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Abstract

We study sequential sealed bid auctions with decreasing reserve prices when there are

two identical objects for sale and more than two unit-demand bidders. In the literature, an

equilibrium with a strictly increasing bidding function in the stage one auction is found only

when reserve prices are (weakly) increasing. Under decreasing reserve prices, bidders may

have an incentive not to bid in the first auction and an equilibrium with a strictly increasing

bidding function at stage one does not exist. However, we find that a symmetric pure strategy

equilibrium always exists, and its shape depends on the distance between the two reserve

prices. Moreover, the equilibrium exhibits some pooling at the stage one auction, which

disappears in the limit as the number of bidders tends to infinity. We also show that revenue

equivalence between first and second price sequential auctions holds under decreasing reserve

prices. Finally, our results allow to shed some light on an optimal order problem (increasing

versus decreasing reserve prices, under exogenous reserve prices) for selling the two objects.

Keywords: Sequential Auctions; First Price Auction; Second Price Auction; Revenue

Equivalence

1 Introduction

We study a model of sequential sealed bid auctions with decreasing reserve prices. Sequen-

tial sealed bid auctions have received scarce attention: Milgrom and Weber (1999) and Weber

(1983) provide theoretical analyses of sequential auctions for multiple identical objects under

the assumption that there are no reserve prices. Gong et al. (2014) (GTX henceforth) study

sequential auctions for identical objects, allowing for different reserve prices at different stages.

When only two objects are for sale, they show that a symmetric pure-strategy equilibrium with

a strictly increasing bidding function at stage one exists if and only if the reserve prices are
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(weakly) ascending and they provide an equivalence result between sequential first and second

price auctions. When reserve prices are descending, they identify an equilibrium only when the

first auction’s reserve price is sufficiently larger than the second auction’s reserve price (see the

equilibrium (a) below in the introduction) and suggest that mixed-strategy equilibria may exist

in other cases, but they do not identify them.

Our paper essentially complements their analysis. We study sequential (first price and second

price) auctions with two identical objects and more than two unit-demand bidders. We show

that: a symmetric pure-strategy equilibrium exists for any pair of decreasing reserve prices;

in the limit, as the number of bidders grows to infinity, the equilibrium bidding function at

stage one converges to a strictly increasing function; sequential first price auctions are revenue

equivalent to sequential second price auctions even under decreasing reserve prices. Last, we use

our results to tackle a problem about the optimal order of sale for two objects.

In order to understand better our results, it is useful to recall a few properties of the equilib-

rium described by GTX for the case of ascending reserve prices. To fix the ideas, let us focus on

sequential second price auctions, for which the equilibrium bidding at stage two is straightfor-

ward. Let r1, r2 denote the reserve prices for the first and second auction, respectively. Then,

given r1 ≤ r2, a bidder with value x participates in the first auction if and only if x ≥ r1, and

bids as in a single-unit auction if x ≤ r2 because it is not profitable for him to participate in

the second auction. Conversely, a bidder with value x > r2 bids less aggressively than in a

single-unit auction because he will have another opportunity to win, at stage two, if he loses at

stage one.

With descending reserve prices, the incentive to shade bids at stage one is magnified because,

all else being equal, r2 < r1 makes the stage two auction more profitable for a bidder that can

participate both stages. In particular, a bidder may choose not to compete at stage one even

though his value is greater than r1, because winning the object at price r1 may be less profitable

than competing in the second auction.1 This force must be taken into account when constructing

an equilibrium, and we obtain that the shape of the equilibrium depends on the distance between

r1 and r2. Specifically, in the pure strategy symmetric equilibrium of the second price sequential

auction we have that:

(a) When r1 is sufficiently larger than r2, no bidder participates the first stage auction.

(b) When r1 takes on intermediate values, there is a threshold γ > r1 such that bidders with

value smaller than γ do not bid in the first auction, and bidders with value at least γ bid

r1.

1A similar phenomenon occurs in McAfee and Vincent (1997), in which the seller of a single object auctions
the object multiple times, until it is sold, and at each stage he chooses a reserve price given his beliefs on the
bidders values, as determined by the information that the object has not been sold in the past. At each given
stage, a bidder with value larger than the current reserve price may choose not to bid, and wait for a successive
auction with a lower reserve price.
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(c) If r1 is close to r2, then the equilibrium is characterized by two thresholds, γ (whose value is

different from the previous case) and λ > γ, such that bidders with value less than γ do not

bid in the first auction, bidders with value between γ and λ bid r1, and bidders with value

bigger than λ adopt a strictly increasing bidding function. This equilibrium arises because

when r1 becomes small, bidders with high value prefer to bid slightly more than r1 if all the

others active bidders are bidding r1.

