘ 3000 _ A21
{0} e {az%}mm P (A21)
U S e i€[N]
Q?”(”f) = arg min - ag 5?‘ , Yie[N]. (A.22)
ke[m] 2

(i) Under the case when m = K Theorem 4.4(i.a) is from the combination of Lemma B.9 for the
consistency of the membership estimates via K-means algorithm and Theorem 4.2 for the consistency of the
break point estimator.

Next, we show (i.c). Recall that z, is the critical value at « significance level calculated from the
maximum of m independent x?(1) random variables. By the definition of the STK algorithm, we observe
that

(KO <KO)>P (10, <2),

which leads to the fact that (i.c) holds as long as we can show (i.b). This is because, under (i.b), we have
P (F%)w) < za> >1—a+o(1).

Now, we focus on (i.b). Notice that 1"](C )KM)

for k G [K®)]. From Theorem 4.4(i.1), we notice that the we can

depends on the K-means classification result, i.e., the
estimated group membership Gk KO

change the estimated group membership GO , to the true group membership fo), and this replacement

kK
has only asymptotically negligible effect. Recall that 71 = [11], T2 = [T]\[T1]. Define T1_1 = T1\{T1},
To.c1=T\{T}, Th;={1+4,---,Ta} and To; = {T1 +1+j,--- , T} for some specific j € Ty, _1, similarly
as previous notation. Moreover, let

~0,(¢ N £0,(¢ 2
({91 ;5 ;((2) } © 7Ak (]()(Z)a {ft k(]){(l)} ) = arg min Z Z it — Xz{tei - /\;ft) s
*, ieG! ; o, teTe

{03,A:}, ec®” Afther, eG“) teT,
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! !
-0,(1)  _ (¢ 7 ~0,(2) _ (7 ¢ A0 _ /50
Folko = (fl kK val,k,K<1>) ke = (Fnieros o frke ) Ao = Wgro §, g0
k

and ( 20, (¢ )) denote the t-th row of M 0.,(0) X( ) Further define

k K(®)

(Xi“))/M o X

s0,0 1 40,(¢) 50,(0) L
t()lc,K“f) - ‘ () Z ai,k,K@)v Sii,k,mf) - T, )
k| ieg®
O0-(¢ AOéoeA 1 . £0,(£) 20,(6)/ £0,(£) 20,(¢
0 = £ T AODOG L T kG0 T (O b + 2O Vi),
teTe ¢ JETe, -1 teTe, 5
GG -1
£ 0,(0) (0 Ak K<")Ak K® NO)
a =\ —_— A
ik, K (6) ik, K (© ik, K (©
&t

Then Vk € [K®)], we can define

1 &0,(0)
’Gg)‘ ZieG}ﬁ Si,k,Kw -p

V2p

(0, (¢ ¢
Fk,(1<)<e> = ’Gé)‘

where

4 50, (¢ 20.00) \ &0, ~0,(0 —1 50, ~0,(¢ 20,(¢ £ 0,(0) o\ ?
Sz k, KW =T (ei,li,;(“) o ek,(K)“)) Sii,(k,)m@) (Qi,li,;((”) Sii,(k,)K“) (91‘,15,1)((0 - Hk,ix)w)) (1 au(k KU’)/ ‘GIS)D

(0 (£)

RE©O ™ N(0,1) owing to the fact that the slope coefficient al(f) is ho-

By Lemma D.8, we notice that I’
mogeneous across i € G,g Vk € [KY]. Furthermore, {FZ (Ii(,), kelK ]} are asymptotically independent
under Assumption 1(i). It follows that

NGO (A(e) )2 ( 0,(¢) )2
r I — I 1)~ Z
ké?[%ﬁ)] kKO ,?elﬁnx] kKO + 0p(1) 5

where Z is the maximum of m independent x? (1) random variables. Then Theorem 4.4(i.b) follows.

(ii) When m < K, Theorem 4.4(i.1) does not hold and we can not change the estimated group
membership Q’ )0 to the true group membership GW. To get around of this issue, we define the “pseudo
groups”. For m < K© | let GY = {G’u) e ,G%),m} such that {1,--- N} = Gglj)m U---u G%),m, which
indicates one possible partition of the set {1,---,N}. We further define G to be the collection of all
possible G%).

By Theorem 4.4(i.c), we can conclude that P (IA((@ =+ K(Z)> < a + o(1) provided we can show that

f“Sf? — 0o when m < K. By Lemma B.11, we notice that C;S,? IS G%) w.p.a.1l. Conditioning on the event

{QA%) € G%)} N {Tl = Tl}, we have

¥ > min 1% (gW) ‘= min {max [fg:gf? (G’(’fz”)r}’

g([)eG(e) g%)EG%) ke[m]

where

1 &0,(0)
© Ez el Si,k,m —-p
00 (60,) = ‘G@) ‘ [¢,] ~iecin
k,m k,m k,m \/%
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i,k,m

and §1”) is defined similarly to S K(,) in the proof of (i).
Owing to the fact that ‘G ‘ = m&" which is a constant since K® is a constant, we can show that

F(e) — 00 by showing that o (O ( 7(,[;)) — oo for any possible realization Q%). Under the case when
m < KW@ there exists at least one k € [m] such that the slope coefficient is not homogeneous across
i€ G,(fzn Assume that G,(f)m contains n true groups, i.e., G,(f)m = G,(f;) U---u G,(fn) for ki, -k, € [KY)]

and ki # - -+ # k,. Then for ¢ € G,(fi)m, we have

" -1 1
R0 =S fre 6l =1 3 a4 3 (Mt -1 3ol 1 {ieal)
s=1 s*#£s
- ~1 o R
- : et
S Al 4+ S (al e )1 {icay
s*=1 s=1 s*#£s
=020 49
such that
2 (0
® n > o
Ty 2 T~ Mg, o © Ty ©||s*#s ©)
7N€[N] QZWET Z?; (O[kb —Oéks*) :mz;]vks ﬁ—aké — 0
) s= s s 9 s=

2

by Assumption 7(iii). Following this, it yields that ‘F (O (Ggfzn)‘ — oo for some k € [m] by Lemma D.9.
By the definition of o A ( (z)) we have T'% (O (Q% ) — 00, which yields f%) — oo w.p.a.l for m < K®
and P (K@) £ K f>) <a+o(l). W

A.5 Proof of Theorem 4.5

To show Theorem 4.5, we can directly derive the asymptotic distribution for the oracle estimator dz(z) by
combining Theorems 4.2 and 4.4.

The asymptotic distribution theory of the linear panel model with IFEs has already been studied in
the literature; see Bai (2009), Moon and Weidner (2017) and Lu and Su (2016) for instance. However,
Bai (2009) rules out dynamic panels. Moon and Weidner (2017) allow dynamic panels and assume the
independence over both 7 and ¢ for the error term. Under Assumptions 1* and 2-9, which is for the dynamic
linear panel model, Theorem 4.5 is same as Theorem 4.3 in Moon and Weidner (2017).

Below, we follow the arguments in Moon and Weidner (2017) and sketch the proof to allow the serial

correlation of error terms in non-dynamic panels.! To proceed, let (C%)T,k be the p-vector with j-th entry
being C}\).,; = C1 (A%“), Fo0 x4, E;(f)) +C, (A%(e)’ Fo0, x4, E;(f))v where

<C1( () FOO X“) E( ))

1
Sk —tr (MFO (Z)E()M O(Z)X(Z)),

NOT,

Tt is well known that one cannot allow for both dynamics and serially correlated errors in the panel for the

least-squares based PCA estimation to avoid the endogeneity issue.
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-1 -1
Ca (Ap, PO, X, B) = - tr <E,(f)MFo,<e>E,(f)/MAo,u)X%FO’“) (P o) (AR AR ) AQW)
00X

NOT,
1 —1 -1 —1
R (E;(f)/Mo(mE()MFo XA (AP A @) (PO po) (A AR FOW)
VNOT,
k 4
o
VINOT,

By Lemma B.12, we have 4/ NV, (Z)T ( Af) oz,(f)> W%Tk(C%Tk + 0,(1).

