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Abstract

We consider the allocation problem of assigning heterogenous objects to a group of
agents and determining how much they should pay. Each agent receives at most one object.
Agents have non-quasi-linear preferences over bundles, each consisting of an object and
a payment. In particular, we focus on the cases: (i) objects are linearly ranked and, as
long as objects are equally priced, agents commonly prefer a higher ranked object to a
lower ranked one, or (ii) objects are partitioned into several tiers and, as long as objects
are equally priced, agents commonly prefer an object in the higher tier to an object in
the lower tier. The minimum price rule assigns a minimum price (Walrasian) equilibrium
to each preference profile. First, we analyze the equilibrium structures for common-
object-ranking and common-tiered-object preference profiles, with special attention to
the minimum price ones. Second, by assuming various conditions, we show that on the
four domains: common-object-ranking, common-tiered-object, normal and common-object-
ranking, and normal and common-tiered-object domains, (i) for each preference profile,
agents’ welfare under rules satisfying efficiency, strategy-proofness, individual rationality,
and no subsidy (or no subsidy for losers) is bounded below by the allocation selected by a
minimum price rule, and (ii) only minimum price rules satisfy the four properties.
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1 Introduction

1.1 Motivating examples and main results

We consider allocation problems exemplified below, which motivate the present research:

Example A (Spectrum license allocation problem): Since the 1990s, governments in
many countries have conducted auctions to allocate spectrum licenses. In many cases, each
firm is admitted to obtain at most one license. By suitability for the technology of their
businesses, firms have common ranking over spectrum licenses of different frequency bands. If
licenses are equally priced, firms commonly prefer a spectrum license in the higher rank to the
one in the lower rank. Spectrum license auctions often make a large amount of government
revenue. Such large-scale auction payments generally influence a firm’s abilities to utilize the
license, and make firms’ preferences over licenses and payments non-quasi-linear.

Example B (House allocation problem in Alonso-type housing market): Central
business districts are located in the city center where households are employed and commute
everyday with the same public transportation system. Houses are the same in qualities and
sizes, but different in the distances to the city center. Each household needs at most one house.
As long as houses are equally priced, households prefer a house with a shorter distance to the
city center to the one with a longer distance, since longer distances necessitate more commuting
cost and time. Since purchasing a house generates a great impact on the household’s budget,
each household has non-quasi-linear preferences over houses and payments.1

Example C (Flat allocation problem in condominium): Several flats belonging to a
condominium are to be sold. These flats are similar in qualities and sizes, but different in
orientations and floors. Each household needs at most one flat. If flats are equally priced,
households commonly prefer flats in higher floors to those in lower floors. However, households
might have different preferences on flats in the same floor due to different orientations even
if they are equally priced. Such preferences create the phenomenon called “higher-floor pre-
mium.”2 It says that in a condominium, flats in higher floors have higher sale prices than those
in lower floors. Similarly to Example B, each household has non-quasi-linear preferences over
flats and payments.

The common features of the above allocation problems are as follows: Several heterogenous
objects are assigned to a group of agents. Each agent receives at most one object, and obtain-
ing the object needs some monetary payment. Agents have non-quasi-linear preferences over
bundles, each consisting of an object and a payment. Non-quasi-linearity describes the environ-
ment where changing the same amount of money at different payments for a given object exerts
different impacts on the benefit deriving from consuming that bundle. In addition, objects are
linearly ranked, and if they are equally priced, agents commonly prefer a higher ranked object
to a lower ranked one. Or objects are partitioned into several tiers, and if they are equally

1See Subsection 1.2.2 for details.
2See Subsection 1.2.3 for empirical works that document this phenomenon. This phenomenon is also reported

by newspaper (e.g., The New York Times, “The Stratospherians,” May 10, 2013).
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priced, agents commonly prefer an object in the higher tier to an object in the lower tier, but
agents may have different preferences over objects in the same tier.
We investigate the object allocation model with money transfer featured with the above-

mentioned characteristics. An allocation specifies how the objects are allocated to agents and
how much each agent should pay. A rule is a mapping from a class of agents’ preference profiles
(called “domain”) to the set of allocations.
A common-object-ranking domain is a class of preference profiles such that an object-

ranking is prespecified, and for each preference profile, an individual preference satisfies money
monotonicity, object monotonicity, possibility of compensation, and more importantly, ranks
objects according to the prespecified ranking. A common-tiered-object domain is a class of pref-
erence profiles such that objects are partitioned into several tiers in a prespecified manner, and
for each preference profile, an individual preference satisfies the above first four conditions, and
ranks objects according to the tiers. A preference is normal if, as payments of objects decrease,
the agent benefits more from the object that he prefers initially. A normal and common-object-
ranking domain is a subclass of a common-object-ranking domain such that for each preference
profile, individual preferences are normal. A normal and common-tiered-object domain can be
similarly defined.
An allocation is efficient if no one can be better off without reducing others’ welfare or

reducing the total amount of the payments. Efficiency describes the property of a rule that for
each preference profile in its domain, the rule always selects an efficient allocation. Strategy-
proofness says that for each agent and each preference profile, revealing their true preference is
a weakly dominant strategy. Individual rationality says that for each agent and each preference
profile, everyone should be no worse off than getting and paying nothing. This property guar-
antees the agents’ voluntary participation. No subsidy says that the payment for each object
is non-negative. No subsidy for losers says that for each preference profile, agents who get
nothing cannot receive any subsidy.
In our settings, the set of equilibrium prices forms a non-empty complete lattice and the min-

imum (Walrasian) equilibrium price vector is well defined.3 First, we investigate the structures
of the equilibrium prices and object assignments for common-object-ranking and common-
tiered-object preference profiles, with special focus on the minimum price equilibria. We show
that the equilibrium prices for common-object-ranking preference profiles are monotonic along
the object-ranking, and the equilibrium prices for common-tiered-object preference profiles ex-
hibit the “higher-floor premium” documented by empirical works on housing markets.
Next, we analyze the “minimum price (Walrasian) rule.” A minimum price rule is a rule

that, given each preference profile, it always selects an equilibrium with the minimum price
vector. By assuming various conditions, we show that on the four domains: common-object-
ranking, common-tiered-object, normal and common-object-ranking, and normal and common-
tiered-object domains, (i) for each preference profile, agents’ welfare under rules satisfying ef-
ficiency, strategy-proofness, individual rationality, and no subsidy (or no subsidy for losers) is
bounded below by the allocation selected by a minimum price rule, and (ii) only minimum price
rules satisfy the four properties.

3See Facts 1 and 2 in Section 3 for details.
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1.2 Related literature

Our results are related to the following three strands of literature.

1.2.1 Efficient and strategy-proof rules for non-quasi-linear preferences

The literature in this strand focuses on the identification of efficient and strategy-proof rules
for non-quasi-linear preferences.4 In the one-to-one two-sided matching model with money
transfer, no rule satisfies efficiency and strategy-proofness, in addition to individual rationality
and no pair-wise budget deficit. However, if strategy-proofness is weakened to one-sided strategy-
proofness, the one-sided optimal core rule satisfies those properties (Demange and Gale, 1985;
Morimoto, 2016).
As a special case of the one-to-one two-sided matching model with money transfer, object

assignment models with money transfer have also been studied.5 In these models, the minimum
price rule is well defined. When objects are identical, the minimum price rule is equivalent to
the Vickrey rule (Vickrey, 1961), and only the minimum price rule satisfies efficiency and
strategy-proofness, in addition to individual rationality and no subsidy (Saitoh and Serizawa,
2008; Sakai, 2008). However, when objects are heterogenous, the outcome of the minimum
price rule for non-quasi-linear preferences does not coincide to that of the Vickrey rule, and
only the minimum price rule satisfies efficiency, strategy-proofness, individual rationality and no
subsidy for losers (Morimoto and Serizawa, 2015). By imposing price restrictions on objects or
introducing existing tenants, with some mild domain restriction, there are still some (constraint)
efficient and strategy-proof rules (Andersson and Svensson, 2014; Andersson and Svensson,
2016; Andersson et al, 2016).
Our characterization results can be regarded as a further study of efficient and strategy-proof

rules on non-quasi-linear domains. Saitoh and Serizawa (2008), Sakai (2008), and Morimoto
and Serizawa (2015) are related to our study.
When objects are homogenous, Saitoh and Serizawa (2008) and Sakai (2008) characterize

the Vickrey rule by using similar axioms for non-quasi-linear preferences, and Saitoh and Ser-
izawa (2008) further show that the same characterization holds even on the non-quasi-linear
preferences exhibiting normality. As mentioned above, when objects are heterogenous, the
Vickrey rule is different from the minimum price rule. Thus their characterizations do not
imply ours and their proof techniques can not be used to establish our results.
When objects are heterogenous, Morimoto and Serizawa (2015) have already characterized

the minimum price rule by using similar properties, our results are different from theirs by
three points.

4Some authors also investigated the strategy-proof and fair rules for the non-quasi-linear preferences, for
example, Alkan et al, (1991), Sun and Yang (2003), Andersson, et al, (2010), Adachi (2014), and Tierney (2015)
etc. Recently, Baisa (2015, 2016a) investigated the auction models for the non-quasi-linear preferences.

5Assuming each agent at most receives one object is important for identifying efficient and strategy-proof
rules for non-quasi-linear preferences. Recently, Kazumura and Serizawa (2016) relaxed this assumption and
showed some impossibility results.
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First, we focus on common-object-ranking, common-tiered-object, normal and common-
object-ranking, and normal and common-tiered-object domains, which are all smaller than the
one they focus on. The smaller a domain is, the weaker the properties of rules are, such as
efficiency and strategy-proofness. Thus, smaller domains imply that there may be better rules
tailored to our concerned allocation problems, exemplified by Examples A, B and C. Thus
Morimoto and Serizawa (2015)’s result does not imply ours.
Second, we owe some proof techniques to Morimoto and Serizawa (2015). But their proofs

use preferences excluded from our domains. In some parts of the proofs, we need to carefully
modify their proofs, and in many parts we need to develop new proof techniques. Particularly,
their proof techniques crucially depend on the uses of non-normal preferences. Thus, to establish
the characterization results for the preferences exhibiting normality, new proof techniques are
proposed.6

Third, Morimoto and Serizawa (2015) assume that the number of agents is larger than that
of objects. This assumption plays an important rule in their proofs. In some of our results,
this assumption can be replaced by strengthening no subsidy for losers to no subsidy, and
sometimes accompanied by some restrictions on the object tier.

1.2.2 Alonso-type housing market

The literature in this strand centers on the study of equilibria in Alonso-type housing market
(e.g., Alonso, 1956; Kaneko, 1983; Kaneko et al, 2006; Sai, 2015). This literature assumes
that agents have preferences over the bundles, each consisting of an object and “money”,
where money is defined as residual income after payment, and that all the agents have the
same normal and common-object-ranking preference but have different income levels, which
differentiate agents’ preferences over the bundles, each consisting of an object and payment.
We show the results of the equilibrium structures that are parallel to those of the literature
by assuming weaker conditions on preferences. Since our concerned domains are larger than
those analyzed by the literature, our results in turn imply the existing ones. Furthermore,
we admit agents have different rankings of objects in the same tier. None of the literature
in this strand investigates such cases. Thus our investigation of equilibrium structures for
common-tiered-object preferences provides additional insights to the existing literature.

1.2.3 Common-tiered-object domains in the object assignment models

Theoretical works in this strand of literature study efficient and strategy-proof rules in the
object assignment models without money transfer, such as the two-sided matching and prob-
abilistic assignment models (Kandori et al., 2010; Kesten, 2010; Kesten and Kurino, 2013;
Akahoshi, 2014). In this literature, the common-tiered-object preference structure is shown to
be important in identifying the efficient and strategy-proof rules. However, since our model
involves money transfers, the results of this literature do not imply our characterization results.

6See Section A2 of the Appendix for detailed explanations.
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To the best of our knowledge, our paper is the first one that theoretically analyzes efficient and
strategy-proof rules on the common-tiered-object domain with money transfer.
In addition, some empirical works, such as Ong, 2000; Chin et al, 2004; Conroy et al, 2013,

investigate the “higher-floor premium” phenomena occurring in selling flats in condominiums
in U.S.A., Singapore, and Malaysia.

1.3 Organization

The remaining parts are organized as follows. Section 2 introduces concepts and establishes
the model. Section 3 defines the minimum price equilibria and centers on the investigation
of the equilibrium structures for common-object-ranking and common-tiered-object preference
profiles. Section 4 establishes the main results for common-object-ranking and common-tiered-
object domains. Section 5 gives concluding remarks. Omitted proofs and those of the main
results are placed in the Appendix.

2 The model and definitions

Consider an economy with 2 ≤ n < ∞ agents and 1 ≤ m < ∞ objects. Denote the set of
agents by N ≡ {1, 2, · · · , n} and the set of (real) objects byM ≡ {1, 2, · · · ,m}. Not receiving
an object is called receiving a null object. We call it object 0. Let L ≡ M ∪ {0}. Each agent
receives at most one object. We denote the object that agent i ∈ N receives by xi ∈ L. We
denote the amount that agent i pays by ti ∈ R. The agents’ common consumption set is
L × R, and a generic (consumption) bundle for agent i is a pair zi ≡ (xi, ti) ∈ L × R. Let
0 ≡ (0,0).
Each agent i has a complete and transitive preference Ri over L× R. Let Pi and Ii be the

strict and indifference relations associated with Ri. A generic class of preferences is denoted by
R. We call (R)n a domain.
The following are basic properties of preferences, which we assume throughout the paper:

Money monotonicity: For each xi ∈ L and each pair ti, t�i ∈ R, if ti < t�i, (xi, ti)Pi (xi, t�i).
Object monotonicity: For each xi ∈M and each ti ∈ R, (xi, ti)Pi (0, ti).
Possibility of compensation: For each ti ∈ R and each pair xi, xj ∈ L, there is a pair
tj, t

�
j ∈ R such that (xi, ti)Ri (xj, tj) and (xj, t�j)Ri (xi, ti).