Our result is consistent with GTX’s finding that no symmetric equilibrium characterized by

a strictly increasing bidding function exists. Interestingly, for each r1 > r2 the equilibrium in

(c) emerges if the number of bidders is sufficiently large. In addition, in such a case γ and λ are

both close to r1. Therefore (almost) each bidder with value above r1 participates in the stage

one auction and bids according to a strictly increasing function. This is the consequence of the

fact that, given the large number of opponents, the expected payoff from participating in the

second auction is quite small for a bidder with value greater than r1, and thus it is suboptimal

not trying to win at stage one.

Our findings allow us to deal with a problem introduced in GTX about the optimal order

in which two objects should be auctioned. The setting considered has two sellers, each of whom

owns one of the two objects, and it is commonly known that one seller has value r > 0 for her

own object while the other seller has value zero for her own object. The objects are offered

through sequential auctions such that at each stage the reserve price is equal to the seller’s value

for the object auctioned at that stage, and an auctioneer chooses the object which is put for

sale first in order to maximize the sum of the sellers’ profits. GTX use the equilibrium in (a)

to show that decreasing reserve prices are optimal if r is large, whereas we use the equilibrium

in (c) to show that increasing reserve prices are optimal when r is small. Moreover we obtain

more specific results if the values are uniformly distributed.

Finally, we show that sequential first price and second price auctions are revenue equivalent

even under decreasing reserve prices. This result is useful since sequential first price auctions

are somewhat more complicated to deal with. Unlike in the sequential second price auctions,

where at stage two a weakly dominant bid exists for each bidder who lost at stage one, and it

depends only on the bidder’s value, for sequential first price auctions the stage two equilibrium

bid for each bidder who lost at stage one depends on his beliefs about the values of the other

active bidders at stage two, which in turn depend on the information he learnt at stage one.

The pooling of types at stage one, due to the decreasing reserve prices, makes the computation

of those beliefs and the associated bids not straightforward even with just two objects for sale.

The remainder of the paper is organized as follows: Section 2 describes the model in detail.

Section 3 provides the analysis for sequential second price auctions and for the optimal order

problem. Section 4 proves that sequential first price auctions and sequential second price auctions

are revenue equivalent. All the proofs are in the Appendix.
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2 The Model

Two identical objects are offered to n ≥ 3 bidders through two sequential (sealed bid) auctions

with reserve prices r1 and r2, respectively. Specifically, one object is offered using an auction

with reserve price r1, and the winning bid is publicly announced. In case that the highest bid

is submitted by m ≥ 2 bidders, the winning bidder is selected randomly, with each highest

bidder having probability 1
m to win. If no bid is submitted at stage one, then this information is

revealed to each bidder before stage two, and the object remains unsold. The remaining object

is offered using an auction with reserve price r2.

We assume that each bidder is risk neutral, has no time discount and has unit demand,

so that no bidder wants to buy more than one object, and, all else being equal, bidders are

indifferent between getting the object at either stage. Moreover unit demand implies that the

winner of the first object does not join the second auction. Last we assume that each bidder i

has value Xi for the object and each Xi is i.i.d. on the non-negative support [x, x̄], with c.d.f.

F , and density f ≡ F ′ > 0 that is continuous in the support. We write xi to denote a realization

of Xi, which is privately observed by bidder i.

We are interested in analyzing sequential sealed bid first (F ) and second (S) price auctions

when the reserve prices are descending, that is when x ≤ r2 < r1 ≤ x̄.2 To ease comparisons

with the literature, we will also report the case of ascending reserve prices, but notice that except

for Subsection 3.1 and Subsection 4.2, we assume r1 > r2.

A bidding strategy in auction A = F, S for bidder i consists of a pair of functions (b
(1)
A,i, b

(2)
A,i)

which specify bidder i’s bids in stage one, b
(1)
A,i, as a function of i’s value xi, and in stage two,

b
(2)
A,i (conditional on i not winning in stage one), as a function of xi and of any other information

that bidder i has obtained in stage one. Since bidders are symmetric ex ante, we restrict the

analysis to strategies that do not depend on bidders’ identities. Therefore, a strategy will be

indicated as a pair (b
(1)
A , b

(2)
A ).

We are interested in equilibria that are sequentially rational, in the sense that the strategies

in the second period form an equilibrium, given the information the bidders obtained in stage

one, for any possible outcome of the stage one auction.

Before we proceed with the analysis, we recall from, e.g., Krishna (2010) a feature of a single

stage first price auction with k ≥ 2 bidders and reserve price r2, in which each bidder’s beliefs

about the highest value among the other k− 1 bidders are given by a c.d.f. G (with density g).