In Moon and Weidner (2017), the asymptotic distribution is derived mainly relying on their Lemmas

-1 -1 -1
tr (E,i”’MAO,mXY’,lMFo,mE,(f”AZ’“) (AR A @) (P po) (A AR F‘W)’> .
00X

B.1 and B.2. Lemma B.2 is the standard central limit theorem, which also holds under our Assumption
1. For Lemma B.1, we need to extend it to allow for serially correlated errors in non-dynamic panels in
Lemma B.13. Hence, by Lemma B.13 and following the analogous arguments in the proof of Theorem 4.3
(Moon and Weidner (2017)), for a specific £ € {1,2} and k € [K®)], we can readily show that

L L L L l L
P NOT, (3 o) ~ By ¥ (00)

which yields the final distributional results in Theorem 4.5 by stacking all subgroups of parameter estimators

into a large vector and resorting to the Cramer-Wold device.

A.6 Proof of Theorem 5.1

0

Recall that o] ; := W o = (05h, L 00) vp ”007” and v} = (vi),---,vf")". With the fact
: J
that
oy Oy i |05, — 050 Il
loeslly  []O505], 190115 (10502511,
(0 = 0500,) 050811, + 050 ([l05085, = 1ovs1l)
19e,31l5 (05921, ’

It follows that

max||v vfll, <p  max_|lof; —vi,, <2p max [ 7Ojvg’j||2 =0,(nN2)

- = Uil < —_— = N,2)s

eefr] "t T Vgeppleerr Y N2 T W eplier ([, :

where the last line is by Lemma B.7(i) and Theorem 4.1(ii).

B Technical Lemmas

Lemma B.1 Consider a matriz sequence {A4;,i=1,---,N} whose values are symmetric matrices with

dimension d. Suppose {A;,i=1,--- N} is independent with E (4;) = 0 and [|A;||,, < M almost surely.

Let 02 = HZiE{N} E (Af) , for allt > 0, we have
op

P ZA >t| <d-ex —ﬁi
- P o2+ Mt/3 "

i€[N] op
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Proof. Lemma B.1 states a Matrix Bernstein inequality; see Theorem 1.3 in Tropp (2011). =

Lemma B.2 Consider a specific matriz A € RN*T

dom vectors in RT with EA; = 0 and 3; = E(A;A}). Suppose max;en [|Ail, < /m almost surely

whose rows (denoted as Aj) are independent ran-

and max;en [|Xill,, < M for some positive constant M. Then for every t > 0, with probability 1 —
2T exp (—clt2), we have

IAll,, < VNM + tv/m + M,

where ¢1 1s an absolute constant.

Proof. The proof follows the argument similar as used in the proof of Theorem 5.41 in Vershynin

(2010). Define Z; := 3 (4;A; — ;) € RT*T, and we notice that (Z1,---, Zy) is an independent sequence

with E (Z;) = 0. To use the matrix Bernstein’s inequality, we analyze [|Z;[|,, and |3 ,cn E (X2)|| as
followings: 3

1 1 m+ M

A< — (|44 4 < = (11412 » < ——— . as. .
1Zillop < 5 (14l + 1%l ) < 5 (143 + 124l < 5 as (B.1)
uniformly over i. Moreover, note that
E[(4i4D)°] = E[JAill, 4:A7) < m,
and
1
2=+ [(A,-A;.)2 C A, - S AN 23} .
We then obtain that
1 2 1 2 2
2 2
IE(22)],, = HE{N [(44) —Ei]} < {HE [asy?]| + ||zi||op}
1 mM + M?

< 5 (20, +15405,) < == as

uniformly over 4, and
M + M?
S E(22)|| < Nmax|E(22)], < ZEEE g (B.2)
i€[N] WEIN] ” N

op

Define € = max (\/ Mo, 52> withd =t % Combining (B.1) and (B.2), by matrix Bernstein’s inequality,

we have

P %A’A—‘ZZZ- >eb =P ZZZ- >
1€E[N]

op i1€[N] op

2 2
€ € € N
< 2Texpq —cmin | ———-0 M27m+M>}<2Texp{—cmin <,€) }
{ <1¢ mAL M m+ M

62N 9
m—i—M} = 2Texp{—clt },

< 2Texp{—
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for some positive constant ¢, where the third inequality is due to the fact that

min ﬁ €
M’

min (max (52754/M) , max (\/M(S, 5))

54
min (52,\/%) =%, i 87> T
64

min (54/M,52) =62, if 8’ < a

It implies that

—A A-— Z 2| < max (\/Ms, 52) (B.3)

ZE [N] op

with probability 1 — exp (—ct?). Combining the fact that ||%;|| < M uniformly over i and (B.3), we show
that

1 2
N”A”OPZHN Zz + —AA——ZE
e[N
op op
M M
< max || +\/M6+62§M+\/Mt\/m+ i
iepny o N N
2
M
§<\/M+t m;:[ )

and the result follows: [|All,, < VNM +tym+ M. =

Lemma B.3 Recall that Xj = {X;;:} and E = {eit}. Under Assumption 1, Vj € [p], we have | X; © E||,,, =
0, (JN+ \/TlogT), and || E||,, = O, (\/N+ \/TlogT).

Proof. We focus on [|X; ® E||,, as the result for ||E|,, can be derived in the same manner. We first
note that, conditional on {V } p]U{0)” X; ©® F are independent across i. Denote the i-th row of X; © E
as A} = !, where X and E! being the i-th row of matrix X; and E, respectively. Recall that 2 is

the minimum o- ﬁeld generated by {VO} In addition, for the ¢-th element of A;, we have

jelplufo}

E [Xj7iteit|@] = E {Xj,itE [eit|@, th}] ‘@} = 0,

where the second equality holds by Assumption 1(ii). Therefore, to apply Lemma B.1 conditionally on 2,
we only need to upper bound [|4;|, and E [4;A}|2].

First, under Assumption 1, we have = Zte ral (Xj, weir)? < C a.s. by Assumption 1(iv), which implies
||A||2*||X]1®al||2<cﬁa$ (B4)

Second, let ¥X; = E {[ 5i O E;) (X;,0 EZ)'} ’@} with (¢,s) element being E (Xj’ith,iseiteis|9) . Re-

call that [|-||; and ||-||., are norms induced by 1- and co-norms, i.e.,

||E Hl - max t% |E 7, ’Lth zseitezs|-@)| ) and ||E || - ?Elax ZT] |IE 7, 1th,iseiteis|@)| .
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By Davydov’s inequality for strong mixing sequence, see also in Lemma 4.3 in Su and Chen (2013), we can
show that

max E ‘]E 7, Zth zseztezs | = max § ’CO'U 7, zteltv s zseis‘@”
s€ T] se[T

< Z (B [IX; el | 2]} {E UXwew}rf D]V x ot — )0
(7]

2/ _
< s (B [Xueal’|2]F max 3 fa e - )

< c9 a.s.,
where co is a positive constant which does not depend on 4. Similarly, we have

{2%}? Z ‘]E thXj zseztezs|—@)| < C2 a.S.