Continuity: For each zi ∈ L× R, the upper contour set at zi, UC(Ri, zi) ≡ {z�i ∈ L× R :
z�iRi zi} and the lower contour set at zi, LC(Ri, zi) ≡ {z�i ∈ L×R : ziRi z�i}, are closed.
A preference Ri is classical if it satisfies the four properties just defined. Let RC be

the class of classical preferences. We call (RC)n the classical domain. Note that by money
monotonicity, the possibility of compensation and continuity, for each Ri ∈ RC , each zi ∈ L×R
and each y ∈ L, there is a unique amount Vi(y; zi) ∈ R such that (y, Vi(y; zi)) Ii zi. We call
Vi(y; zi) the valuation of y at zi for Ri.
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A preference Ri ∈ RC satisfies normality if for each pair x, y ∈ L, each pair ti, t�i ∈ R with
ti > t

�
i, if (x, ti) Ii (y, t

�
i) and d > 0, then (x, ti − d)Pi (y, t�i − d).7 Let RN denote the class of

classical preferences satisfying normality. Obviously, RN � RC . In some parts of the paper,
we assume this property.

Figure 1 illustrates a preference Ri satisfying normality for M = {A,B}.

Figure 1 Illustration of preference satsifying normality

In Figure 1, there are three horizontal lines. The bottom line corresponds to the null object
0, the middle line to object A and the top line to object B, respectively. The intersection of the
vertical line and each horizontal line denotes the bundle consisting of the corresponding object
and no payment. For example, the origin 0 denotes the bundle consisting of the null object and
no payment. For each point on one of three horizontal lines, the distance from that point to the
vertical line denotes the payment. For example, zi denotes the bundle consisting of object A
and payment ti. By money monotonicity, moving leftward along the same line makes the agent
better off, i.e., if d > 0, then (A, ti− d)Pi (A, ti). If the bundles are connected by a indifference
curve, for example, zi and z�i, it means that agent i is indifferent between these two bundles,
i.e., zi Ii z�i. In Figure 1, for ti < t

�
i and d > 0, (A, ti) Ii (B, t

�
i) implies (B, t

�
i − d)Pi (A, ti − d).

Thus, Ri satisfies normality.
An object allocation is an n-tuple (x1, . . . , xn) ∈ Ln such that for each pair i, j ∈ N , if xi �=

0 and i �= j, then xi �= xj. We denote the set of object allocations byX. A (feasible) allocation
is an n-tuple z ≡ (z1, . . . , zn) ≡ ((x1, t1), . . . , (xn, tn)) ∈ [L × R]n such that (x1, . . . , xn) ∈ X.
We denote the set of feasible allocations by Z. Given z ∈ Z, we denote its object and payment
components at z by x ≡ (x1, . . . , xn) and t ≡ (t1, . . . , tn), respectively.
A preference profile is an n-tuple R ≡ (Ri)i∈N ∈ Rn. Given R ∈ Rn and N � ⊆ N , let

RN � ≡ (Ri)i∈N � and R−N � ≡ RN\N � ≡ (Ri)i∈N\N � .
Next, we introduce two properties of domains we focus on. The first property is “common-

object-ranking”. It says that objects are ranked linearly, and for each payment, agents com-
monly prefer the bundle consisting of the object that has the higher rank and that payment to
the bundle consisting of the object that has the lower rank and that payment.

7Kaneko (1983) introduced this definition.
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Let π ≡ (π(1), . . . ,π(m + 1)) be a permutation of objects in L, where π(1) denotes the
object ranked first, π(2) denotes the object ranked second, and so on. For each pair x, y ∈ L,
x >π y means that x has a higher rank than y according to π.

A preference Ri ∈ RC ranks objects according to π if for each ti ∈ R,

(π(1), ti)Pi · · · Pi (π(m+ 1), ti).

Remark 1: Since Ri ∈ RC , object monotonicity implies π(m+ 1) = 0.

Figure 2 illustrates a preference Ri ranking objects according to π for M = {A,B,C} and
π = (π(1), π(2), π(3), π(4)) = (C,B,A, 0).

Figure 2 Illustration of preference ranking objects according to π

In Figure 2, for each ti ∈ R, (C, ti)Pi (B, ti)Pi (A, ti)Pi (0, ti). Thus Ri ranks objects
according to π = (C,B,A, 0).

Remark 2:8 (i) Let Ri ∈ RN rank objects according to π only at some given ti ∈ R. Then,
for each t�i ∈ R such that t�i ≤ ti, (π(1), t�i)Pi · · · Pi (π(m + 1), t�i). Note that for each t�i ∈ R
such that t�i > ti, (π(1), t

�
i)Pi · · · Pi (π(m+ 1), t�i) may not hold.

(ii) Let Ri ∈ RN . Then normality does not imply that there is π such that Ri ranks objects
according to π.
(iii) Let Ri ∈ RN . Then there is some π such that for each ti ∈ R, (π(1), ti)Ri · · · Ri (π(m +
1), ti).

Let RR(π) be the class of preferences ranking objects according to π. Note that RR(π) �
RC . A preference profile R ranks objects according to π if each individual preference in
the preference profile all ranks objects according to π, i.e., for each i ∈ N , Ri ∈ RR(π).
Figure 3 illustrates the preference profile R ranking objects according to π for N = {1, 2},

M = {A,B,C}, and π = (π(1), π(2), π(3), π(4)) = (C,B,A, 0).

8The proof is relegated to the Appendix.
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Figure 3 Illustration of preference profile ranking objects according to π

In Figure 3, for each t ∈ R, (C, t)P1 (B, t)P1 (A, t)P1 (0, t) and (C, t)P2 (B, t)P2 (A, t)P2 (0, t).
Thus, R ranks objects according to π.

Remark 3: (i) Let R0 ∈ RN . For each i ∈ N , let di ∈ R and Ri ∈ RC be a preference such
that for each x ∈ L and each ti ∈ R, Vi(x; (0, ti)) = V0(x; (0, ti− di)) + di. Then, the preference
profile R = (R1, . . . , Rn) has the following properties:
(a) For each i ∈ N , we have Ri ∈ RN . Let di parameterize agent i’s income. Since R0 ∈ RN , for
each pair i, j ∈ N , each x ∈ M , and each t0 ∈ R, if di > dj, then Vi(x; (0, t0)) > Vj(x; (0, t0)).
That is, the income effect on the valuation of x at (0, t0) is positive.
(b) For each i ∈ N , if Ri ranks objects according to some π at some given ti ∈ R, then the
property in Remark 2 (i) holds for Ri.
(ii) Kaneko (1983), Kaneko et al (2006), and Sai (2015), etc., analyze the housing market by
using the preference profile defined by Remark 3(i). Particularly, they set (b) as: for each
i ∈ N , (π(1), Ii)Pi · · · Pi (π(m + 1), Ii) for some π. Thus, by Remark 2(i), Ri ranks objects
according to π for each ti ∈ R such that ti ≤ Ii.
We call (RR(π))n a common-object-ranking domain. Whenever we mention a common-

object-ranking domain (RR(π))n, we assume that the permutation π is commonly known by
all the agents. Let RNR(π) ≡ RN ∩RR(π) be the class of preferences satisfying normality and
ranking objects according to π. We call (RNR(π))n a normal and common-object-ranking
domain.
The second property we focus is “common-tiered-object-ranking”, a generalization of

the first one. It says that objects are partitioned into tiers, and for each payment, agents
commonly prefer the bundle consisting of the object in the higher tier and that payment to the
bundle consisting of the object in the lower tier and that payment.
We describe a tier partition by an indexed family T = {Tl}l∈K of non-empty subsets of L

such that (i) K ≡ {1, 2, · · · , k} and 1 ≤ k ≤ m+ 1, (ii) ∪l∈KTl = L and (iii) for each l, l� ∈ K
with l �= l�, Tl ∩Tl� = ∅, where Tl denotes the l−th tier for each l ∈ K. For every pair x, y ∈ L,
x >T y means that x is in a higher tier than y according to T .
A preference Ri ∈ RC ranks objects according to T if for each ti ∈ R, each x ∈ Tl and

each y ∈ Tl� with l �= l� and l < l�, (x, ti)Pi (y, ti). Note that we do not impose any restrictions
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on the agent’s preferences over objects within the same tier when those payments are same.

Remark 4: (i) Since Ri ∈ RC , object monotonicity implies k ≥ 2 and Tk = {0}.
(ii) If a preference Ri ∈ RC ranks objects according to π, then Ri also ranks objects according
to T such that T1 = {π(1)}, · · · , Tm+1 = {π(m+ 1)}.
Figure 4 illustrates a preference Ri ranking objects according to T for M = {A,B,C} and

T =T1 ∪ T2 ∪ T3 with T1 = {B,C}, T2 = {A}, and T3 = {0}.

Figure 4 Illustration of preference ranking objects according to T

In Figure 4, for each t ∈ R, each y ∈ T1, each x ∈ T2, and 0 ∈ T3, we have (y, t)Pi (x, t)Pi (0, t).
Note that (C, s)Pi (B, s) and (B, s�)Pi (C, s�). Thus, Ri ranks objects according to T , but does
not rank objects according to any object permutation.

Let RT (T ) be the class of preferences ranking objects according to T . Obviously, RT (T ) ⊆
RC . A preference profile R ranks objects according to T if each individual preference in
the preference profile all ranks objects according to T , i.e., for each i ∈ N , Ri ∈ RT (T ).
Figure 5 illustrates the preference profile R ranking objects according to T for N = {1, 2},

M = {A,B,C}, and T =T1 ∪ T2 ∪ T3 with T1 = {B,C}, T2 = {A}, and T3 = {0}.

Figure 5 Illustration of preference profile ranking objects according to T
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In Figure 5, for each t ∈ R, (C, t)P1 (B, t)P1 (A, t)P1 (0, t) and (B, t)P2 (C, t)P2 (A, t)P2 (0, t).
Thus, R ranks objects according to T .
We call (RT (T ))n a common-tiered-object domain. Whenever we mention a common-

tiered-object domain (RT (T ))n, we assume that only the permutation T is commonly known
by all the agents. Let RNT (T ) ≡ RN ∩RT (T ) be the class of preferences satisfying normality
and ranking objects according to T . We call (RNT (T ))n a normal and common-tiered-
object-ranking domain.
Remark 5: (i) Any common-object-ranking domain is included in the common-tiered-object
domain with respect to some T = {Ti}i∈K . If 2 ≤ k < m+1, such a inclusion relation is strict.
(ii) If k = m + 1, a common-tiered-object domain with k tiers is a common-object-ranking
domain.
(iii) Consider two common-tiered-object domains with respect to T = {Tl}l∈K and T � =
{T �l�}l�∈K� . If T � is coarser than T , then the common-tiered-object domain with respect to
T is a subset of the one with respect to T �.9
(iv) Since the classical domain is the common-tiered-object domain with the coarsest class of
tiers, i.e., k = 2, any common-tiered-object domain is a subset of the classical domain.

An (allocation) rule on Rn is a mapping f from Rn to Z. Given a rule f and R ∈ Rn, we
denote bundle assigned to agent i by fi(R) ≡ (xi(R), ti(R)) where xi(R) denotes the assigned
object and ti(R) the associated payment. We write,

f(R) ≡ (fi(R))i∈N , x(R) ≡ (xi(R))i∈N , and t(R) ≡ (ti(R))i∈N .

We define the concept of “efficiency”.
An allocation z� ∈ Z dominates z ∈ Z for R ∈ Rn in agents’ welfare if for each i ∈ N ,

z�iRi zi, and for some i ∈ N, z�i Pi zi. An allocation z� ∈ Z weakly dominates z ∈ Z forR ∈ Rn

in agents’ welfare if for each i ∈ N , z�iRi zi. An allocation z� ∈ Z (weakly) dominates
z ∈ Z for R ∈ Rn in revenue if

i∈N
ti(≤) <

i∈N
t�i. An allocation z

� ∈ Z (Pareto-)dominates

z ∈ Z for R ∈ Rn if (i) z� ∈ Z dominates z for R in agents’ welfare and z� ∈ Z weakly
dominates z ∈ Z in revenue, or (ii) z� ∈ Z weakly dominates z for R in agents’ welfare and
z� ∈ Z dominates z ∈ Z in revenue. An allocation z is (Pareto-)efficient for R ∈ Rn if there
is no allocation z� ∈ Z that dominates z.
Remark 6: (i) Dominance in revenue takes the perspective of object suppliers, i.e., governments
or auctioneers, and implicitly assumes that their welfare is only monotonically increasing in the
revenues.
(ii) Dominance in revenue is indispensable in the definition of efficiency. Without this condi-
tion, no allocation is efficient.

Efficiency of the rule says that for each preference profile, the rule chooses an efficient
allocation.

Efficiency: For each R ∈ Rn, f(R) is efficient for R.

9T is coarser than T if for each l ∈ K, there is l ∈ K such that Tl ⊆ Tl .
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We introduce other properties of rules. Strategy-proofness says that no agent ever benefits
from misrepresenting his preference.

Strategy-proofness: For eachR ∈ Rn, each i ∈ N and eachR�i ∈ R, fi(
truth

Ri , R−i)
truth

Ri fi(
lie

R�i, R−i).
10

Individual rationality says that no agent is ever assigned a bundle that makes him worse off
than he would be if he had received the null object and paid nothing.

Individual rationality: For each R ∈ Rn and each i ∈ N , fi(R)Ri 0.
No subsidy says that the payment of each agent is always nonnegative.

No subsidy: For each R ∈ Rn and each i ∈ N , ti(R) ≥ 0.11

No subsidy for losers is a weak variant of no subsidy: It says that if an agent receives the
null object, his payment is nonnegative.
No subsidy for losers: For each R ∈ Rn, if xi(R) = 0, ti(R) ≥ 0.

3 Walrasian equilibria and minimum price equilibria

3.1 Definitions and fundamental properties

In this subsection, we define the equilibria and minimum price equilibria, and state several facts
related to them. Throughout the subsection, let us fix R ≡ RC and all the facts hold on all of
its subdomains, such as common-object-ranking and common-tiered-object domains, etc.
Let p ≡ (p1, · · · , pm) ∈ Rm+ be a price vector. The budget set at p is defined as B(p) ≡

{(x, px) : x ∈ L}, where if x = 0, then px = 0. Given Ri ∈ R, the demand set at p for Ri is
defined as D(Ri, p) ≡ {x ∈ L : for each y ∈ L, (x, px)Ri (y, py)}.
Definition: Let R ∈ Rn. A pair ((x, t), p) ∈ Z × Rm+ is a (Walrasian) equilibrium for R if

for each i ∈ N , xi ∈ D(Ri, p) and ti = pxi, (E-i)

for each y ∈ M , if for each i ∈ N , xi �= y, then py = 0. (E-ii)

Condition (E-i) says that each agent receives an object from his demand set and pays its
price. Condition (E-ii) says that the prices of unassigned objects are zero.

Fact 1 (Alkan and Gale, 1990; Alaei et al, 2016) (Existence). For each R ∈ Rn, there is an
equilibrium.

Given R ∈ Rn, we denote the set of equilibria for R by W (R), the set of equilibrium
allocations for R by Z(R), and the set of equilibrium price vectors for R by P (R),

10Thomson (2015) introduced this notation.
11In many real-life allocation problems, imposing no subsidy on the rules is mild and suitable. For example,

in the car license auction in Singapore, the participants who get the car licenses need to pay their bids and
those who cannot get the car licenses do not obtain any subsidy. In the fish auction in the Tsukiji fish market
in Japan, the merchants who get the fish need to pay their bids and those who cannot get the fish do not obtain
any subsidy. In the auction literature, Saitoh and Serizawa (2008) and Baisa (2016b) also imposed no subsidy
on the rules. Same argument holds for the justification of no subsidy for losers.
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respectively, i.e.,

Z(R) ≡ {z ∈ Z : for some p ∈ Rm+ , (z, p) ∈ W (R)}, and
P (R) ≡ {p ∈ Rm+ : for some z ∈ Z, (z, p) ∈ W (R)}.

Fact 2 (Demange and Gale, 1985) (Lattice property). For each R ∈ Rn, P (R) is a complete
lattice and there is a unique equilibrium price vector p ∈ P (R) such that for each p� ∈ P (R),
p ≤ p�.
A minimum price equilibrium is an equilibrium whose price vector is minimum. Given

R ∈ Rn, let pmin(R) be the minimum equilibrium price vector for R, Wmin(R) the set of
minimum price equilibria associated with pmin(R), and Zmin(R) the set of minimum
price equilibrium allocations associated with pmin(R), respectively, i.e.,

Zmin(R) ≡ {z ∈ Z : (z, pmin(R)) ∈ Wmin(R)}.

Although there might be several minimum price equilibria, they are indifferent for each
agent, i.e., for each R ∈ Rn, each pair z, z� ∈ Zmin(R), and each i ∈ N , zi Ii z�i.
Since a preference profile R is fixed in the rest of this section, we write pmin instead of

pmin(R) for simplicity.
Figure 6 illustrate a minimum price equilibrium for N = {1, 2, 3}, M = {A,B,C,D}, and

R ∈ (RC)n.

Figure 6 Illustration of minimum price equilibrium for preference profile from
classical domain

In Figure 6, a minimum price equilibrium allocation is as follows: agent 1 receives object A
and pays 0. Agent 2 receives object B and pays pminB . Agent 3 receives object D and pays pminD .
The prices of objects A and C are 0.
Let’s see why z ≡ (z1, z2, z3) is a minimum price equilibrium allocation. First, for each agent

i = 1, 2, 3, zi is maximal for Ri in the budget set {0, (A, pminA ), (B, pminB ), (C, pminC ), (D, pminD )}.
Thus, z is an equilibrium allocation. Let pmin ≡ (pminA , pminB , pminC , pminD ).
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Next, let p ≡ (pA, pB, pC , pD) be an equilibrium price. We show p ≥ pmin. By the nonnega-
tivity of prices, pA ≥ 0 = pminA and pC ≥ 0 = pminC .
If pB < pminB and pD < pminD , then by pA ≥ 0 and pC ≥ 0, all three agents prefer (B, pB)

or (D, pD) to 0, (A, pA) and (C, pC). In such a case, at least one agent cannot receive an
object from his demand set, contradicting (E-i). Thus, pB ≥ pminB or pD ≥ pminD . To prove
pB ≥ pminB and pD ≥ pminD , we derive the contradiction to the cases, pB < pminB and pD ≥ pminD ,
and pB ≥ pminB and pD < pminD , separately.
If pB < pminB , then by pA ≥ 0, pC ≥ 0, and pD ≥ pminD , both agents 1 and 2 prefer (B, pB)

to 0, (A, pA), (C, pC) and (D, pD). In such a case, one of agents 1 and 2 cannot receive the
demanded object, contradicting (E-i).
If pD < pminD , then by pA ≥ 0, pB ≥ pminB , and pC ≥ 0, both agents 1 and 3 prefer (D, pD)

to 0, (A, pA), (B, pB) and (C, pC). In such a case, one of agents 1 and 3 cannot receive the
demanded object, contradicting (E-i).
Thus, pB ≥ pminB and pD ≥ pminD . Thus, p ≥ pmin and (z, pmin) is a minimum price equilibrium.
In the following, we state the characterization of minimum price equilibria by means of

the “overdemanded” and “(weakly) underdemanded” sets. These concepts are important to
derive the structure of minimum price equilibria for common-object-ranking and common-
object-ranking preference profiles in the next subsection.
Given p and M � ⊆ M , let ND(p,M �) ≡ {i ∈ N : D(Ri, p) ⊆ M �} and NWD(p,M �) ≡ {i ∈

N : D(Ri, p) ∩M � �= ∅}.
Example 1. Figure 6 illustrates ND(p,M �) and NWD(p,M �) for M � = {A}, {A,B} and
{A,B,D}. For M � = {A}, we have ND(pmin, {A}) = ∅ and NWD(pmin, {A}) = {1}. For
M � = {A,B}, we have ND(pmin, {A,B}) = {2} and NWD(pmin, {A,B}) = {1, 2}. For M � =
{A,B,D}, we have ND(pmin, {A,B,D}) = {1, 2, 3} and NWD(pmin, {A,B,D}) = {1, 2, 3}.
Given a set S, |S| denotes the cardinality of S.

Definition: (i) A non-empty set M � ⊆ M of objects is overdemanded at p for R if
ND(p,M �) > |M �|.
(ii) A non-empty set M � ⊆M of objects is (weakly) underdemanded at p for R if

[∀x ∈M �, px > 0]⇒ NWD(p,M �) (≤) < |M �| .
By using “overdemanded set” and “(weakly) underdemanded set”, we can characterize the

minimum equilibrium price vector.

Fact 3 (Morimoto and Serizawa, 2015).12 Let R ∈ Rn. A price vector p is a minimum
equilibrium price vector for R if and only if no set is overdemanded and no set is weakly
underdemanded at p for R.

Example 2. Figure 6 illustrates Fact 3. First, ND(pmin, {A}) = 0 < |{A}| = 1 and
ND(pmin, {C}) = 0 < |{C}| = 1. Similarly, {B} nor {D} are overdemanded. Second,
ND(pmin, {A,B}) = 1 < |{A,B}| = 2 and ND(pmin, {A,C}) = 0 < |{A,C}| = 2. Similarly,
neither of {A,D}, {B,D}, {B,C}, and {C,D} are overdemanded. Third, ND(pmin, {A,B,C}) =

12Mishra and Talman (2010) established the parallel characterization for quasi-linear preferences.
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1 < |{A,B,C}| = 3 and ND(pmin, {A,B,D}) = 3 ≤ |{A,B,D}| = 3. Similarly, {A,C,D}
nor {B,C,D} are overdemanded. Thus, no set is overdemanded. For the objects with pos-
itive prices, namely, B and D, NWD(pmin, {B}) = 2 > |{B}| = 1, NWD(pmin, {D}) =
2 > |{D}| = 1, and NWD(pmin, {B,D}) = 3 > |{B,D}| = 2. Thus, no set of is weakly
underdemanded.

3.2 Structures of equilibria for common-object-ranking and common-
tired-object preference profiles

In this subsection, we state the structures of the equilibria for common-object-ranking and
common-object-ranking preference profiles, with special attention to the minimum price ones.
The results in this subsection will help us better understand the equilibrium properties of
Alonso-type housing market in urban economics,13 and theoretically support the observations
of the “higher-floor premium” for condominiums documented by empirical works.14 Higher-
floor premium says that in the same condominium, flats in higher floors are priced higher
than those in lower floors. Note that these features in general do not hold for the classical
preference profiles. The results in this subsection highlight the importance of the study of
common-object-ranking and common-object-ranking preference profiles.
First, we focus on the structure of the equilibria for the common-object-ranking preference

profile. In such equilibria, prices are monotonic along object-ranking.

Proposition 1 (Price monotonicity along object-ranking): Let μ ≡ min{n,m + 1}. In
an equilibrium (z, p) for R ∈ (RR(π))n,
(i) if m+ 1 ≤ n, then pπ(1) > · · · > pπ(μ) = 0, and all the objects are assigned,
(ii) if m + 1 > n, then pπ(1) > · · · > pπ(μ) ≥ pπ(μ+1) = · · · = pπ(m+1) = 0, objects ranked no
lower than π(μ) are assigned, and objects ranked lower than π(μ) are unassigned, and
(iii) in the minimum price equilibrium, pminπ(μ) = · · · = pminπ(m+1) = 0.

The proof of Proposition 1 is relegated to the Appendix. Figure 7 illustrates the structure of
minimum price equilibrium forN = {1, 2, 3},M = {A,B,C,D}, π = (π(1), π(2), π(3), π(4), π(5)) =
(D,C,B,A, 0), and R ∈ (RR(π))n.

13See Subsection 1.2.2 for the literature that theoretically analyzes this model.
14See Subsection 1.2.3 for the empirical works that document higher-floor premium.
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Figure 7 Illustration of minimum price equilibrium for preference profile from
common-object-ranking domain

Similarly to Figure 6, (z, pmin) is a minimum price equilibrium in Figure 7. Note that μ = 3
and pminD > pminC > pminB = pminA = 0(= pmin0 ). In addition, objects π(1), π(2), and π(3) are
assigned, but π(4) and π(5) are unassigned.
In a case where a preference profile is defined by Remark 3, it is straightforward to see that

Proposition 1 holds. Fact 4 states that objects are assigned according to agents’ incomes.

Fact 4 (Kaneko, 1983; Kaneko et al, 2006; Sai, 2015) (Assortative assignment). Let μ ≡
min{n,m + 1} and R = (R1, . . . , Rn) be the preference profile defined in Remark 3 such that
d1 > d2 > · · · > dn. Then, in an equilibrium (z, p) for R,
(i) if m+ 1 ≤ n, then x1 = π(1), · · · , xm = π(m) and xm+1 = · · · = xn = 0, and
(ii) if m+ 1 > n, then x1 = π(1), · · · , xn = π(n).

The proof of Fact 4 is relegated to the Appendix. By Remark 5(ii), the common-object-
ranking preference profile is a special case of common-tiered-object preference profile. In the
following, we extend the results of Proposition 1 to a more general case, the structure of the
equilibria for common-tired-object preference profiles.

Proposition 2 (Higher-floor premium). Let μ ≡ min{n,m + 1}. Let R ∈ (RT (T ))n, and
l0 ∈ K be such that l0−1

l=1 |Tl| < μ ≤ l0
l=1 |Tl|. In an equilibrium (z, p) for R,

(i) if l < l0, then for each x ∈ Tl, px > 0 and x is assigned to some agent,
(ii) if l < l� ≤ l0, then min{px : x ∈ Tl} > max{px : x ∈ Tl�},
(iii) if l > l0, then for each x ∈ Tl, px = 0 and x is unassigned, and
(iv) in the minimum price equilibrium, there is x ∈ Tl0 such that pminx = 0 and x is assigned to
some agent.

The proof of Proposition 2 is relegated to the Appendix. Figure 8 illustrates the structure
of minimum price equilibrium for N = {1, 2, 3}, M = {A,B,C,D}, T = T1 ∪ T2 ∪ T3 with
T1 = {C,D}, T2 = {A,B}, and T3 = {0}, and R ∈ (RT (T ))n.
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Figure 8 Illustration of minimum price equilibrium for preference profile from
common-tiered-object domain

Similarly to Figure 6, (z, pmin) is a minimum price equilibrium in Figure 8. In this case,
μ = 3 and l0 = 2. Note that min{pminC , pminD } > pminA = pminB = 0(= pmin0 ). In addition, objects in
T1 and T2 are all assigned and objects in T3 are unassigned.
An interesting case covered by Proposition 2 is the housing market economy analyzed by

Kaneko (1983), Kaneko et al (2006), Sai (2015), etc., where objects in the same tier are the
copies of the same objects. They assume that (a) K is the set of original objects (|K| = k),
and for each l ∈ K, |Tl| is the number of the copies of the original object l, and (b) a preference
profile R is specified by Remark 3 and d1 > · · · > dn. Particularly, for each i ∈ N , each l ∈ K,
each pair x, y ∈ Tl, and each t ∈ R, (x, t) Ii (y, t). It is straightforward to see that Proposition 2
holds. In addition, let p be an equilibrium price for a preference profile satisfying this condition.
Then for each l ∈ K and each pair x, y ∈ Tl, we also have px = py. For the properties of the
object assignment, we have Fact 5.