Therefore, by Corollary 2.3.2 in Golub and Van Loan (1996), we have

max [y < /IS 18 < 2 0. (B.5)

Combining (B.1), (B.2), and Lemma B.1 with ¢ = y/log T, we obtain the desired result. m

Recall that R(C1) : {{A@ Viewogy ERVITE S PR Ae)|, <G B HPJ-(A@].)H*}.
jelplu{o} jelplu{o}

Lemma B.4 Suppose Assumptions 1-3 hold, then {A@J} € R(3) w.p.a.1.
Jjelplu{0}

Proof. Recall that event

hn(es) = {||E||Op < ey (\/ﬁv \/TlogT) X0 EBl,, < e (x/ﬁv \/TlogT) Vje [p]}

for any positive constant ¢z with P(7°(c3)) = € for any € > 0 by Lemma B.3. Under event <4 n(c3), by
the definition of ©; in (3.1), we notice that

2

1 1 .
J€lp] J€lp] elplu{o}
(B.6)
and
2 2
1 1 - .
NT Y-0)- ) X;06] —ﬁ Y—90—2Xj®@j
J€lr] J€lp] P
2
= N7 Z Z — | €it — A@g,lt + Z XJ 1tA® Jit
zE[N]tE[T j€lp)
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JE[p] i€[N] te[T] J€[p]

< N2T tr (E’A@0> Z — |tr ((E@Xj)’A@j)’
J€lp]
2 2 ~
< <= Bl + Y 7 1B X, || A
JElPp]
NV /TlogT || «
<2 Y \FVN—TOg HA@J. . (B.7)

j€lplu{o}

where the second inequality holds by the fact that tr(AB) < ||A||op||B||«, and the last inequality is by the
definition of event .27 y.
Combining (B.6) and (B.7), we have

P {m(ﬁvm)

o

iy oy (62, - H@jH*)} wpal.  (B9)

j€lplu{0}

Besides, we can show that

|®

= HA@], + 0!

=88+ Pt Be,) + Pi(de,)

’ *

> 68+ P} (Be,)| - |Pide,)

= lesl,

Pt (de,)

= [Pste)

where the second equality holds by Lemma D.2(i) in Chernozhukov et al. (2020), the first inequality is
by triangle inequality and the last equality is by the construction of the linear space Pj‘ and P;. Then
combining (B.8) and (B.9), w.p.a.1, we have

YDINCH I iR PTCIRENED SR ARAEH L

jeplu{o} jelplu{o} jeplu{0}
and
L= < (VN V/TlogT)
> wi{[[er (a)]| =[P (Be))] S =20 3 v S
jeplu{o} jelplu{o}
B (VN Vv /TlogT) L (%
—2 3 v P (Be)) |+ [P (2e)] -
jelplu{o}
If we set v; M VTlogT) e obtain the final result

s <3 S [ (80)

jelplu{o} t o jelpluio}

*

Lemma B.5 Consider a sequence of random variables {B;,i =1,--- ,n}.
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(i) Suppose {B;,i=1,--- ,n} is independent with E(B;) = 0 and maxcpy) |Bi| < M a.s. Let o? =
>icm E (BZ). Then for allt >0, we have

P ZB.>t < ex _ﬁ
i =PV M3

1€[n]

(ii) Suppose {B;,i =1,--- ,n} is sequence of martingale difference with E; 1 (B;) = 0 and max;c[,) |Bi| <
M a.s., where E;_1 denotes E (-|.%,;_1), where {%#; : i <n} denotes the filtration that is clear from
the context. Let Zie[n] E;,_: (Bf)’ < 2. Then for allt > 0, we have

t2/2
P Z Bi >t S exp —m .
1€[n]

Proof. Lemma B.5(i) and (ii) are Bernstein inequality for i.i.d. sequence and Freedman inequality for
m.d.s., which are respectively stated in Lemma 2.2.9 Vaart and Wellner (1996) and Theorem 1.1 Tropp
(2011). =

Lemma B.6 Let {Yi,t =1,--- T} be a zero-mean strong mizing process, not necessarily stationary, with
the mizing coefficients satisfying a(z) < ca¥* for some co > 0 and v € (0,1). If sup,eiqy [ Te| < Mr, then

there exists a constant ¢y depending on c,, and 7y such that for any T > 2 and € > 0,
) Pe|S T > < - cac®
(Z) t=1 —t € > exp MZT+eMyr(log T)(loglog T) [~

g T 2
(it) P{’Zt:l Tf’ > 5} < exp {_UST+M%‘T‘4EEMT(IOgT)2 }’

where v§ = supye ) [Var(Te) +23 o, [Cov(Ts, Ts)|]-

Proof. The proof is the same as that of Theorems 1 and 2 in Merlevede et al. (2009) with the condition

a(a) < exp{—2ca} for some ¢ > 0. Here we can set ¢ = —log~y if ¢, > 1 and ¢ = —log(v/c,) otherwise. m

Lemma B.7 Suppose Assumptions 1-4 hold, for j € {0,--- ,p}, we have

(i) max;e|n] Hu?jHQ < M and max,c(r HU?JHQ < % < %}

M < 2C—M w.p.a.1,

(i1) maxyery [|Ofon4]], < 725 <

~ 2 .
Git ) < % (1+pC) w.p.a.1,

(iii) max;ec|n) % Zte[T] ’

. 2
Pit — ¢?t = Op(”JQVJ(NT)Q/q)-

(iv) max;e(n) % ZtG[T] ‘

Proof. (i) Recall that —~—-09 = UV with U = VNUJE) and V; = VTV;. Note that

1

1
04,0 _ 050 _ 770 0/0 _ 04,07 _ 5 07,0
JROIV) = VNUS] = U}, and U6 = VTEIV) = SV (B.10)

22



Hence, it’s natural to see that

.

1
= o <2 lle)

where the first inequality is due to the fact that V; is the unitary matrix and the last inequality holds by

‘ [0

il <M,

Assumption 2. Since the upper bound M is not dependent on i, this result holds uniformly. Analogously,

we see that
Jedll, < st | 26t |, < e |61, < o
(i) As in (B.10), we have
lNdj(l)'éJ = VTSPV = 5070y,
and
e ER e e =l (DI

where the last inequality holds due to the constrained optimization in (3.1) and the fact that max;¢| ; 51:,} — U,;l ‘ <

U;(Jl_J w.p.a.l.
(iii) Note that

m% < mad 7 310Gl + 3 7 3 105 1P
e S =7 jem T iem
< max e ~UH 1+max Z Z 1X;ul” p < AM* (1+pC)
te[7].5€[plu{0} 2 et >
where the last inequality holds by Lemma B.7(ii).
(iv) Note that
1 1)/~ 2
%*Z\% =7 2 o s —otall + 2 e 7 3 1505k
. 2
EICTREY AT IS
S5 3 o oot 3 o -t

HOOVO 1 H + p(NT)?/4 ma 7 HO V- VOH -0, (mv 1(NT)2/‘7>
J€lp]
where the second inequality is by Assumption 1(v) and the last equality holds by Theorem 4.1(ii). =

Lemma B.8 Under Assumptions 1-5, we have min; e[y Amin (‘iy) > %’5 w.p.a.l, and ming ey Amin (i’t) >
%” w.p.a.l.

Proof. Recall that ®; = & Zt L 9%0% and ©; = % Zt | by, where

- ~ 5 !
o= (000, 01 X1ty -,V Xp i) and ¢y = [(06%0)' (O 51 X1a) - (OB p Xy i) } :
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Uniformly over i € [N], it is clear that

- AM amy X ~
‘ i < 07 ||Oovto ”goHﬁciTZZHO;%*U?,jHQIX',:
77 j=1t=1
4M 1 4M2 p . 1/2
< ZT ’OOVO vy H Z JT HO V V; H Z | X, 1t|
:OP (77N,1)»

where the third line holds by Lemma B.7(i) and Assumption 1(iv). It follows that

m 0 m c
. )\min [(I)»L:| > : Amin (I)z -0 > i’ Dp.al.
ielv) = ie[N] [©:] (1) 2 5 Wpa

Analogously, we can establish the lower bound of Apip (‘i/t) [ |

Lemma B.9 Under Assumptions 1-7, we have max;c|y) 1{ ?1((6()0 #* gle)} = 0 w.p.a.1, where g; I(<()Z> 18

defined in (A.21).

Proof. The above lemma holds by Theorem 2.3 in Su et al. (2020) provided we can verify the conditions

in their Assumption 4. Let a( ( ,(f)l, e oz,(f;) Then we have
B \/» Z ak ®LT£ {(5) kz}

ke[K (D]

and

2

)®LT2

(a,(fg) <.Jp max ‘al(f).‘ < /pM, (B.11)

ke[K®],j€(p]

7

ke[K<Z>]

where the last inequality is due to Assumption 2.

Second, with @?:51) (0%, ,@97”1) and @0 2 = = (0% rq1 792,%),7 we notice that

30,(6) _ Z)H H 50 _ Q,(E)H
max ’ B; \/7 }2[81,\};(] O, O, ,

i€[N]
Z >3 (Gn-00) =1

j=1lre{1,2} teTe

ZZG

<./p max

< pal, B.12
= jﬂpLie{NLtE[T]‘ = GsfiN,z Wp-A (B.12)

@j,it - @j,it

with ¢5 being some positive large enough constant, and the last inequality holds by Theorem 4.1(iii).

Third, we also observe that

P 2
a,(f;) ® L7, — a,(ci)* Qur,|| = min Z (ak T agf)* ]) > Cs, (B.13)

2 1<ko<kox <K©®

o 7 |
min e
1<ks<kox <K® +/T}

j=1

where the last inequality is by Assumption 7(i).
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Combining (B.11), (B.12) and (B.13), we obtain that P (maxiew] 1 {gfﬁ}a + gy)} = 0) — 1 once we

can ensure Assumption 4.3 in Su et al. (2020) holds with ¢1,, = C5, con, = 5N 2, K = KM and with their
c1 and M being replaced by ¢ and and \/pM here. Under Assumption 7, Assumption 4.3 in Su et al. (2020)
holds. This completes the proof of the lemma. =

To study the NSP property of our group structure estimator, we introduce some notation in the following

definition.

Definition B.10 Fiz K > 1 and 1 < m < K®. Define a K x p matriz o) = (age), e ,a%))/. Let
dKu)(oz(Z)) be the minimum pairwise distance of all K®© rows and oz,(f) and ozl([) be the pair that satisfies
Hozl(f) — al(e) H2 = dgw (D) (if this holds for multiple pairs, pick the first pair in the lexicographical order).
Remove row 1 from matriz ¥ and let dK(z)_l(Ol(E)) be the minimum pairwise distance for the remaining

(K™ — 1) rows. Repeat this step and define d_o(a®), -+ do(al®)) recursively.

Lemma B.11 Recall that QA%) s the estimated group structure from K-means algorithm with m groups.
Under Assumptions 1-7 and the event {Tl = Tl}, w.p.a.1, for each 1 < m < K, _C';,(qf) enjoys the NSP
defined in Definition 4.3.

Proof. By Theorem 4.1 in Jin et al. (2022), Lemma B.11 is proved if we ensure all conditions in their
Theorem 4.1 hold. We now apply their Theorem 4.1 with z; = B?’m, T; = ﬂ?’(e) and ug = ﬁa,(f) ® vy, for
ke [K(Z)]. By the definition of d,, (a(z)) in Definition B.10, we notice that d,, (a(z)) > dgw (oz(l)) such
that dg @ (a(é)) > C5 by Assumption 7(i). With (B.12) shown above and Assumption 2, we have

<M b — 2, =
pinae lluwlly < M, max [[2: = 2illy = Op(1v2),

which satisfy the Theorem 4.1 in Jin et al. (2022), i.e. maxyc(x o [[uklly S dm (a®) and max;eny || — @i,
<dm (a(e)). Consequently, it leads to the NSP of QA%) for 1 < m < K® w.p.a.1 under the event {Tl = Tl}.
[

Lemma B.12 Under Assumptions 1, 6(ii), 7(ii), 8 and 9(i)-(iii), for £ = {1,2} and k € [KY)], we have
o?,(f) BN a,(f) and 1/ N,ié)Tg (d,(f) — a,@) = W%)Tf,i((j%)Tk + 0,(1).

Proof. This Lemma combines Theorem 1 and Corollary 4.2 in Moon and Weidner (2017) under their
Assumptions 1-4. Hence, we only need to verify the conditions in their Assumptions 2 and 3 since Assump-
tions 8 and 9(ii)-(iii) are same as their Assumptions 1 and 4.

Notice that the Assumption 2 in Moon and Weidner (2017) holds if we can show that

1

—o > > Xjueu =0, Vk e [KY], £e{1,2}.
N T ieGP t€Te

Fix a specific k£ and ¢. We can show that
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z : 2 : § : Jlltl J12t2€11t1€l2t2‘@)

A N2
(«
( )Tg) ZlGG(m ireG® WETL t2€T:

o2 Z Z Z E (Xj,its Xjits ity €it5| D)
( e) iea® t1ETe t2€Te
— =S Y Y EXunXjeinei|?)

(¢
( )Tg i teTh ( . Tg) ieG® LET t2€ T ta>h

16 _
+ max max (E | X neit\q)z/q Z Z Z [a(ts — tl)}l 2/a

- (/3) (0) teT;
N Ty (N(Z)T ) i€G, £ ieGl(cb t1€Ty ta €Ty ta >t

=0 <N1T> (B.14)

where the second equality holds by Assumption 1(i) with the conditional independence sequence for i1 # is,

||
M
(]
=
fm
@

the first inequality combines Assumption 1(ii), (iii), (v), and the Davydov’s inequality for strong mixing
sequence in Lemma 4.3, Su and Chen (2013), and the last equality is by Assumption 1(iii), (v), Assumption
6(i1) and Assumption 7(ii). Following this, it yields that

S5 e = 0, (D) ).

(£
Ny~ Ty ieq® t€Te
By similar arguments as used in the proof of Lemma B.3, we can show that

=0, (VN +/TlogT) (B.15)

which, in conjunction with Assumption 9(i), implies that Assumption 3* in Moon and Weidner (2017) is

|4

satisfied. m

For j € [p], recall that X} = (X1, Xjum), X2 = (Xjaeran - Xjar) et = (e, e ),

6(-2) = (ei(TlJrl), S 7eiT)l, Xj,it = Xj,it — E(Xjﬂﬂ@). Besides, let ngl)c S RN;(CK)XTZ and E](f) S RNIEE)XTZ

1
denote the regressor and error matrix for subgroup k € [K (5)] with a typical row being X}? and el@)

respectively. For £ € {1,2} and k € [K()], we also define

¢ (&) S ¢
KL=s(xile), KL= -]

)

4
]7 ch’ Z{E-)I)CZM o(z)Xg I)CMFO (z)-FXg ])C,

!
with .’{ ,+ being each entry of x( ). Further let f{é Zt (%f?m.t, e ,x(“ ) ) .

p,k,it

Lemma B.13 Under Assumptions 1, 2, 6(ii), 7(ii), 8 and 9, for j € [p], £ € {1,2} and k € [KD)], we have

tr (PFO,(Z)E](f)/PA:,(Z)X;Q) = Op(l),

0 e
(it) \/W (
(iii) \/T)Ttr{

0. oF Z)/X(£)> = Op(l),

Proco [BR) - E (EK)]} = o),

_ —1
(i )PFO (e)E( ) M 0 © X;fI)CFO,(E) (FO,(K)/FO,(E)) 1 (A%(Z)/A%(l)) A%(O/] _ Op(l),

N(Z)Tg
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-1 _
tr |:E( )/ AO (z)E )MFO (Z)X(f)/AO ,(0) (AO ,(0) AO (‘))) (FO,(Z)/FO,(E)) 1 FO,(E)/:| _ Op(l),

© on

(Ui) 1 tr |:E(Z)/M N (z)Xg IZ;MFO (/z)E( ) A ,(0) (Az,(l)/A%(Z))7 (FO,(Z)/FO,(Z))*l FO,(@)/:| _ Op(l),