Fact 5 (Kaneko, 1983; Kaneko et al, 2006; Sai, 2015) (Assortative assignment).15 Assume
conditions (a) and (b) mentioned above. Let l0 ∈ K be such that if n ≤ k

l=1 |Tl|, then
l0−1
l=1 |Tl| < n ≤

l0
l=1 |Tl| and if n >

k
l=1 |Tl|, then l0 = k. In an equilibrium for R,

(i) for each i = 1, · · · , |T1|, we have xi ∈ T1,
(ii) for each i = |T1|+ 1, · · · , |T1|+ |T2|, we have xi ∈ T2, and
(iii) for each i = l0−1

l=1 |Tl|+ 1, · · · ,
l0
l=1 |Tl|, we have xi ∈ Tl0.

Remark 7: Kaneko (1983), Kaneko et al, (2006), and Sai (2015) show the parallel results
of Propositions 1 and 2 by assuming the preference profile as defined by Remark 3. Our
assumptions on preferences are weaker than theirs. Thus, their results do not imply ours but
are special cases of ours.

15The proof is similar to Fact 4.
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4 Efficient and strategy-proof rules

4.1 Equilibrium rules and dominance

First we define the rules based on the equilibrium selections and state their properties.
Definition: A rule f on Rn is called an equilibrium rule if for each R ∈ Rn, f(R) ∈ Z(R).
Definition: A rule f on Rn is called a minimum price (MP) rule if for each R ∈ Rn,
f(R) ∈ Zmin(R).
Definition: Let f and g be two rules onRn. Then f weakly dominates g in agents’ welfare
if for each R ∈ Rn, f(R) weakly dominates g(R) in agents’ welfare.
Fact 6 is straightforward from the definition of equilibrium.

Fact 6. Let R ⊆ RC . An equilibrium rule on Rn satisfies efficiency, individual rationality, and
no subsidy (no subsidy for losers).
Fact 7 distinguishes MP rules from other equilibrium rules by dominance in agents’ welfare.

It says that on the classical domain, MP rules are agent-optimal among all the equilibrium
rules.
Fact 7 (Agent-optimality of MP rule). Let R ⊆ RC . A minimum price rule weakly domi-
nates any equilibrium rule in agents’ welfare on Rn.
The proof of Fact 7 is relegated to the Appendix. Next, we demonstrate that MP rules are

also distinguished from other equilibrium rules by strategy-proofness. Fact 8 says that MP rules
are strategy-proof.
Fact 8 (Demange and Gale, 1985). Let R ⊆ RC . A minimum price rule on Rn satisfies
strategy-proofness.
From now on, instead of paying our attention to equilibrium rules, we analyze general rules

satisfying the above properties.
Fact 9 (Morimoto and Serizawa, 2015). Let R ≡ RC and n > m. Let f be a rule on Rn

satisfies strategy-proofness, efficiency, individual rationality, and no subsidy (no subsidy for
losers). Then, f weakly dominates a minimum price rule on Rn in agents’ welfare.
Facts 7 and 9 imply Fact 10.

Fact 10. Let R ≡ RC and n > m. Let f be a rule on Rn satisfies strategy-proofness, efficiency,
individual rationality, and no subsidy (no subsidy for losers). Then, f weakly dominates any
equilibrium rule on Rn in agents’ welfare.
Fact 10 says that on the classical domain, for a rule satisfying strategy-proofness in addition

to efficiency, individual rationality and no subsidy (no subsidy for losers), its selected alloca-
tion is as good as any equilibrium for each agent. Thus, when strategy-proofness is imposed
together with efficiency, individual rationality and no subsidy (no subsidy for losers), available
candidates of rules are limited. By Facts 6 and 8, MP rules are such candidates and the selected
allocations form the lower bounds of agents’ welfare.
This is an important implication when one intends to design strategy-proof rules on the

classical domain. Note that as exemplified in Subsection 3.2, there are interesting subdomains
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of the classical one, and the requirement of strategy-proofness is weaker on smaller domains.
Thus, it is an important question whether this implication still holds on restricted domains,
i.e., domains smaller than the classical one.
Thus, we consider the following restricted domains: common-object-ranking domains, (RR(π))n,

and common-tiered-object domains, (RT (T ))n. In addition, we also consider the subdomains
of (RR(π))n and (RT (T ))n that are restricted by normality of preferences, i.e., the normal
and common-object-ranking domains, (RNR(π))n, and the normal and common-tiered-object-
ranking domains, (RNT (T ))n. Theorem 1 says that the implication of strategy-proofness in
Fact 10 holds on such various restricted domains with some additional assumptions.

Theorem 1: Let R ⊆ RC . Let f satisfy efficiency, strategy-proofness, individual rationality
and no subsidy for losers on Rn.
(i) Let R = RR(π) or RNR(π). If n > m or if f satisfies no subsidy on Rn, then f weakly
dominates any equilibrium rule on Rn in agents’ welfare.
(ii) Let T be a tier partition such that 2 < k < m+ 1. Let R = RT (T ) or RNT (T ). If n > m,
or if l0 ∈ K is such that l0−1

l=1 |Tl| < μ ≤ l0
l=1 |Tl|, |Tl0| = 1 and f satisfies no subsidy on Rn,

then f weakly dominates any equilibrium rule on Rn in agents’ welfare.

The proof of Theorem 1 is relegated to the Appendix. In Theorem 1 (ii), |Tl0| = 1 implies
that the worst object in the assigned objects is common to all the agents.
Two open questions relating to Theorem 1 remain. The first one is whether the above

implication of strategy-proofness still holds when we further restrict agents’ preferences by
assuming that agents are indifferent between the same copies of each object. As we discussed
in Fact 5, these preferences are used in the housing market economy analyzed by Kaneko (1983),
Kaneko et al (2006), and Sai (2015), etc. Our proof of Theorem 1 depends on the assumption
that objects are heterogeneous even in the same tier. Thus, although we believe that the
implication of strategy-proofness still holds in their housing market economy, we have not yet
established it.
The second one is on n > m and no subsidy. Our proof of Theorem 1 (i) depends on n > m

or no subsidy. That of Theorem 1 (ii) also depends on n > m, or no subsidy combined with
the assumption that the worst object in the assigned objects is common to all the agents, i.e.,
|Tl0| = 1. Thus, although we also believe that the implication of strategy-proofness still holds
without these restrictions, we have not yet established it.

4.2 Characterizations of minimum price rule on the common-object-
ranking and common-tiered-object domains

By Fact 10, when strategy-proofness is imposed together with efficiency, individual rationality
and no subsidy (no subsidy for losers), available candidates for rules on the classical domain
are limited. MP rules are such candidates. Fact 11 says that there is no other candidate than
MP rules on the classical domain. When efficiency, individual rationality and no subsidy (no
subsidy for losers) are required on the classical domain, MP rules are not only the lower bounds
of agents’ welfare under strategy-proof rules, but also their upper bounds.
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Fact 11 (Morimoto and Serizawa, 2015). Let R ≡ RC and n > m. A rule f on Rn satisfies
efficiency, strategy-proofness, individual rationality, and no subsidy for losers (no subsidy) if
and only if it is a minimum price rule.

Although strategy-proofness is weaker on smaller domains, by Theorem 1, when strategy-
proofness is imposed together with efficiency, individual rationality, and no subsidy (no subsidy
for losers), available candidates of rules on various restricted domains are still limited. MP
rules are always such candidates. Thus, it is an interesting question whether there are any
other candidates on restricted domains, where the requirement of strategy-proofness is weaker.
First, we consider the common-object-ranking domain (RR(π))n.

Theorem 2: Let R ≡ RR(π). (i) Let n > m. A rule f on Rn satisfies efficiency, strategy-
proofness, individual rationality, and no subsidy for losers if and only if it is a minimum price
rule.
(ii) A rule f on Rn satisfies efficiency, strategy-proofness, individual rationality, and no subsidy
if and only if it is a minimum price rule.

The proof of Theorem 2 is relegated to the Appendix.

Remark 8: (i) Theorem 2 (i) is the parallel result of Fact 11 on (RR(π))n. In addition, similarly
to Morimoto and Serizawa (2015), when n > m, we can also show that efficiency, strategy-
proofness, individual rationality, and no subsidy for losers imply no subsidy on (RR(π))n.
(ii) Theorem 2 (ii) is independent of Theorem 2 (i) in the following points. First, Theorem
2 (ii) does not assume n > m. Second, Theorem 2 (ii) uses no subsidy, which is stronger
than no subsidy for losers. Third, in the case where n ≤ m, efficiency, strategy-proofness,
individual rationality, and no subsidy for losers do not imply no subsidy on (RR(π))n. To see
this, consider a MP rule with negative entry fee on a common-object-ranking domain. This
rule satisfies efficiency, strategy-proofness, and individual rationality.16 Since n ≤ m, no agent
is a loser and the rule satisfies no subsidy for losers. However, by Proposition 1, for the agent
who receives π(n), he receives a subsidy (the negative entry fee).

Next, we consider the common-tiered-object domain (RT (T ))n with respect to an indexed
family of tiers T = {Ti}i∈K with |K| = k. Recall that 2 ≤ k ≤ m + 1. By Remark 5 (ii),
Theorem 2 implies the characterization result of the MP rule on (RT (T ))n for k = m + 1.
Similarly, Fact 11 implies the characterization result of the MP rule on (RT (T ))n for k = 2.
Thus, we focus on the case where 2 < k < m+ 1. However, we need an additional assumption
n > m to establish the characterization result on (RT (T ))n.
Theorem 3: Let R ≡ RT (T ) be such that 2 < k < m + 1. (i) Let n > m. Then, a rule f
on Rn satisfies efficiency, strategy-proofness, individual rationality, and no subsidy for losers if
and only if it is a minimum price rule.
(ii) Let l0 ∈ K be such that l0−1

l=1 |Tl| < μ ≤ l0
l=1 |Tl|. Let |Tl0| = 1. Then, a rule f on Rn

satisfies efficiency, strategy-proofness, individual rationality, and no subsidy if and only if it is
a minimum price rule.

The proof of Theorem 3 is relegated to the Appendix. By the parallel argument to Remark

16See Morimoto and Serizawa (2015).
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8 (ii), Theorem 3 (i) and (ii) are independent. By Fact 11, Theorems 2 (i) and Theorem 3 (i),
we have:

Corollary 1: Let n > m and R ≡ RT (T ) such that 2 ≤ k ≤ m + 1. Then a rule f on Rn

satisfies efficiency, strategy-proofness, individual rationality, and no subsidy for losers if and
only if it is a minimum price rule.

Since no subsidy is stronger than no subsidy for losers, Fact 6 implies that Theorem 2 (ii)
holds for the case of k = 2. Combining with Theorems 2 (ii) and 3 (ii), we have:

Corollary 2: Let R ≡ RT (T ) such that 2 ≤ k ≤ m + 1 and |Tl0 | = 1. Then a rule f on Rn

satisfies efficiency, strategy-proofness, individual rationality, and no subsidy if and only if it is
a minimum price rule.

Next, we consider normal and common-object-ranking domains, (RNR(π))n, and normal
and common-tiered-object domains, (RNT (T ))n. To characterize MP rules on those domains,
we make an additional assumption that n ≤ m+ 1.
Theorem 4: Let R ≡ RNR(π) and n ≤ m + 1. Then, a rule f on Rn satisfies efficiency,
strategy-proofness, individual rationality, and no subsidy if and only if it is a minimum price
rule.

Theorem 5: LetR ≡ RNT (T ) be such that 2 < k < m+1. Let n ≤ m+1 and |Tl0| = 1. Then,
a rule f on Rn satisfies efficiency, strategy-proofness, individual rationality, and no subsidy if
and only if it is a minimum price rule.

The proofs of Theorems 4 and 5 are relegated to the Appendix. By Theorems 4 and 5, we
have:

Corollary 3: Let R ≡ RNT (T ) such that 2 < k ≤ m+ 1 and |Tl0| = 1. Then a rule f on Rn

satisfies efficiency, strategy-proofness, individual rationality, and no subsidy if and only if it is
a minimum price rule.

The "only if" parts of Theorems 2, 3, 4, and 5 fail if we drop any one of their axioms. In
the following, we show the independence of axioms for Theorem 2(ii). Independence of axioms
for other results can be shown similarly.

Example 3 (Dropping Efficiency). Let f be the “no-trade rule” such that for each pref-
erence profile, it assigns (0, 0) to each agent. Then, f satisfies strategy-proofness, individual
rationality, and no subsidy, but not efficiency.

Example 4 (Dropping Strategy-proofness). Let f be the “maximum equilibrium rule”
such that for each preference profile, it selects the maximum price equilibrium. By Facts 1 and
2, for each preference profile, there is a unique maximum equilibrium price. Then, f satisfies
efficiency, individual rationality, and no subsidy, but not strategy-proofness.

Example 5 (Dropping Individual rationality). Let f be the MP rule with positive entry
fee for each agent and n > m. Then, f satisfies efficiency, strategy-proofness, and no subsidy,
but not individual rationality.17

17n ≥ m + 1 implies that there is i ∈ N such that xi = 0. Since i pays a positive entry fee ei, then,
(0, 0)Pi (0, ei), violating individual rationality.
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Example 6 (Dropping No subsidy). Let f be the MP rule with negative entry fee for each
agent and n ≤ m. Then, f satisfies efficiency, strategy-proofness, and individual rationality,
but not no subsidy.18

In Subsection 4.1, we discussed two open questions related to Theorem 1. Since Theorems
2 and 3 depend on Theorem 1, the same types of questions remain open for these theorems.
We mention additional open questions related to Theorems 4 and 5. It is an open question
whether only MP rules satisfy the four properties of Theorems 4 and 5 on the normal and
common-object-ranking domains, (RNR(π))n, and the normal and common-tiered-object do-
mains, (RNT (T ))n, when n > m+ 1.
In spite of these open questions, Theorems 2, 3, 4, and 5 cover various interesting subdomains

of the classical one. They imply that when one intends to design rules satisfying efficiency,
strategy-proofness, individual rationality and no subsidy (no subsidy for losers) on such domains,
the only possibility is MP rules.