(vii) L__¢p

{
op(1),
1

(viii) \/172

{EI(CZ)EI(CE)I _E (E(Z E(Z ‘9)] 0 (e)X(g) FO:(0) (FO NOL A (ﬁ)) (A%(Z)/A%(é)) -1 A%(Z)/}

1 B
[El(f)lEl(f) ) (E(Z l) |9>] 0 (e)X(Z)IAO ,(€) (A%(Q’A%(f)) (FO,(Z)/FO,(Z)) 1 FO,(E)/} —

. y ; y o
(ZI) m ZieGl(f> ZtGTg [eft%,(g’itx,(c% E ( xk th( zt‘-@)} _ 0p(1),
L l

(I) W ZiGGEf) Zteﬁ ez?t (xl(c,it%l(cj; — XitXi/t> = Op(l)'

Proof. (i) We first show that HFOv“)’E}f”AZ“) HF = 0,(VNT). Note that

E

sl

- N7,

ST et N '@

¢
N( )T ieq") tETe

Z Z Z Z E ez1t1612t2|@) 1l)\?1)\102/ft2

€GO ireG) 1ETL 12€T,

< ma s 21 o 3 3 B el

zEG(Z) t1€Tet2€Te

Z Z\Var (ei|2)| + (/) Z Z Z |Cov (eit, , €it,|Z)|

eG(l’) teTe k EG([) t1€Tg ta€Tg ta >t

N“

N“
=0(1) a.s.,

where the fourth line is by Lemma B.7(i) and the last line combines Assumption 1(v) and Davydov’s
inequality for conditional strong mixing sequences, similarly as (B.14). It follows that

-1

(&) (€ (¢ (2 (€)1 (€)1 4 0,(£) 0,(€)7 4 0,(€) 0,(€)7
e e i (G | e e B (O I I S
= O(TY?)0,(T™H)O,(VNT)O,(N"HO(NY?) = 0,(1), (B.16)
where the last line combines Assumptions 2 and 8.
Moreover, we have
HPA%M)XE?CHF < HA%(@HF (A%(é) A ) HAO (Org e)H O(N2)0,(N"H0,(VNT) = 0,(T"/?),
(B.17)
where the first equality combines Assumption 2, Assumption 8(i) and the fact that
2
ro
E <HA e)/x(é H |@> =S 3B DD N X |_@

r=1t€T; iec®
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_ZZ Z Z )‘?r)‘zo ,T ( jlthz*t

7)
r=1t€Te je () jreq®

*ZZ > {(}u)z\.@} = 0,(NT).

r=1teT,; EGEf)

Then we are ready to show that

1
VNOT,

tr (Ppoo B Poo X(3) Proo By Pyo.o Pyo.0 X%

-
i

= ———0,(1)0,(T*?) = 0,(1).

(ii) Let [A];, denote the (j,1)-th element of A. Note that

| /\

’PFO W B Py

Pyo.0X| H
H Ay j.k F

A% (z)E( )/ X%])c)

\/NT
—1
o [ (e ’
- S| BN SR )
0 g j1J2N \/ﬁ

J1.g2=1 t€Tei,eG" izeq?

1 (£) —1/2
< m%[r ] W Z Z Z /\11 J1 12 72611tX] iot| Op(N / )7
J1,32€[ro N, N Ty teTe e ireq®

where the last line is owing to the fact that
2
1

E WZ Z Z /\11]1 szzeht J(’L)zt |@
Ny, \/NiTeteTzheGu) izeG
1
Z Z Z Z Z Z /\117]1 12,52 m1 ]1/\9712 2 (eiltX(z)gtemwX](‘?,lzs’-@)

Tf te€Te s€Te i1 eGP ineGy) mieGy maeGy)

Z Z Z Z 7’1)]1 12 J2)2 E (eilteilsxj(fz)ﬂXj(?zs’@)

(N 1, T,
k 0 t€Tes€Te i1 GGgf) io Gfo)

- 2
T ) DD DI DI C m(eat (x12)

Ty teTe iy, e6® iec®

Z Z Z Z 11 jl 12,j2)2 E (eilteilsz[z)th]ﬁ)gs|'@)

3
(ngé ) Ty teTe s€Ters>t 1, eGP iyeG?
- OP(Nil)a
where the second equality is by Assumption 1(i) and the last line holds by Assumption 1(iii), (v), and

Davydov’s inequality.
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(iil) Define (] A eztxﬂs E (el x®)

YRE]

’.@) As above, we have

2

E \/]\77 Z Z Z ftl,glftg,p ]7’th1t2 |‘@

T 1160([) t1€Te t2€Te

Z Z Z Z Z Z fth]lftmh 81,71 827J2E (Cj('ﬁ)ltltgcj(',ei)gslwyg}

eGl(ce) is EG(Z) t1ETe t2 €T s1€Ty s2€T0

Z Z Z Z Z Z ‘C’ov (elltl “m,elzle;ZSJ@)‘

e i €G(f) in €G(é) t1€Tp ta€Ty s1€T s2€T,
(0) ()
@ZZZZZW@MmMW
G €T t2€T 51€Te 52€T,

= OP<T_ )7

TBN“)

where the last line is by Assumption 9(iv). It follows that

1 -
Wtr {PFO,(E) [E]E,[)/Xf])e - E (E z)/X([k ’@>:| }
NOT,
70 0,(£)7 f0,(£)
F F (/)
- (Tg Z Z Z ftl Jlft2 J2 Jrirtita
J1,j2=1 172 TZ\/NiTZ i1eG® €T 12€Ti
= 0,(T7'/?).

(iv) As in Moon and Weidner (2017), it is clear that

el

-1 -1
E( Prow EO'M Agwxﬂ FO.(0) <Fo,<z>/Fo,<e>> (Az,(e)/A%(é)> Az,(@/]

—1 —1
[Pyo.o B Pro.c L (O EeO) (AR OARO) A

4
%

<z ,
- ! 0,(1)0 (xf+ \/TlogT) (NT)Y*)0,((NT)~/?) = 0,(1),
NOT,
where the last line combines (B.15),(B.16), the fact that HX ) H = O,((NT)/?) by Assumption 8(ii), and

HFOW (FO0 F0.(0) (Ag*“)’/\%“)) FACOYL 0 ((NT)~1/2) by Assumptions 2 and 8(i).
F
(v) The proof of (v) is analogous to that of (iv) and omitted for brevity.

(vi) First, we note that

2

‘9> =k zo: Z Z Z Agl,j1ei1t1Xj,mt1 ‘@

(H A gOK
1=l mea® \iyeq® heTe

= Z Z Z Z Z Z )\11 2J1 22 21 ezlthivmtle’ithLmtz|@)

J1=1 mEfo) i1 EGLZ) i EG;CZ) t1€Tet2€Te
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R

Z Z Z 21 ]1 ellthj,mtlehthj»mb‘9)
€G,,

G 2) t1€Te t2€Te

Z_
Z Z Z llt mtlg)
Gl e t€Ts
+2 Z Z Z Z |COU(eilthj;mt1’ei1t2Xj7mt2|@)|

meG® i, cG® hETe rETut>h

= 0,(N?T),
which leads to the result that

-1
0,(¢
- =[]

£)1

(O (0 (
P ELOXS @

(AZ’(Z)/A%(E))

0,(0)1 (£
) A EOx

= O(N"%)0, (NVT) = 0, (VNT).

F F

As in the proof of part (iv), it yields that

-1 -1
E(e) M 0, (ﬁ)Xf])cMFo,(z) E,(CZ)/A%([) (A%M)IA%(@) (FO’(Z)/FO’(E)) FO’(E)I:|

‘ / N<e>TZ
‘ VA, th

—1 -1
o <4>X§ZI)CE( ) p 200 A :(£) (Ag,(e)/A%(z)) (FO,(Z)/FQ(E)) F07(g)/:|

-1 -1
+| — E(")’ Mo 0 XS0 Pro.o B Pyo.o A (AR A (P01 p00) FO’“)’}
-1 -1
< 1 H 20| Py EOxY ‘ AP (A0 O) ™ (poter o) ™ poer
/N(Z F
-1 -1
+—— | Ef AP ARO) (OO R0 ®) R0 P g B Pro.
© k Ay TR S ERE R
\/Nk T F

= 0,(1).