5 Concluding Remark

Morimoto and Serizawa (2015) demonstrated that the minimum price rule is an important
rule for governments to allocate objects where agents have non-quasi-linear preferences. They
also showed that the outcome selected by the minimum price rule coincides with that of the
simultaneous ascending auction, which is adopted by governments in many countries to allo-
cate spectrum licenses, etc. Thus, their results support the adoption of simultaneous ascending
auctions by governments. The implications of our results are similar to theirs, but cover prac-
tically important cases which are not covered by theirs, especially for the housing markets and
some cases of the spectrum licenses allocation that are exemplified in Introduction and demon-
strated in Subsection 3.2. Thus, our results also highly advocate the adoption of simultaneous
ascending auction in those situations.
Furthermore, we show that the minimum price equilibria for common-object-ranking and

common-object-ranking preference profiles have special structures. The parallel results have
already been established by Kaneko (1983), Kaneko et al (2006), and Sai (2015), but by as-
suming much stronger conditions on preference profiles. Our results would be useful when we
conduct the minimum price rule in more general environments.
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Appendix
The structure of Appendix is as follows: In Section A1, we provide the omitted proofs of

Remark 2, Proposition 1, Fact 4, Proposition 2, and Fact 7. In Section A2, we show the proofs
of our main theorems.

Section A1: Proofs of Remark 2, Proposition 1, Fact 4, Proposition 2, and Fact
7
Subsection A1.1: Proof of Remark 2
(i) First, we prove the first statement in (i). By contradiction, suppose that there are t�i < ti

and i < j such that (π(j), t�i)Ri (π(i), t
�
i). Since (π(i), ti)Pi (π(j), ti), by Ri ∈ RC , there is d > 0

such that (π(i), ti + d) Ii (π(j), ti). Since t�i < ti, we have ti −t�i > 0. By normality, we have
(π(i), ti + d − (ti − t�i))Pi (π(j), ti − (ti − t�i)). That is (π(i), d + t�i) Pi (π(j), t�i). By Ri ∈ RC ,
(π(i), t�i) Pi (π(j), d+ t

�
i). Thus (π(i), t

�
i) Pi (π(j), t

�
i), a contradiction.

Then, we show the second statement in (i) by providing an example. Let M = {x} and
Ri ∈ RC be such that for each ti ∈ R such that ti < 1, Vi(x, (0, ti)) = 1 − (1 − ti)/2 , and
otherwise, Vi(x, (0, ti)) = ti. Then, for each ti ∈ R such that ti < 1, (x, ti)Pi (0, ti). However,
for each ti ∈ R such that ti ≥ 1, (x, ti) Ii (0, ti).
(ii) We provide an example to show (ii). Let Ri ∈ RC be a preference such that for each

ti ∈ R and each x ∈M , (x, ti) Ii (0, ti). Then, Ri satisfies normality, but does not rank objects
according to any π.
(iii) To see this, first we show that for each ti ∈ R, each pair x, y ∈ L, if (x, ti)Pi (y, ti),

then for each t�i ∈ R, (x, t�i)Ri (y, t�i). We ignore the trivial case of t�i = ti.
Case 1: t�i ∈ R such that t�i < ti. Similarly to (i), we can show (x, t�i)Pi (y, t�i). Thus we have
(x, t�i)Ri (y, t

�
i).

Case 2: t�i ∈ R such that t�i > ti. By contradiction, suppose that (y, t�i)Pi (x, t�i). Then we have
(x, t��i ) Ii (y, t

�
i) for some t

��
i < t�i. By (x, ti)Pi (y, ti), we have (x, t

���
i ) Ii (y, ti) for some t

���
i > ti.

Since
(x, t���i ) Ii (y, ti) Pi

t�i>ti
(y, t�i) Ii (x, t

��
i ),

we have t���i < t
��
i . Let d = t

��
i − t���i . Then,

(y, t�i − d) Pi
normality

(x, t��i − d) = (x, t���i ) Ii (y, ti).

Since t�i > t��i > t���i > ti and d = t��i − t���i , we have t�i − d > ti. By (y, t�i − d)Pi (y, ti), this
contradicts money monotonicity.
Then, by the above result, for each pair x, y ∈ L, we have: (a) for each ti ∈ R, (x, ti)Ri (y, ti),

or (b) for each ti ∈ R, (y, ti)Ri (x, ti). Thus, we can define a binary relation ri over objects
by: for each pair x, y ∈ L, if (a) holds, x ri y, and otherwise y ri x . Transitivity of Ri implies
Transitivity of ri. Thus, for some object permutation π, we have π(1) ri · · · ri π(m+ 1). Thus
(π(1), ti)Ri · · · Ri (π(m+ 1), ti). Q.E.D.

Subsection A1.2: Proof of Proposition 1
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(i) Let m + 1 ≤ n. Then, μ = m + 1 implies π(μ) = 0 and pπ(μ) = 0. m + 1 ≤ n implies
that there is i ∈ N such that xi = 0. If there is x ∈ M such that px = 0, then (x, px)Pi 0,
contradicting 0 ∈ D(Ri, p). Thus, for each x ∈ M , we have px > 0. Thus, by (E-ii), all the
objects are assigned. To see pπ(1) > · · · > pπ(μ), by contradiction, suppose that there is a pair
x, y ∈ M such that y >π x ≥π π(μ) and px ≥ py. Let j ∈ N be such that xj = x. By (E-i),
we have x ∈ D(Rj, p). By Rj ∈ RR(π), we have (y, py)Pj (x, px), contradicting x ∈ D(Rj, p).
Thus 0 = pπ(μ) < · · · < pπ(1).
(ii) Let m + 1 > n. Then, μ = n. Suppose that there is x ∈ M such that x ≥π π(μ)

and x is unassigned. Then, there are i ∈ N and y <π π(μ) such that xi = y. By (E-i),
y ∈ D(Ri, p). Since x is unassigned, by (E-ii), we have px(R) = 0. Thus, by Ri ∈ RR(π), we
have (x, px)Pi (y, py), contradicting y ∈ D(Ri, p). Thus, for each x ∈ M such that x ≥π π(μ),
x is assigned to some agent. By μ = n, objects ranked lower than π(μ) are unassigned. Thus,
by (E-ii), we have pπ(μ+1) = · · · = pπ(m+1) = 0. Similarly to (i), we can show pπ(1) > · · · > pπ(μ)
and obviously, pπ(μ) ≥ 0.
(iii) If m + 1 ≤ n, (iii) follows from (i). Thus, let m + 1 > n. We only need to prove

pminπ(μ) = 0, since the proofs of other statements are same as (ii).
Suppose that pminπ(μ) > 0. Since m+ 1 > n, by (ii), we have pπ(1) > · · · > pπ(μ) > 0 and

|{i ∈ N : D(Ri, p) ∩ {π(1), · · · , π(μ)} �= ∅}| = n = |{π(1), · · · , π(μ)}| .

Thus {π(1), · · · , π(μ)} is weakly underdemanded, contradicting Fact 3. Q.E.D.

Subsection A1.3: Proof of Fact 4
Suppose that x1 �= π(1). Let i ∈ N be such that xi = π(1). By (E-i), for each x ∈ L,

(π(1), pπ(1)) Ri (x, px). Thus, by normality and d1 > di, for each x ∈ L\{π(1)}, (π(1), pπ(1)) P1
(x, px). Thus, D(R1, p) = {π(1)}. Since x1 �= π(1), it contradicts (E-i). Thus, x1 = π(1).
Suppose that x2 �= π(2). Let i ∈ N be such that xi = π(2). By x1 = π(1), we have i �= 1.

Thus, d2 > di. By (E-i), for each x ∈ L, (π(2), pπ(2)) Ri (x, px). Thus, by normality and d2 > di,
for each x ∈ L\{π(1), π(2)}, we have (π(2), pπ(2)) P2 (x, px). Thus, for each x ∈ L\{π(1), π(2)},
x /∈ D(R2, p). By x2 �= π(2) and x1 = π(1), this contradicts (E-i). Thus, x2 = π(2). By
repeating this argument, we can show (i) and (ii). Q.E.D.

Subsection A1.4: Proof of Proposition 2
(i) Let l < l0. By contradiction, suppose there is x ∈ Tl such that px(R) = 0. Then, by

l < l0,
l0−1
l�=1 |Tl� | < μ ≤ n, and (z, p) is an equilibrium, there are y ∈ M and i ∈ N such that

y <T x and y ∈ D(Ri, p). By px = 0 and Ri ∈ RT (T ), we have (x, px)Pi (y, py), contradicting
y ∈ D(Ri, p). Thus, if l < l0, then for each x ∈ Tl, px > 0, and by (E-ii), x is assigned to some
agent.
(ii) Let l < l� ≤ l0, x ∈ Tl, and y ∈ Tl� be such that px = min{px� : x� ∈ Tl} and

py = max{py� : y� ∈ Tl�}. By contradiction, suppose px ≤ py. By (i) and l < l0, we have
0 < px ≤ py. Thus, by (E-ii), there is j ∈ N such that y ∈ D(Rj, p). By x >T y, Rj ∈ RT (T ),
and px ≤ py, we have (x, px)Pj (y, py), contradicting y ∈ D(Rj, p). Thus, px > py.
(iii) Let l > l0. By contradiction, suppose there is x ∈ Tl such that px > 0. Then, by

(E-ii), there is i ∈ N such that xi = x ∈ D(Ri, p). This implies that m + 1 > n, μ = n, and
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n ≤ l0
l�=1 |Tl� |. Thus there are l� < l and y ∈ Tl� such that y is unassigned. By (E-ii), py = 0.

By Ri ∈ RT (T ), we have (y, py)Pi (x, px), contradicting x ∈ D(Ri, p). Thus, if l > l0, then
for each x ∈ Tl, we have px = 0. In the following, we prove that x is also unassigned. Let
l > l0. By contradiction, suppose there are i ∈ N and x ∈ Tl such that xi = x ∈ D(Ri, p). This
implies that m+ 1 > n, μ = n, and n ≤ l0

l=1 |Tl|. Thus there are l� < l and y ∈ Tl� such that
y is unassigned. By (E-ii), py = 0. By Ri ∈ RT (T ), we have (y, py)Pi (x, px), contradicting
x ∈ D(Ri, p).
(iv) Case 1: n ≥ m+ 1. Since μ = m+ 1, Tl0 = {0} and pmin0 = 0. By n ≥ m+ 1, there is

i ∈ N such that xi = 0.
Case 2: n < m+ 1. Then μ = n. If there is i ∈ N such that xi = 0, then by n < m+ 1, there
is an unassigned x ∈ M . By (E-ii), pminx = 0. By Ri ∈ RT (T ), we have (x, pminx )Pi (xi, p

min
xi
),

contradicting xi ∈ D(Ri, pmin(R)). Thus, for each i ∈ N , we have xi ∈M .
LetM � ≡ {x ∈M : x = xi for some i ∈ N}. Then, |M �| = n. Suppose that for each x ∈M �,

pminx > 0. Thus, by |M �| = n, M � is weakly underdemanded, contradicting Fact 3. Thus, there
is x ∈ M � such that pminx = 0. By the definition of M �, there is i ∈ N such that x = xi and
pminx = 0.
Let l ∈ K be such that x ∈ Tl. Since x is assigned, by (iii), we have l ≤ l0. Since pminx = 0,

by (i), we have l > l0 − 1. Thus l = l0. Q.E.D.

Subsection A1.5: Proof of Fact 7
Let f be a MP rule and g be an equilibrium rule on Rn. Let p and p� be the price vectors

associated with f(R) and g(R), respectively. Since R ∈ (RC)n, f is a MP rule, and g is an
equilibrium rule, Fact 2 implies p ≤ p�. Let i ∈ N , fi(R) = (x, ti) and gi(R) = (y, t�i). Since f
and g are both equilibrium rules, then we have x ∈ D(Ri, p), ti = px and t�i = p�y. Thus,

fi(R) = (x, px) Ri
x∈D(Ri,p)

(y, py) Ri
p≤p�

(y, p�y) = gi(R).

Q.E.D.