(vii) For this statement, we sketch the proof because Lu and Su (2016) have already proved a similar

result.

(B0 Y~ (BYEY|9)] My X FOO (Fom/Fo,m)’l (Ag,w)/A%(tz))*l AQW}

|\/N(£)T

1 1
S —— |8 [BVEY - B (BB 2)] Moo X }C = 0,(1),
0, Ty b
(%)
where the last equality holds by the fact that
1
( {H E(z E(z) IE( e)E e)/’@)} waﬂ ‘@} =0,(1)
F

which follows by similar arguments as used in the proof of Lemma D.3(vi) in Lu and Su (2016).
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(viii) Analogously to the previous statement, we have

uw*”E{

1
0,(¢ 01 a(6) (O ()
FO©r [E,g E, fIE(Ek E, \

N

) ey
2)| Myo0 X

-@} = o0p(1)

F

by similar arguments as used in the proof of Lemma D.4(iii) in Lu and Su (2016). Then we are ready to

show that

1
|

< (1)~

—1 -1
BB ~E (B ES|2) | Moo XA (A2 a3 0) (P00 poO) FOW}

1
0,(¢ O p(0) (0 () 0y
F (),N“’ [Ek E, fIE(Ek E; |9)}MA2,<Z>Xj,k
k

= op(1).

F

(ix) This statement can be proved owing to the fact that the second moment of the term on the left
side of the equality conditioning on 2 is O,(N~1). See the proof of Lemma B.1(i) for detail.

(x) Similarly to (B.17), we can also show that HX%}CPFO.,(@ e O,(N'/2). Then, following the same

arguments as used in the proof of Lemma B.1(j) in Moon and Weidner (2017), we can finish the proof. m

C Estimation of Panels with IFEs and Heterogeneous Slopes
For Vi € {n1,--- ,n,} and t € [T}, consider the model

. AV O X100 ey, te {1, T}, )
it — .
A0 x1 %P yey, te {Ty+1,- T}

7

Here {ny, - ,n,} is a subset of [N] and n < N. To distinguish from the notation A° in the paper, we
define A% := (A\ny, -5 Any)-
Define X»L(l) = (X’ila e 7X’£T1)/a X»L(2) = (Xi(T1+1)> o aXiT)/7 651) = (ei17 e 7eiT1)/a 6»52) = (ei(T1+1)a e 7eiT)/a

FOM = (9. 9, FO@ = (o -, f2). To estimate 6 A2 and f2, we follow the lead of Bai
(2009) and consider the PCA for heterogeneous panels. For V¢ € {1,2}, let

Nn

~ ~ 1 /
<{9@)} ,F(Z)> = arg min — (Y-(z) — X-(Z)Qi) Mg (Y-(Z) — X-(E)Hi) , (C.2)
b Jie{ny, © {0, nly ! ! ! !

{ ¥ FO L0} tny e inny =1

where Ty = T — Ty, W = (Wi, - Wir)', W = (Wyqy 1), Wir)' for W, denotes Y; or X,
PO ey
T,

FO is any Ty X rop matrix such that %f(m =1, and Mpw = I, — . Note that we consider

the concentrated objective function here by concentrating out the factor loadings. The solutions to the

minimization problem in (C.2) solve the following nonlinear system of equations:

) -1
91([) - (Xi(e)/MF(uXi(e)) Xz‘(Z)/MFw)Yi(E)a (C:3)

LSS (- X090 (v - x090)

T FO = FOVR, (C.4)

i:nl
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where VZE,Z% is a diagonal matrix that contains the rg largest eigenvalues of the matrix in the square brackets
N ~ ~ ~ N ~ /
n (C.4). Let )\EE) = %F(E)’ (Yi(o — X;Z)HED) , which are estimates of \?. Let Ag) = (,\ﬁl‘?, e ,)\Sﬁz) , and
“ OO G I
aly) = A (BEhE) A0,
Let 9?’(6) = 6% 4 cy), where 6% = %Zie{nh_,,nn} 0?’(2). Here, we consider testing the slope
homogeneity for ¢ € {n1,---,n,}. The null and alternative hypotheses are respectively given by

(£

H, ¢!
o

=0Vie{n---,n,}and

4

H, ) # 0 for some i € {ny--- ,n,}.

Following Pesaran and Yamagata (2008) and Ando and Bai (2016), we define

72 §9 - p
f‘(e) — \/E (n 746{’!11---777,”} v (0.5)
V2p

where
At A0 20\ a@ (a@\ Tt a@ (40 & NC 2 2 1 At
S0 =1 (60 -60) 8P (a) 5P (00 -09) (1-afP/m), 09 =— 3 60,
i€{ny,np}
FOR@OT xO . x© /
Mgy = I, — ———, Sl(f) w, (igf)) is the t-th row of MF(Z)Xfe),
Tz Té
Z Lit zf)/é?t Z k j/ST Z (FE??E t)+]eltel t+3 + x'Et) jFEt) 61 t— ]eZt)
te’T@ jeTi 1 teTe,;

and recall that 71 = [T1], T2 = [TI\[T1], T1,-1 = TW\{T1}, T2,-1 = \{T}, Ti; = {1 +4,--- ,T1}, and
To; ={T1 +1+j,--- , T} for some specific j € Ty _1.
In the next section, we study the asymptotic distribution of Hy), the uniform convergence rates for the

estimators of factors and factor loadings, and the asymptotic behavior for I'® under Hy and H 1, respectively.

D Lemmas for Panel IFEs Model with Heterogeneous Slope

Below we derive the asymptotic distribution for the slope estimators in our heterogeneous panel models
which allow for dynamics. To allow the dynamic panel, we focus on the Assumption 1* where the error term
is the martingale difference sequence and conditional serial independence. If we focus on the Assumption
1, we can obtain the similar result by using the Davydov’s inequality to derive the similar result for the
non-dynamic panels with strong mixing distributed errors. Here we skip the proof for the non-dynamic

panels with serial correlated errors for brevity. Let M be a generic large positive constant and F®) :=
{FO eRTom, EOED _p L

Y4

Lemma D.1 Under Assumptions 1*, 2 and 8, we have

() | i, e Pronel”| = 0p(1),

A 6P| = 0,(1),

(11) SUppw cr@ imny €
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(ZZZ) SUP p (o) ¢ F () %TZ ZZ ny /\OIFO (K)IM (e)e( )) Op(l),

Y (0
- . 1 Ny X 0,(¢) X, MF(‘Z) €
(1) SUP a6, 7 Dicn, (92 —0; Te

= op(1).

max —

<M}, FOeF®

Proof. (i) We notice that

1 &
TH Z e,EZ)/PFO,(Z) 652)

1 (1 FO.(0) 0,0\ 1
<% (18 [ sl ) (22
i=ni ¢ i=nq teTe ¢ F
1 [1 &
A DS thew
Tg nz ni tGTg

Recall that 2 denotes the minimum o-fields generated by {VQ} U0} Furthermore, we observe that

1 In
w130 zften _ H 52;@%
i=ny tETg i=nq tGTe

1 & ’
< ST B 1 e 2)|

L n1 t€Ty s€Ty

ST Z D 2 LA [E (eiveis| 2) |

i=ny t€T; s€Tp

Mn

EZZHE Zt|.@|<Mas (D.1)

i=ni te€Ty

A

where the fourth line holds by the boundedness of factors shown in Lemma B.7(i) and the conditional

,) =0,

independence of e;; under Assumption 1*(i), (iii). It follows that (}L S

i:nl

\/% ZtETe ftoeit
and | >0 e e Pro. el ’— Op(T71).
(i) Noting that Prey = F(O) (FOFO)™ PO = 7=1pO pO for FO ¢ FO, we have