Section A2: Proofs of Theorems 1 to 5.
Subsection A2.1: Proof of Theorem 1
The proof of Theorem 1 consists of Parts A, B and C. Part A corresponds to the proof of

Theorem 1 (i) for the case where f satisfies no subsidy. Part B corresponds to the proof of
Theorem 1 (ii) for the case where there is l0 ∈ K such that l0−1

l=1 |Tl| < μ ≤ l0
l=1 |Tl| and

|Tl0| = 1, and f satisfies no subsidy. Part C corresponds to the proof of Theorem 1 for the
cases not covered by Parts A and B.
As mentioned by Fact 9, our theorem is a parellel result of Morimoto and Serizawa (2015)

on the restricted domain. Morimoto and Serizawa (2015) provides new proof techniques to
deal with non-quasi-linearity. We owe to them some of their proof techniques and methods.
However, we emphasize that our domains are smaller than theirs and their proofs often employ
preferences outside our domains. Thus, even in the cases where their proof techniques can be
applied, we need to modify them carefully, and in many cases we need to develop new proof
techniques.
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To be precise, Part A is different from Morimoto and Serizawa (2015) by three points.
The first point is that we need to identify which objects should be allocated and the payment
boundary of the lowest ranked object, by Lemmas A.1 to A.3. This is because we do not impose
any assumptions on the number of agents and that of objects. Note that these lemmas are not
needed in Morimoto and Serizawa (2015) and our results cannot be established in their domain
and by their proof technique either.
The second point is on “semi-maskin transformation,” which we use in our proofs. It is

different from the zi−favoring transformation used by them.19 zi−favoring transformations
play important roles in Morimoto and Serizawa’s (2015) proofs, but we cannot construct the
zi−favoring transformation on our domain. Besides, we use the property of the semi-maskin
transformation to prove Lemmas A.6 and A.7. However, this is not the case in Morimoto and
Serizawa (2015) and they use different logics and proof techniques to show the similar results
of Lemmas A.5 to A.7.
The third point is that we use different proof techniques to show Proposition A.1. In

Morimoto and Serizawa (2015), they prove the parallel result of Proposition A.1 on the basis
of Lemma B.8 (in their paper). Their proof of Lemma B.8 uses non-normal preferences in a
crucial way. However, non-normal preferences are excluded by our domain RNR(π). To prove
Proposition A.1, we need to construct a lemma with different contents, namely, Lemma A.8.
We prove Lemma A.8 by using only normal preferences. Besides, using the price structure
shown by Proposition 1 is also important for the proof of Proposition A.1, i.e., the construction
of (1-iii-(b-3)).
Part B is a generalization of Part A. By same reasoning, it is also different from Morimoto

and Serizawa (2015). Since the basic proof idea follows Part A, with some modifications,
to avoid redundancy, we directly provide the main result, without writing down the detailed
proofs.
Part C deals with a similar situation to Morimoto and Serizawa (2015), the basic proof

logics follow theirs. However, since the preferences used by them are excluded by our domain,
we combine both the proof techniques used by Morimoto and Serizawa (2015) and Part A.
Still to avoid redundancy, we also just demonstrate the main result, without writing down the
detailed proofs.

P A: Let R = RR(π) or RNR(π). We prove that if f satisfies efficiency, strategy-
proofness, individual rationality and no subsidy onRn, then f weakly dominates any equilibrium
rule on Rn in agents’ welfare.
Recall that π = (π(1), . . . ,π(m), π(m + 1)), π(m + 1) = 0, μ ≡ min{n,m + 1}, and for

each pair x, y ∈ L, x >π y means that x has a higher rank than y according to π. Let
M0 ≡ {π(1), · · · , π(μ)} and M1 ≡ {π(1), · · · , π(μ− 1)}.
Lemma A.1: Let f satisfy efficiency. Let R ∈ (R)n. Then, (a) for each x ∈ M0, there is

i ∈ N such that xi(R) = x, and (b) for each i ∈ N, xi(R) ∈M0.

Proof : (a) By contradiction, suppose that there is x ∈ M0 such that for each i ∈ N ,
xi(R) �= x. By the definition of M0, there is i ∈ N such that x >π xi(R).

19A preference Ri is a zi−favoring transformation of Ri at zi if for each y ∈ L\{xi}, Vi (y, zi) < 0.
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Define z� by: (i) z�i ≡ (x, ti(R)), and (ii) for each j ∈ N\{i}, z�j ≡ fj(R). Then, by
R ∈ (RR(π))n, (x, ti(R)) Pi (π(μ), ti(R)). Thus, z� dominates f (R), contradicting efficiency.
(b) If n ≥ m + 1 (i.e., μ = m + 1 and π(μ) = 0), then M0 = L and (b) holds trivially. If

n ≤ m (i.e., μ = n and π(μ) >π 0), then |M0| = n and (b) follows from (a). Q.E.D.

Lemma A.2: Let f satisfy efficiency, strategy-proofness, and individual rationality. Let
R ∈ (R)n. Then, for each i ∈ N , fi(R)Ri (π(μ), 0).
Proof : By contradiction, suppose that there is i ∈ N such that (π(μ), 0) Pi fi (R).
Claim: For each x ∈M0, Vi(x; fi(R)) > 0.
By contradiction, suppose that there is x ∈M0 such that Vi(x; fi(R)) ≤ 0. Then,

fi (R) Ii (x, Vi(x; fi(R))) Ri
Vi(x;fi(R))≤0

(x, 0) Ri
x∈M0

(π(μ), 0) ,

contradicting (π(μ), 0) Pi fi (R). Thus the Claim holds.
By the above Claim, there is Ri such that for each x ∈ M0, Vi(x;0) < Vi(x; fi(R)). By

Lemma A.1(b), xi(Ri, R−i) ∈M0. Thus,

ti(Ri, R−i) ≤
individual rationality

Vi(xi(Ri, R−i);0) < Vi(xi(Ri, R−i); fi(R)).

Thus fi(
lie

Ri, R−i)
truth

Pi fi(
truth

Ri , R−i), contradicting strategy-proofness. Q.E.D.

Lemma A.3: Let f satisfy efficiency, strategy-proofness, individual rationality and no
subsidy. Let R ∈ (R)n. Then, for each i ∈ N , if xi(R) = π(μ), ti(R) = 0.
Proof : Let i ∈ N be such that xi(R) = π(μ). By Lemma A.2, fi(R)Ri (π(μ), 0). Thus

ti(R) ≤ 0 while no subsidy implies ti(R) ≥ 0. Thus, ti(R) = 0. Q.E.D.

Lemma A.4 (Morimoto and Serizawa, 2015): Let i, j ∈ N and z ∈ Z be such that ziRi zj
and zi Pj zj. Assume that tj − Vi(xj; zi) < Vj(xi; zj)− ti. Then, there is z� ∈ Z that dominates
z.
Proof : Let t�i ≡ Vi(xj; zi) and t�j ≡ ti + tj − Vi(xj; zi).
Define z� by: (i) z�i ≡ (xj, t

�
i), (ii) z

�
j ≡ (xi, t

�
j), and (iii) for each k ∈ N\{i, j}, z�k ≡ zk.

Then, z�i Ii zi, and for each k ∈ N\{i, j}, z�k Ik zk. Since tj + ti − Vi(xj; zi) < Vj(xi; zj), then
z�j Pj zj. Moreover,

k∈N
t�k =

k∈N\{i,j}

t�k + t
�
i + t

�
j =

k∈N\{i,j}

t�k + ti + tj =
k∈N

tk.

Thus, z� dominates z. Q.E.D.

Given zi ≡ (xi, ti) ∈ L×R and Ri ∈ R, R�i ∈ R is a semi-Maskin monotonic transformation
of Ri at zi if (i) for each y <π xi, V �i (y; zi) < 0, and (ii) for each y >π xi, V �i (y; zi) < Vi(y; zi).
Let RSMM(Ri, zi) be the set of semi-Maskin monotonic transformations of Ri at zi.
Lemma A.5: Let f satisfy strategy-proofness and no subsidy. Let R ∈ (R)n and R�i

∈ RSMM(Ri, fi(R)). Then, fi(R�i, R−i) = fi(Ri, R−i).
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Proof : Strategy-proofness implies

fi(
truth

R�i , R−i)
truth

R�i fi(
lie

Ri, R−i).

Thus, ti(R�i, R−i) ≤ V �i (xi(R�i, R−i); fi(R))).
If xi(R�i, R−i) <π xi(R), then by R�i ∈ RSMM(Ri, fi(R)), we have:

ti(R
�
i, R−i) ≤ V �i (xi(R�i, R−i); fi(R))) < 0, contradicting no subsidy. Thus, xi(R�i, R−i) ≥π xi(R).
Suppose xi(R�i, R−i) >π xi(R). Then by ti(R�i, R−i) ≤ V �i (xi(R�i, R−i); fi(R))),

fi(R
�
i, R−i)Ri (xi(R

�
i, R−i), V

�
i (xi(R

�
i, R−i); fi(R))).

Thus by R�i ∈ RSMM(Ri, fi(R)),

(xi(R
�
i, R−i), V

�
i (xi(R

�
i, R−i); fi(R)))Pi (xi(R

�
i, R−i), Vi(xi(R

�
i, R−i); fi(R))) Ii fi(R).

Thus, fi(
lie

R�i, R−i)
truth

Pi fi(
truth

Ri , R−i), violating strategy-proofness. Thus xi(R�i, R−i) = xi(R).

Again, by strategy-proofness, fi(
truth

Ri , R−i)
truth

Ri fi(
lie

R�i, R−i) and fi(
truth

R�i , R−i)
truth

R�i fi(
lie

Ri, R−i).
Thus, by xi(R�i, R−i) = xi(R), we have ti(R

�
i, R−i) = ti(R). Q.E.D.

GivenR ∈ (R)n, x ∈ L and z ∈ [L×R]n, let ρx(R) ≡ (ρx1(R), · · · , ρxn(R)) be the permutation
on N defined by Vρxn(R)(x; zρxn(R)) ≤ · · · ≤ Vρx1 (R)(x; zρx1 (R)). For each k ∈ N , let C

k(R, x; z) be
the k-th highest valuation of x from z for R, i.e., Ck(R, x; z) ≡ Vρxk(R)(x; zρxk(R)).
Lemma A.6: Let f satisfy efficiency, strategy-proofness, individual rationality and no

subsidy. Let R ∈ (R)n, i ∈ N and x ≡ xi(R). Then, ti(R) ≥ Cμ(R, x; (π(μ), 0)).
Proof : By Lemma A.1(b), x ∈M0 and x ≥π π(μ).
Case 1: x = π(μ). By Lemma A.3, ti(R) = 0 = Cμ(R, π(μ); (π(μ), 0)).
Case 2: x >π π(μ). By contradiction, suppose that ti(R) < Cμ(R, x; (π(μ), 0)). By x >π

π(μ), there is R�i ∈ RSMM(Ri, fi(R)) such that −V �i (π(μ); fi(R)) < Cμ(R, x; (π(μ), 0))− ti(R).
By Lemma A.5, fi(R�i, R−i) = fi(Ri, R−i). Thus

−V �i (π(μ); fi(R�i, R−i)) < Cμ(R, x; (π(μ), 0))− ti(R�i, R−i).

By Lemmas A.1(b) and A.3, there is j ∈ N\{i} such that fj(R�i, R−i) = (π(μ), 0) and
Vj(x; (π(μ), 0)) ≥ Cμ(R, x; (π(μ), 0)). Thus,

ti(R
�
i, R−i)− V �i (π(μ); fi(R�i, R−i)) < Cμ(R, x; (π(μ), 0)) ≤ Vj(x; (π(μ), 0)).

Define z� by:
(i) z�i ≡ (π(μ), V �i (π(μ); fi(R�i, R−i))),
(ii) z�j ≡ (x, ti(R�i, R−i)− V �i (π(μ); fi(R�i, R−i))), and
(iii) for each k ∈ N\{i, j}, z�k ≡ fk(R�i, R−i).
Then, z�i I

�
i fi(R

�
i, R−i) and z

�
j Pj fj(R

�
i, R−i). Furthermore,

V �i (π(μ); fi(R
�
i, R−i))+ti(R

�
i, R−i)−V �i (π(μ); fi(R�i, R−i))+

k∈N\{i,j}

tk(R
�
i, R−i) =

k∈N
tk(R

�
i, R−i).
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Thus, z� dominates f(R�i, R−i), contradicting efficiency. Q.E.D.

Lemma A.7: Let f satisfy efficiency, strategy-proofness, individual rationality and no
subsidy. Let R ∈ (R)n and i ∈ N be such that x ≡ xi(R) >π π(μ). Then, Vi(x; (π(μ), 0)) ≥
Cμ−1(R, x; (π(μ), 0)).

Proof : By contradiction, suppose that Vi(x; (π(μ), 0)) < Cμ−1(R, x; (π(μ), 0)). Then,

Vi(x; (π(μ), 0)) ≤ Cμ(R, x; (π(μ), 0)) ≤
Lemma A.6

ti(R) ≤
Lemma A.2

Vi(x; (π(μ), 0)).

Thus, ti(R) = Vi(x; (π(μ), 0)) = Cμ(R, x; (π(μ), 0)) < Cμ−1(R, x; (π(μ), 0)). Thus, Vi(π(μ); fi(R)) =
0 and

{j ∈ N\{i} : Vj(x; (π(μ), 0)) ≥ Cμ−1(R, x; (π(μ), 0))} = μ− 1.
By xi(R) = x >π π(μ), μ = min{n,m + 1} ≥ 2, and Lemmas A.1 (b) and A.3, there is

j ∈ N\{i} such that fj(R) = (π(μ), 0) and Vj(x; (π(μ), 0)) ≥ Cμ−1(R, x; (π(μ), 0)). Thus

Vj(x; (π(μ), 0)) > C
μ(R, x; (π(μ), 0)) = ti(R).

By Vi(π(μ); fi(R)) = 0 and tj(R) = 0,

tj(R)− Vi(π(μ); fi(R)) = 0 < Vj(x; (π(μ), 0))− ti(R).

By Lemma A.4, fi(R) is not efficient, a contradiction. Q.E.D.

Given R ∈ (R)n, let Zπ(μ)(R) ≡ {z ∈ Z : ziRi (π(μ), 0) for each i ∈ N}.
Lemma A.8: Let f satisfy efficiency, strategy-proofness, individual rationality and no

subsidy. Let R ∈ (R)n, i ∈ N , x ∈M1 and z ∈ Zπ(μ). Assume that
(8-i) for each j ∈ N\{i}, fj(R)Rj zj,
(8-ii) Vi(x; ((π(μ), 0)) > C1(R−i, x; z),
(8-iii) there is ε > 0 such that Vi(x; ((π(μ), 0))− C1(R−i, x; z) > 2ε,
and for each y ∈M1 such that y <π x,

Vi(y; ((π(μ), 0)) < min{Cμ−1(R, y; ((π(μ), 0)), Vi(x; ((π(μ), 0))− C1(R−i, x; z)− 2ε},

and
(8-iv) for each j �= i, each t ∈ [0, Vi(m;0)], each t� ∈ [0, Vj(m;0)] and each y >π x,
t� − Vi(x; (y, t�)) < Vj(y; (x, t))− t.

Then xi(R) = x.
Proof : By contradiction, suppose xi(R) �= x. By Lemma A.1(b), there is j ∈ N\{i} such

that xj(R) = x.
Note

tj(R) ≤
(8-i)

Vj(x; zj) ≤ C1(R−i, x; z) <
(8-ii)

Vi(x; ((π(μ), 0)).

Thus, there is R�j ∈ RSMM(Rj, fj(R)) such that
(i) −V �j ((π(μ); fj(R)) = Vi(x; ((π(μ), 0))− C1(R−i, x; z)− ε,
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(ii) for each y ∈M1 such that y <π xj(R), V �j (y; (π(μ), 0)) > Vi(x; (π(μ), 0))−C1(R−i, x; z)−2ε,
and,
(iii) for each y >π xj(R), (8-iv) holds with respect to the pair Ri and R�j.
By R�j ∈ RSMM(Rj, fj(R)) and Lemma A.5, fj(R�j, R−j) = fj(R). Thus by (i),

(i’) −V �j ((π(μ); fj(R�j, R−j)) = Vi(x; ((π(μ), 0))− C1(R−i, x; z)− ε.
Let y ≡ xi(R�j, R−j). By fj(R�j, R−j) = fj(R), y �= x. If y >π x, then by (iii),

tj(R
�
j, R−j)− Vi(x; fi(R�j, R−j)) < V �j (y; fj(R�j, R−j))− ti(R�j, R−j).

By Lemma A.4, f(R�j, R−j) is not efficient, a contradiction. Thus, by y �= x, y <π x.
If y ∈M1, then

Vi(y; (π(μ), 0)) <
(8-iii)

Vi(x; ((π(μ), 0))− C1(R−i, x; z)− 2ε <
(ii)
V �j (y; (π(μ), 0)).

Since (8-iii) also implies Vi(y; (π(μ), 0)) < Cμ−1(R, y; (π(μ), 0)), then we have

Vi(y; (π(μ), 0)) < C
μ−1((R�j, R−j), y; (π(μ), 0)).

By Lemma A.7, this contradicts y ∈M1. Thus, y <π x but y /∈M1.
By Lemmas A.1(b) and y /∈M1, xi(R�j, R−j) = π(μ). Thus, by Lemma A.3, ti(R�j, R−j) = 0.

Thus, by (i’) and tj(R�j, R−j) = tj(R) ≤ C1(R−i, x; z),

ti(R
�
j, R−j)− V �j (π(μ); fj(R�j, R−j)) < Vi(x; ((π(μ), 0))− C1(R−i, x; z)

≤ Vi(x; (π(μ), 0))− tj(R�j, R−j).

Thus, by Lemma A.4, f(R�j, R−j) is not efficient, a contradiction. Thus xi(R) = x. Q.E.D.

Proposition A.1: Let f satisfy efficiency, strategy-proofness, individual rationality and no
subsidy. Let R ∈ (R)n and z ∈ Zmin(R). Then, for each i ∈ N , fi(R)Ri zi.
Proof : Without loss of generality, let π = (π(1), π(2) · · · , π(m + 1)) = (m, · · · , 1, 0). Let

x0 ≡ max{0,m − n + 1}. By μ ≡ min{n,m + 1}, we have μ = m − x0 + 1 and π(μ) = x0.
If m > n, then x0 = m − n + 1. If m ≤ n, then x0 = 0. Note M0 ≡ {x0, · · · ,m} and
M1 ≡ {x0 + 1, · · · ,m}. We only prove f1(R)R1 z1. For each j ∈ N\{1}, fj(R)Rj zj can
be proved similarly. If x1 = x0, then by Lemma A.3, z1 = (x0, 0), and so by Lemma A.2,
f1(R)R1 z1. Thus, let x1 > x0. Let Nx0 ≡ {i ∈ N | xi > x0}. By contradiction, suppose that
z1 P1 f1(R).

Claim: For each k = 0, 1, 2, . . ., there are a set N(k + 1) of k + 1 distinct agents, saying
N(k + 1) ≡ {1, 2, ..., k + 1}, and R�N(k+1) ∈ (R)k+1 such that:
(1-i) zk+1 Pk+1 fk+1(R�N(k), R−N(k));
(1-ii) pminxk+1

(R) < V �k+1(xk+1; (x0, 0)) < Vk+1(xk+1; fk+1(R
�
N(k), R−N(k)));

(1-iii) for each j ∈ N(k + 1),
(1-iii-a) there is εj > 0 such that V �j (xj; (x0, 0))− pminxj

(R) > 2εj,
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and for each y ∈M1 such that y < xj,

V �j (y; (x0, 0))

< min{Cm−x0+1((R�{1,...j−1}, RN\{1,...j−1}), y; (x0, 0)), V �j (xj; (x0, 0))− pminxj
(R)− 2εj, Vj(y; (x0, 0))},

(1-iii-b) for each y > xj
(1-iii-(b-1)) for each i ∈ {1, · · · , j − 1}, each t ∈ [0, V �i (m;0)] and each t� ∈ [0, V �j (m;0)],

t� − V �j (xj; (y, t�)) < V �i (y; (xj, t))− t,

(1-iii-(b-2)) for each i ∈ {j + 1, · · · , n}, each t ∈ [0, Vi(m;0)] and each t� ∈ [0, V �j (m;0)],

t� − V �j (xj; (y, t�)) < Vi(y; (xj, t))− t,

and
(1-iii-(b-3)) V �j (y; (x0, 0)) < p

min
y (R);

(1-iv) N(k + 1) � Nx0.

We inductively prove Claim.

Step 1: We prove Claim for the case of k = 0.
Note N(1) = {1}. By z1 P1 f1(R), (1-i-1) holds and pminx1

(R) < V1(x1; f1(R)). Thus, there is
R�1 ∈ R such that
(1-ii-1) pminx1

(R) < V �1(x1; (x0, 0)) < V1(x1; f1(R));
(1-iii) for 1 ∈ N(1),
(1-iii-a-1) there is ε1 > 0 such that V �1(x1; ((π(μ), 0))− pminx1

(R) > 2ε,
and for each y ∈M1 such that y < x1,

V �1(y; (x0, 0)) < min{Cm−x0+1(R, y; (x0, 0)), V �1(x1; ((π(μ), 0))− pminx1
(R)− 2ε1, V1(y; (x0, 0))},

(1-iii-b-1) for each y > x1
(1-iii-(b-2)-1) for each i ∈ N\{1}, each t ∈ [0, Vi(m;0)] and each t� ∈ [0, V �1(m;0)],

t� − V �1(x1; (y, t�)) < Vi(y; (x1, t))− t,

and
(1-iii-(b-3)-1) V �1(y; (x0, 0)) < p

min
y (R).20

By the construction of R�1, (1-ii-1) and (1-iii-1) holds. Thus, we prove (1-iv-1), i.e., N(1) �
Nx0 . By Lemma A.2, z1 P1 f1(R)R1 (x0, 0). Thus 1 ∈ Nx0. Thus, N(1) = {1} ⊆ Nx0. By
contradiction, suppose that Nx0 = {1}. Then by Lemma A.1, μ = min{n,m + 1} = 2, which
implies n = 2 or m = 1. Thus, by Lemma A.1, for each j ∈ N\{1}, zj = (x0, 0).
By z ∈ Zmin(R), z ∈ Zx0. We show (8-i), (8-ii), (8-iii) and (8-iv) of Lemma A.8 with respect

to z to conclude x1(R�1, RN\{1}) = x1.
By Lemma A.2, for each j ∈ N\{1}, fj(R�1, RN\{1})Rj (x0, 0) = zj. Thus, (8-i) holds.

(1-iii-b-1) implies (8-iv).

20(1-iii-(b-1)-1) is satisfied vacuously.
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Note that for each j ∈ N\{1}, by z ∈ Zmin(R), (x0, 0) = zj Rj z1 and Vj(x1; (x0, 0)) ≤
pminx1

(R). Thus C1(R−i, x1; z) ≤ pminx1
(R), and so by (1-ii-1), (8-ii) holds. By C1(R−i, x1; z) ≤

pminx1
(R) and (1-iii-a-1),

0 < V �1(x1; (x0, 0))− pminx1
(R)− 2ε1 ≤ V �1(x1; (x0, 0))− C1(R−i, x1; z)− 2ε1,

which implies (8-iii).
Since (8-i), (8-ii), (8-iii) and (8-iv) of Lemma A.8 hold, x1(R�1, RN\{1}) = x1.
Note that

t1(R
�
1, RN\{1}) ≤

Lemma A.2
V �1(x1; (x0, 0)) <

(1-ii-1)
V1(x1; f1(R)).

Thus, by x1(R�1, RN\{1}) = x1,

f1(
lie

R�1, RN\{1})
truth

P1 f1(
truth

R1 , RN\{1}).

This contradicts strategy-proofness. Thus, N(1) � Nx0. Thus (1-iv-1) holds.

Induction hypothesis: There are a set N(k) of k > 0 distinct agents, saying N(k) =
{1, 2, ..., k}, and R�N(k) ∈ (RR)k such that:
(1-i-k) zk Pk fk(R�N(k−1), R−N(k−1));
(1-ii-k) pminxk

(R) < V �k(xk; (x0, 0)) < Vk(xk; fk(R
�
N(k−1), R−N(k−1)));

(1-iii-k) for each j ∈ N(k),
(1-iii-a-k) there is εj > 0 such that V �j (xj; (x0, 0))− pminxj

(R) > 2εj,
and for each y ∈M1 such that y < xj,

V �j (y; (x0, 0))

< min{Cm−x0+1((R�{1,...,j−1}, RN\{1,...,j−1}), y; (x0, 0)), V �j (xj; (x0, 0))− pminxj
(R)− 2εj, Vj(xj; (x0, 0))},

(1-iii-b-k) for each y > xj
(1-iii-(b-1)-k) for each i ∈ {1, · · · , j − 1}, each t ∈ [0, V �i (m;0)] and each t� ∈ [0, V �j (m;0)],

t� − V �j (xj; (y, t�)) < V �i (y; (xj, t))− t,

(1-iii-(b-2)-k) for each i ∈ {j + 1, · · · , n}, each t ∈ [0, Vi(m;0)] and each t� ∈ [0, V �j (m;0)],

t� − V �j (xj; (y, t�)) < Vi(y; (xj, t))− t,

and
(1-iii-(b-3)-k) V �j (y; (x0, 0)) < p

min
y (R);

(1-iv-k) N(k) � Nx0.

Step 2: We prove Claim for the case of k + 1.
Step 2-1: We prove that there is i ∈ Nx0\N(k) such that zi Pi fi(R�N(k), R−N(k)).
By (1-iv-k), Nx0\N(k) �= ∅. By contradiction, suppose that for each i ∈ Nx0\N(k),

fi(R
�
N(k), R−N(k))Ri zi.
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Let z� be such that for each i ∈ N\N(k), z�i ≡ zi and for each i ∈ N(k)\{k}, z�i ≡ (x0, 0).
Then z� ∈ Zx0 . We show (8-i), (8-ii), (8-iii) and (8-iv) of Lemma A.8 with respect to z� to
conclude xk(R�N(k), R−N(k)) = xk.
For each i ∈ N\Nx0, by zi = (x0, 0) and Lemma A.2, fi(R�N(k), R−N(k))Ri zi = z�i. For

each i ∈ Nx0\N(k), by z�i = zi, fi(R�N(k), R−N(k))Ri z
�
i. For each i ∈ N(k)\{k}, by Lemma

A.2, fi(R�N(k), R−N(k))R
�
i (x0, 0) = z

�
i. Thus, (8-i) holds. (1-iii-(b-1)-k) and (1-iii-(b-2)-k) imply

(8-iv).
In the following, we show:

C1((R�N(k)\{k}, R−N(k)), xk; z
�) ≤ pminxk

(R). (∗)

For each i ∈ N\N(k), by z ∈ Zmin(R), z�i = ziRi zk, and so Vi(xk; z�i) ≤ pminxk
(R). For each

i ∈ N(k)\{k}, if xi > xk, (1-iii-a-k) implies:

V �i (xk; z
�
i) = V �i (xk; (x0, 0)) by z�i = (x0, 0)

< Cm−x0+1((R�{1,..i−1}, RN\{1,..i−1}), xk; (x0, 0)) by (1-iii-a-k)

≤ Cm−x0+1(R, xk; (x0, 0)) by (1-iii-a-k)

≤ pminxk
(R), by (1-iii-(b—3)-k)

and if xi < xk, (1-iii-(b-3)-k) implies V �i (xk; z
�
i) = V

�
i (xk; (x0, 0)) ≤ pminxk

(R). Thus, (∗) holds.
By (1-ii-k) and (∗), (8-ii) holds.
By (∗) and (1-iii-a-k),

0 < V �k(xk; (x0, 0))− pminxk
(R)− 2εk ≤ V �k(xk; (x0, 0))− C1((R�N(k)\{k}, R−N(k)), x1; z�)− 2εk.

Thus, by (1-iii-a-k), (8-iii) holds.
Since (8-i), (8-ii), (8-iii) and (8-iv) of Lemma A.8 hold, xk(R�N(k), R−N(k)) = xk.
Note that

tk(R
�
N(k), R−N(k)) ≤

Lemma A.2
V �k(xk; (x0, 0)) <

(1-ii-k)
Vk(xk; fk(R

�
N(k)\{k}, R−((N(k)\{k}))).

Thus, by xk(R�N(k), R−N(k)) = xk,

fk(
lie

R�k, R
�
N(k)\{k}, R−N(k))

truth

Pk fk(
truth

Rk , R
�
N(k)\{k}, R−N(k)).