1 Np Nn
o)1 0)
sup |- E 67(1 ) PFWGE < sup n Z Z fte”
FOcF® = F®OeF® v 20 tETz 9
Next,
sup - E E ftezt — sup ( E g E ftf eztezs>
F®OeF© I 20 ten F(Z)E]:u) i=ny t€77f seTe

:F(@e]-'(“ { 3 Z thf Z eiteis — E €1t€is|@)]}+ sup tr{ 5 Z thf Z (eiteis|2 }

¢ teTiseTs i=ny FOer® { teTeseTe i=ny
(D.2)

For the first term on the second line of (D.2), we have

| o log T
n Z [eiteis —E(eiﬂw’@)]‘ =0p < = )

i:nl

max
t,s
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by conditional Bernstein’s inequality for independent sequence combining the fact that e;;e;s is independent

across ¢ given & by Assumption 1*(i). Then

F(z)e}-m { 2 Z Z ftf Z €it€is — 61%%‘@)]}

£ teTy s€Te i=ni

logT logT
= O su = O . D.S
p ( N > F(Z)G}'(f) ( ;:7 ||ft||2> p < N > ( )

For the second term on the second line of (D.2), we have

F(@)e]:(@) { 2 Z Z ft'f Z eltezs }

Z tETz s€Te 1=n1

< Z oD el Ifll, B (eneis| 2)

F([)efm nT, i=n1 t€T; €Ty
Ny
] Z > [E(]2)] =0, (D.4)
i=n1 teTy

where the first inequality is by Cauchy’s inequality, the third line is by the definition of F*) and similar

arguments as in (D.1).

Combining (D.2)-(D.4), we have shown that suppe) ¢ ro %TZ e 5@)/PF< )6( )‘ = ( IOJ%T) )

(iii) Owing to the fact that

sup 1 i": )\Q’FO’(Z)’MF@)em < 1 i": A0 0,07 (O sup 1 i )\Q'FO’(Z)’PFu)e([)
roero [T = g i = nTy = ! ¢ roero (0T & ot ’ R

we show the convergence rate for the two terms on the right side of above inequality. For the first term, we

note that E ()\?’ ftoeit|@) = 0 and ey is independent across i and strong mixing across t given 2. Then we

have
1 & Ty 1
/\OIFO — AOI —
i 2 MO = 3 St =00 (i
1=n1 1=n1 13

by Lemma B.6(ii). For the second term, we note that

1 0 0,0y 0
sup e N FY P (©€;
FOcF® nTy l_;l i e
1 01 20,(0)1 12(0) (1 (0) ()
= sup | S NYROOIR (F F ) fres
rocre Ny ; tez;z .
1 FO p@N ~ F0,(8) p(0)
<  sup sup - Z Z ftezt sup (T) —
FOeF® FOeF®o N teT/ FOeF® v ) v 9
2 1/4
logT
S sup =0y ( o8 ) = 0p(1),
FOer© N
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where the third is by Cauchy’s inequality and the last line is by arguments in (D.3) and (D.4)

. Combining
arguments above, we show the desired result.
(iv) We first observe that
1 Nn 1 Nn 2
B2 Z Xwezt = 2 E Z K|

i=nq t€7} i=nq tGT[
< TTE Z 3O B (X X eieis) | p = nT Z SOE (X Xed)||» < M as., (D.5)

i=n1 tETy €Ty i=nq tETy

where the second equality is by Assumption 1*(ii) and the law of iterated expectations, and the last inequality
is by Assumption 1*(v). It follows that

N L L
S5 (oY X Mpwe”

sup
{mas [0 [ <M} FOeF® ||V 25 1y -
1 & 1 X! 1 & ' XY Prel”
< s = Z (6 —00) = |+ sup LS (o, - gpt0) X Lroe
{max;16; IImax_M} =n1 T {max; (|0 ]| o <M },F O €FE) [ Ty
) 1/2 2\ 1/2
s l-rol) (GElgT
= Sup i thezt
{max,]|0; ||,W_M} < 2 i= =r
| o,(z)H X F® FOR@ON ~
AT SO D D) Ll i | 7 2 e | (7
{maxi[|6: | an <M} FO€FO 1 j—p, T i, 2
n 2\ 1/2 . o\ 1/2
~1/2 I XZ»(Z)/F(Z) 1 <& |1
SOT )+ sup =y sup Dol D frea
FoeFw \ 0 75 Ty ) Fwer® \ N 2 T = ,
1 T 1/4
—o,r )40, | (A1) | =00,

where the second inequality is by Cauchy s inequality, the fifth line combines facts that both 6; and 90 0 5

bounded, + > ﬁ Y e, Xit€it , = O,(1) by (D.5), the definition for F(*) and Cauchy’s inequality.
The last line is due to (D.2) and the fact that

1/2

S Z [ Xitll, = Op(1).
9 ZE{nlv . 7nn} T teTy

Xi(l)/F(g) 2
sup — T

n
FOcF® i

by Assumption 8(ii). m

Lemma D.2 Under Assumptions 1*, 2 and 8, we have éy) — 9?’(6) 50 and HPF(’-’> — Pro.o HF 250.
Proof. Let
N0 J- (04 )' O _ x® (o) 0
Snr ({01},F ) nT 3 ( — X 91) Mo (Yi 0) Z 8D Moo €

znl l’nl
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Recall from (C.2) that ({éy)} ,F(Z)) is the minimizer of Sy7 ({Gi} , F(Z)). By (C.1) and Lemma D.1, we
have

Sxr (103 FO) = Sr (103, 70) + 2 35 (- o0 X()Ai()

i:n1

Ny,

2 3% ¢
+THZA?IFO()MF(£)6()+ Ze()PF<e>e() Ze PFo(z)e

i=n1 znl znl

= Syt ({91'}7F(€)) + 0p(1),
where

nn ) @)
Snr ({Hi},F(@) _ % Z (Gi _ 9?,@))/ X; ']\/T[ju)ei (9i _ 9?,(@) Z )\OIFO GIY; e FO (e))\o
1=n1

i—n1

0y @)
00 (@)’ X Mp©ei o) y0
+- Z ( T, L

znl

Following Song (2013) and Bai (2009), we can show that Sy ({6:}y; , F®) is uniquely minimized at
({93’“)} ,FO’(Z)H) , where H®) is a rotation matrix. Hence, we conclude that éy) - 9?’(6) 25 0. Following

the arguments as used in the proof in Proposition 1 of Bai (2009), we can show that HPFw — Pro,o HF 25 0.

| |
5000 ~o,(5y)

Let By denote the uniform convergence rate for égz). That is, max;e{n, - ,n.}

Lemma D.3 Under Assumptions 1*, 2 and 8, we have \/% HF(Z) — Fov(e)H(Z)HF =0, (BN + ﬁ) ,
where HO := (A%;A%> (FO’(;);F(“) VJS,Z%_l.

Proof. Recall that V]E,e% is the diagonal matrix that contains the eigenvalues of

Nn

1
nTy .