This contradicts strategy-proofness. Thus, there is i ∈ Nx0\N(k) such that zi Pi fi(R�N(k), R−N(k)).
Let N(k + 1) ≡ N(k) ∪ {i}. Without loss of generality, let i ≡ k + 1. By (1-iv-k),

N(k + 1) ⊆ Nx0 . zk+1 Pk+1 fk+1(R�N(k), R−N(k)) implies that there is R
�
k+1 ∈ R satisfying(1-i-

(k + 1)), (1-ii-(k + 1)), and (1-iii-(k + 1)).

Step 2-2: We prove (1-iv-(k + 1)), i.e., N(k + 1) � Nx0.
By contradiction, suppose that N(k + 1) = Nx0.
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Let z� ∈ Zx0 be such that for each i ∈ N\{k + 1}, z�i ≡ (x0, 0). We show (8-i), (8-ii), (8-iii)
and (8-iv) of Lemma A.8 with respect to z� to conclude xk+1(R�N(k+1), R−N(k+1)) = xk+1.
By Lemma A.2, for each i ∈ N\N(k+1), fi(R�N(k+1), R−N(k+1))Ri z�i. By Lemma A.2 again,

for each i ∈ N(k + 1)\{k + 1}, fi(R�N(k), R−N(k))R�i z�i. Thus, (8-i) holds. (1-iii-(b-1)-(k + 1))
and (1-iii-(b-2)-(k + 1)) imply (8-iv).
In the following, we show:

C1((R�N(k+1)\{k+1}, R−N(k+1)), xk+1; z
�) ≤ pminxk+1

(R). (∗∗)

For each i ∈ N\N(k + 1), by N(k + 1) = Nx0, we have zi = (x0, 0). Then, by z ∈ Zmin(R),
z�i = ziRi zk+1. Thus Vi(xk+1; z�i) ≤ pminxk+1

(R). For each i ∈ N(k + 1)\{k + 1}, if xi > xk+1,
(1-iii-a-(k + 1)) implies:

V �i (xk+1; z
�
i) < Cm−x0+1((R�{1,2,3,..i−1}, RN\{1,2,3,..i−1}), xk+1; (x0, 0))

≤ Cm−x0+1(R, xk+1; (x0, 0)) ≤ pminxk+1
(R),

and if xi < xk+1, (1-iii-(b-3)-(k + 1)) implies V �i (xk+1; z
�
i) = V

�
i (xk+1; (x0, 0)) ≤ pminxk+1

(R). Thus,
(∗∗) holds.
By (1-ii-(k + 1)) and (∗∗), (8-ii) holds.
By (∗∗) and (1-iii-a-(k + 1)),

0 < V �k+1(xk+1; (x0, 0))− pminxk+1
(R)− 2εk+1 ≤

V �k+1(xk+1; (x0, 0))− C1((R�N(k+1)\{k+1}, R−N(k+1)), xk+1; z�)− 2εk+1.

Thus, by (1-iii-a-(k + 1)), (8-iii) holds.
Since (8-i), (8-ii), (8-iii) and (8-iv) of Lemma A.8 hold, xk+1(R�N(k+1), R−N(k+1)) = xk+1.
Note that

tk+1(R
�
N(k+1), R−N(k+1)) ≤

Lemma A.2
V �k+1(xk+1; (x0, 0))

<
(1-ii-(k+1))

Vk+1(xk+1; fk+1(R
�
N(k), R−(N(k))).

Thus, by xk+1(R�N(k+1), R−N(k+1)) = xk+1,

fk+1(
lie

R�k+1, R
�
N(k+1)\{k+1}, R−N(k+1))

truth

Pk+1 fk+1(
truth

Rk+1, R
�
N(k+1)\{k+1}, R−N(k)).

This contradicts strategy-proofness. Thus, (1-iv-(k + 1)) holds.
By Claim, for each k ≥ 0, N(k + 1) � Nx0. Let k = m − x0. Then, |N(k + 1)| = k + 1 >

m− x0 = |Nx0 |, a contradiction. Q.E.D.

P B: As mentioned at the beginning of Section A2, we only state our main result here.

Proposition B.1: Let T be a tier partition such that 2 < k < m+ 1. Let R = RT (T ) or
RNT (T ) such that there is l0 ∈ K is such that l0−1

l=1 |Tl| < μ ≤ l0
l=1 |Tl|, and |Tl0| = 1. Let
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f satisfy the four axioms of Proposition A.1. Let R ∈ (R)n and |Tl0| = 1. Let z ∈ Zmin(R).
Then, for each i ∈ N , fi(R)Ri zi.
P C: As mentioned at the beginning of Section A2, we only state our main result here.

Proposition C.1: Let R = RT (T ) or RNT (T ) such that 2 < k ≤ m+1. Let f satisfy the
four axioms of Proposition A.1. Let n > m and z ∈ Zmin(R). Then, for each i ∈ N , fi(R)Ri zi.
Subsection A2.2: Proofs of Theorems 2 and 3
Proof of Theorem 2
Since R ≡ RR(π), then Proposition C.1 holds for Theorem 2(i) and Proposition A.1 holds

for Theorem 2(ii). Note that with slight modification, Proposition 3 and the completion of the
proof of Theorem 2 in Morimoto and Serizawa (2015) can be established on (RR(π))n. Thus,
by the same reasoning logic as Morimoto and Serizawa (2015), we can complete the proof of
Theorem 2. Thus, to avoid redundancy, we just omit writing them.

Proof of Theorem 3
Since R ≡ RT (T ) be such that 2 < k < m+1, then Proposition C.1 holds for Theorem 4(i)

and Proposition B.1 holds for Theorem 4(ii). Note that Proposition 3 and the completion of
the proof of Theorem 2 in Morimoto and Serizawa (2015) can be also established on (RT (T ))n
such that 2 < k < m+ 1. For the same reasoning as the proof of Theorem 2, we can complete
the proof of Theorem 3

Subsection A2.3: Proof of Theorem 4
SinceR ≡ RNR(π), then Proposition A.1 holds for Theorem 4. Note that whenR = RNR(π),

Proposition 3 in Morimoto and Serizawa (2015) does not hold since their proofs depend on the
uses of non-normal preferences, which are excluded by our domain. Thus, new results and proof
techniques are needed to complete the whole proof.
Proposition A.2: Let f satisfy efficiency, strategy-proofness, individual rationality, and

no subsidy. Let R ∈ (R)n and z ∈ Zmin(R). Assume that n ≤ m + 1. Then, for each i ∈ N ,
pminxi(R)

(R) ≤ ti(R).
Proof : We only prove pminx1(R)

(R) ≤ t1(R). For each j ∈ N\{1}, pminxj(R)
(R) ≤ tj(R)

can be proved similarly. If x1(R) = π(μ), then by Lemma A.3, pminπ(μ)(R) = t1(R) = 0.
Thus, let x1(R) >π π(μ). By contradiction, suppose pminx1(R)

(R) > t1(R). Then, there is
R�1 ∈ RSMM(R1, f1(R)) such that (i) for each x >π π(μ), (π(μ), 0)P �1 (x, p

min
x (R)).

By Lemma A.5 and R�1 ∈ RSMM(R1, f1(R)), f1(R) = f1(R
�
1, R−1). By x1(R) >π π(μ),

Lemmas A.1(a) and A.3, there is j ∈ N\{1} such that fj(R�1, R−1) = (π(μ), 0). By Proposition
1, we have: (ii) for each x ∈M1, pminx (R) > 0 and pminx (R�1, R−1) > 0.
Step 1: There is x ∈M1 such that (x, pminx (R))Rj fj(R

�
1, R−1).

Note zj Rj
z∈Zmin(R)

(π(μ), 0) = fj(R
�
1, R−1). Thus, if zj �= (π(μ), 0), then since xj ∈M1, Step 1

holds. Thus, let zj = (π(μ), 0). Then, xj /∈M1 and zj = fj(R�1, R−1).
First, we show: (iii) there is x ∈ M1 such that (x, pminx (R)) Ij zj. By z ∈ Zmin(R), for each

x ∈ M1, zj Rj (x, pminx (R)). By contradiction, suppose that (iii) does not hold. Then, for each
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x ∈ M1, zj Pj (x, pminx (R)). Thus by xj /∈ M1, D(Rj, pmin(R)) ∩ M1 = ∅. By n ≤ m + 1,
n = |M1|+ 1. Thus,

{i ∈ N : D(Ri, p
min(R)) ∩M1 �= ∅}

= {i ∈ N\{j} : D(Ri, pmin(R)) ∩M1 �= ∅}
≤ n− 1 = |M1| .

Thus by (ii), M1 is weakly underdemanded for pmin(R), contradicting Fact 3. Thus, (iii) holds.
Thus, by (iii) and zj = fj(R�1, R−1), (x, p

min
x (R))Rj fj(R

�
1, R−1) and x ∈ M1, and so Step 1

holds.
Step 2: For each y ∈M1, pminy (R�1, R−1) < p

min
y (R).

First, we show: (iv) there is y0 ∈ M1 such that pminy0
(R�1, R−1) < pminy0

(R). By contra-
diction, suppose that for each y ∈ M1, pminy (R�1, R−1) ≥ pminy (R). By (i), for each y ∈ M1,
V �1(y; (π(μ), 0)) < pminy (R) ≤ pminy (R�1, R−1). Thus, D(R�1, p

min(R�1, R−1)) ∩ M1 = ∅. By
n ≤ m+ 1, n = |M1|+ 1. Thus

{i ∈ N : D(Ri, p
min(R�1, R−1)) ∩M1 �= ∅} ≤ n− 1 = |M1| .

Thus by (ii), M1 is weakly underdemanded for pmin(R�1, R−1), contradicting Fact 3. Thus, (iv)
holds.
Let M � ≡ {y ∈ M1 : p

min
x (R�1, R−1) ≥ pminx (R)}. By (iv), M1\M � �= ∅. If M � = ∅, Step 2

holds. Thus, let M � �= ∅. Then by M1\M � �= ∅, Fact 3 and (ii),

{i ∈ N : D(Ri, p
min(R)) ∩ (M1\M �) �= ∅} > |M1\M �| .

Thus,
{i ∈ N\{1} : D(Ri, pmin(R)) ∩ (M1\M �) �= ∅} ≥ |M1\M �| . (v)

Since pminM1\M �(R�1, R−1) < p
min
M1\M �(R) and pminM � (R�1, R−1) ≥ pminM � (R), for each i ∈ N\{1} such

that D(Ri, pmin(R)) ∩ (M1\M �) �= ∅, we have D(Ri, pmin(R�1, R−1)) ⊂ (M1\M �), which implies
D(Ri, p

min(R�1, R−1)) ∩M � = ∅. Thus,

{i ∈ N\{1} : D(Ro, pmin(R)) ∩ (M1\M �) �= ∅}
⊆ {i ∈ N\{1} : D(Ri, pmin(R�1, R−1)) ∩M � = ∅}.

Thus,

{i ∈ N\{1} : D(Ri, pmin(R�1, R−1)) ∩M � �= ∅}
≤ {i ∈ N\{1} : D(Ri, pmin(R)) ∩ (M1\M �) = ∅} . (vi)

By (i),D(R�1, p
min(R))∩M1 = ∅, which impliesD(R�1, pmin(R�1, R−1))∩M � = ∅. Since n ≤ m+1,

n = 1 + |M1| = 1 + |M1\M �|+ |M �|. Thus,

{i ∈ N : D(Ri, p
min(R�1, R−1)) ∩M � �= ∅}

≤ n− 1− {k ∈ N\{1} : D(Rk, pmin(R)) ∩ (M1\M �) �= ∅} by (vi)

≤ n− 1− |M1\M �| by (v)

= |M �| .
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Thus by (ii), M � is weakly underdemanded for pmin(R�1, R−1), contradicting Fact 3. Thus Step
2 holds.
Step 3: Completeting Proof of Proposition A.2
Consider j�s bundle z�j for W

min(R�1, R−1).
Case 1: z�j = (π(μ), 0) Note

(x, pminx (R�1, R−1)) Pj
Step 2

(x, pminx (R)) Rj
Step 1

z�j.

This contradicts (E-i).
Case 2: z�j �= (π(μ), 0) Note that x�j �= π(μ). Thus,

z�j Rj
x�j∈D(Rj ,pmin(R�1,R−1))

(x, pminx (R�1, R−1)) Pj
Step 2

(x, pminx (R)) Rj
Step 1

(π(μ), 0) = fj(R
�
1, R−1).

This contradicts Proposition A.1.
Thus, pminx1(R)

(R) ≤ t1(R) holds. Q.E.D.

Completion of the proof of Theorem 4
Let z ∈ Zmin(R). By Propositions A.1 and A.2,

ti(R) ≤
Proposition A.1

Vi(R, xi(R); zi) ≤
Definition of Equilibrium

pminxi(R)
(R) ≤

Proposition A.2
ti(R).

Thus, for each y ∈ L, fi(R) = (xi(R), pminxi(R)
(R)) Ii ziRi (y, p

min
y (R)). Thus (E-i) is satisfied.

Since n ≤ m+ 1, by Lemma A.1, (E-ii) is satisfied.
Thus, f(R) ∈ Zmin(R). Q.E.D.

Subsection A2.4: Proof of Theorem 5
Let R ≡ RNT (T ). By the same reasoning as the proof of Theorem 4, Proposition 3 in

Morimoto and Serizawa (2015) does not hold either. The following proofs are the generalized
ones of those in the proof of Theorem 5. Note that Lemmas B.1 to B.8 and Proposition B.1
hold for (R)n. Following the proof techniques of Proposition A.2 in Subsection A2.3 with slight
modification, we can prove Theorem 5. Thus, to avoid redundancy, we just omit writing them.
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