0 _ @\ (v©O _ x©g
(v = x0) (v - x%,)

2 7

along its diagonal line. By inserting (C.1) into (C.4), we obtain that

FOVE _ o <AO'AO>< i ) S, (D.6)

n
me|[8]

where

g0 L i": X0 (600 =00 (600 - 60) X F,

nTy = ¢ v 4
o_ 1 S (&) (90,(8) _ (O 07 17:0,(£)7 £2(€)
J3 _nTeZXi (000 =6 ) AT PO RO,
=n1
) _ 0 (9@ _ g0\ O £ ()
& nT Z X ( — )ei E

znl
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Nn
O _ 1 N~ powyo (eow _ é@)l O o)
J nT[ Z i i % i ’
=n1
LS50 (00 _ 40 y 0 () _ (o
JO — 2N 0 (94’ iy ) xWp® g FO0)007 o),
5 nTy l:an i i i i 6,t = lzm
1 & R
S = = 3 GO FO R, and g = Z el O,
n ¢ i=TL1 i= ni
We show the convergence rate for I vm e [8] in the following.
For Jl(e), we notice that
(0)
% i _ 00| 120 x® (B2 D7
LI 1V 6 _ g9 .
VTe ie{nrfle.x,nn} v ¢ H2 HF nTy :Z H H N (D7)
where the equality is by Assumption 8(ii) and normalization of the factor vector. Similarly, we have
5! oo, |7,
E < max 60 _ 9%® max Y £ Z)H = Op(Bn);
VT,  ~i€{ni, oIl ¢ 2i€{ny, - n H ' ||2 VT, NAVER?) Tg 2 »(BN)
J(f) ) )
Pl [0 g I e | L XwH _ oy
\/E o iE{nl"" 7nn} ! ¢ 2 \/E nTZ i:nl —nq 2 ( N)

() A(Z)H
B, 1 ey, |70,

Fo Ne;
N e e | E M Zf
©
Js H H Z O 01| _ ( 1 >
\ﬁ - VI nTe ! - P\VNAT)’

where the third line is by the fact that 2 >, f o Aeir
2
(D.1) and the last line is due to the fact that
1 Nn 2 Uz
S WL NI TS B 9b o) o
€ & (nTy)?
nTg i=n1 F TLT@ i=ni i*=ni t€Tpt*€Ty

zt ezt*

S DD IT

i=n1 t€Tp t*€Ty

= nTQZZE 1t|‘@

i=n1 tETy

b 3 SR

i=n1 i*#£i t€Ty

=o ()

QZZEZ

i=ny t€Tp t* €T t*#t

(€2.,12)
+(T)™") as.

with the application Assumptions 1*(i), (ii), (iii), (v).
]

o

ezteit* CixtCixtx

LYY Y E

i=ni i*Ait€Ty t*€Ty

E( zt|@) ( it

Besides, we have

&)

O, (1) by similar arguments as in

7)

eltezt* E(ei*tei*t* @)
7)
(D.8)
2] ]
Tt = Op(BN), it =

Op(Bn), % =0, (ﬁ) by similar analyses as used for JQ(Z), Jéé) and Jég), respectively.
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Combining the above arguments, premultiplying both sides of (D.6) by F® and using the fact that

FO'FO = T,1,. we have

i F(z)vjsfe) _ 0.0 (A?{A%) (FO,(K)/}%(E)>
T

~0,(8x)+ 0, ().

iy n Ty F

and

e ; 7 T

FO,(Z)/F(Z) A0/ AO FO,(@)/F(Z)
_ n +o,(1).
Tg n Tg

Then VJE,E% is invertible and HVJSZ% HF = O,(1). By the definition of H® and (D.9), we have ﬁ HF(

v _ (Fo,(e)/p(e)> (AglAg) (Fo,(/zyp(z)> POy s J(e)

O, (BNer) []

Lemma D.4 Under Assumptions 1*, 2 and 8, we have

0y ) &y )
o XM XD XM g 0 XY 1 . .
(i) £ = oW +O0p(Bn+ T uniformly in i,i* € {nq, -+ ,n,},

(D.9)

0 _ po.(0) H(@)H

oy XM el XM 0 el? 9 log N log NV . o
, _ X (0 € E [/ log
(ii) 7 = o +0, | By + Bwn + o7 + AT | uniformly ini € {ni, -+ ,nnt,

e<f>'ﬁ<f>H2 =0, (B% + w45)
A - P N NAT )?

(”Z) T2 Zz n

() _
1 X /MF(Z)FO Z)H O (BN + \/W)

(i?)) max;e{n,--

=0, (%) uniformly in i € {nq, -+ ,ny},

(U) nT2 Zn*nznl

. 1 (5)/ 0 _ B 1 1
(Vi) || 7m 2i2n, Ale ()HF_OP<T%+N+7/W)’
(vii) MaXie(ny oy || Sory X My e *)AO’ =0y (5% 4L losN >
¢ o) (o)
(viii) MaXiefn, ... m,} %T;ZT*inl X( M - (2)6(*)6(*) F(Z)H - (BN + By N 1\1[0/%T >

N N N -1 .
Proof. (i) Noting that M, = Iz, —F'® (F“)’F(@) FO and Mo,

we can show that

F(e)( (f)’F(@) PO poe (FO (e)/Fo.(e)>1 FO.(8)

= Ir,~F%® (Fo,w)/po,(e))*l

Mooy — Mgy = -
SRV VR W VI, VE T VT
_EO _FoORO | [ pOrp© ! ( F70.(0)1 0, (¢ _ R0 ()
VT, Ty VT;
PO _po.oo | [ popo ! <F ewpow Fow) (e)’
VT Ty VT,
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£ _ o0 g /Fow B _ <>H<e> '
F0,(0) g (0) F(ﬁ)/F(Z FO Z)/FO ©) FO — 0,00 fr(0) '

FO) — p0,(0) g (0) < (€)' 0,(6) ) (FO E)H(€)>
_|_
VT

) FO.(0 () ( F(@/p(f)) - ( Fo,w)/Fo,(e))—l ( FO.(0) H<e>)'

VTo T, T, VTi
FO.0 O 7 po.0y o)\ [ g0 _ po.o g\’
+ ( ) (D.10)
van 1y VTi
With Lemma D.3, Assumption 8, the normalization for the factor space, and the fact that
. 2
FOE© RO poo) |#@ - Fo©p® HF 2| FO’“)H“)HF
- <
T, T, - iy * T,
F
1
=0, By + — |, D.11
(25 + 737) (B-11)
it yields
1
[ Mpo.co = Mp||p = Op <BN + \/m) : (D.12)

Following this, we obtain that

X Mp X9 XY Mpo X
T T,

max
i,i*€{n1, nn}

F

= max

1
N — X (M) — Mpo.o) X
ii*e{ny, ,nT,}

T,

F

%e{:f%%%wn X 1poco = Mz

_ x® H ( B 1) _ ( 1)
T et + =0, | By + :
i€t na} T ;I YUUNaT) T T\ T UNAT
(ii) Combining (D.10), we notice that

X;Z)/MF@)GEE) X;Z)/MFO,M)GEZ)

max —

iE{n17"' ;nn} Vv Té \% Te 2
- ] 7]

=+/T; max FO

i€{ni, - ,nn} \/> \/>

( N*m)3+(BN+¢z%)2

o B ol o ooy )
++/T;, max £ r ( ) r
i€{n1, - ,nn} \/E \/Tf Tf r Tf

X.“)H 0,(8) (8 S e\ L -1 H FO»“)H(@’@H
g Lot sy oy ooy,
ie{nl PR vnﬂ} V TZ Vv T[ T[ T/ TZ

F
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T,

)

1 1 log N
O (BJQV+J\7AT)+OP(BN+\/W)OP< T )

where the last line holds by combining Assumption 8(ii), (D.11), Lemma D.3 and the fact that
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where the last line combines Lemma B.7(i), Lemma D.3, and the normalization of factor and factor loading.
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similarly to the result in (D.19). This yields
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where the second and fifth equalities are by the normalization that %ZF“) = I,,. It follows that
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where the last equality is by the fact that max;c7, H% Zl s ey || =0, (1 / lojgvT) by using the Bernstein’s

inequality for the independent sequence in Lemma B.5(i).

At last, we also obtain that
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such that
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where the last line holds by Lemma D.6(i), (iv) and Lemma B.7(i). Together with (D.25) and Assumption
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by Lemma D.5(iii) and Lemma D.6(iii), D.6(iv). Then we obtain that
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where the last line holds by (D.26), (D.27), Assumption 8(ii) and Assumption 1*(iv). Using similar ar-

guments as used to derive (D.18) by the Bernstein’s inequality for m.d.s., for a positive constant cg, we
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Combining arguments above, we obtain that ‘f‘(f)‘ —00. |
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