In this game, the equilibrium bidding function β satisfies

β(r2) = r2 and β′(x) = (x− β(x))
g(x)

G(x)
for x > r2 (1)

Under the specific assumption that values are i.i.d. random variables each with c.d.f. F and

2Notice that the stage two reserve price has no effect if r2 < x, just like r2 = x. The stage one reserve price
prevents each bidder from participating in the stage one auction if r1 > x̄, just like r1 = x̄.
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support [x, x], it follows that G(x) = F k−1(x) and g(x)
G(x) = (k−1)f(x)

F (x) . Therefore from (1) we

obtain the following equilibrium bidding function, which we use repeatedly in the paper:

βk,r2(x) = x−
∫ x
r2
F k−1(s)ds

F k−1(x)
=

∫ x
x max{r2, s}dF k−1(s)

F k−1(x)
for x ≥ r2 (2)

In this equilibrium, the expected payoff of a bidder with type x ≥ r2 is

vk(x) =

∫ x

r2

F k−1(s)ds (3)

As it is well known, vk(x) is also the expected payoff of a bidder with type x in the unique un-

dominated equilibrium in a single stage second price auction with the same information structure

described above.3

We are now ready to proceed with the analysis of the equilibria of the sequential auctions.

We will start from second price auctions, as they are simpler.

3 Second price auctions

We start the analysis by working backwards. We thus look at the equilibrium bid in the second

stage auction, for all the active bidders. This is actually straightforward, since in a one-shot

second price auction each bidder with value at least r2 has a (weakly) dominant strategy, which

consists in bidding his own value, regardless of the information he obtained at stage one. Hence,

we introduce b
(2)
S = b

(2)∗
S , with

b
(2)∗
S (x) =

no bid if x ∈ [x, r2)

x if x ∈ [r2, x̄]
(4)

Conversely, the equilibrium bidding function at stage one is not as straightforward, and it

depends on the relationship between r1 and r2.

In order to do our analysis, some additional notation is needed. Given a candidate equilib-

rium (b
(1)
S , b

(2)∗
S ), for each x and y in [x, x̄] we use uS(x, y) to denote the payoff of a bidder with

value x if he bids b
(1)
S (y) in stage one (i.e., if he bids as a bidder with value y is supposed to do

according to b
(1)
S ), given that the other bidders follow (b

(1)
S , b

(2)∗
S ). Moreover, we let: p(y) denote

the probability to win at stage one with the bid b
(1)
S (y); t(y) denote a bidder’s expected payment

at stage one, conditional on winning at stage one with the bid b
(1)
S (y); and G

b
(1)
S (y)

denote the

expected c.d.f., conditional on losing with the bid b
(1)
S (y), for the highest value among the other

3We use vk(x) rather than vk,r2(x) in favour of lighter notation as there is no ambiguity: vk(x) is always
related to the second stage auction whose reserve price is r2.
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bidders who lost at stage one. Then, given x ≥ r2, we have that

uS(x, y) = p(y)(x− t(y)) + (1− p(y))

∫ x

r2

G
b
(1)
S (y)

(s)ds (5)

The first term indicates the expected payoff from winning the first auction times the prob-

ability of winning it, while the second term indicates the expected payoff from participat-

ing the second auction times the probability of participating it. In particular, note that the

payoff of a bidder with value x ∈ [r2, x̄] in stage two, conditional on losing in stage one, is∫ x
x (x − max{r2, s})dGb

(1)
S (y)

(s), or
∫ x
r2
G

b
(1)
S (y)

(s)ds after applying integration by parts. Notice

that when b
(1)
S is strictly increasing, it is straightforward to derive G

b
(1)
S (y)

. Things are more

complicated when b
(1)
S is constant over an interval, as we will see below.

3.1 Ascending reserve prices

The case with (weakly) ascending reserve prices is solved by GTX. The following is an adaptation

of their result to the two-object case, allowing for r1 > x. (GTX assume that [x, x̄] = [0, 1] and

r1 = 0.)

Proposition 1 (Proposition 2 in GTX). Suppose that two objects are offered through sequential

second price auctions with ascending reserve prices r1, r2 such that x ≤ r1 ≤ r2 ≤ x̄. Then there

exists an equilibrium in which

b
(1)
S (x) =


no bid if x ∈ [x, r1)

x if x ∈ [r1, r2)

βn−1,r2(x) if x ∈ [r2, x̄]

(6)

and b
(2)
S (x) = b

(2)∗
S (x) from (4).

The rationale behind the equilibrium bidding function (6) is as follows. A bidder whose value

is between r1 and r2 only participates in the first auction; from his perspective he is joining a

one shot second price auction. As a result, it is still weakly dominant for him to bid his own

value. A bidder with value above r2 has two attempts at getting the object. At the second (and

last) one he will bid his own value. In the first stage, he bids the expected payment he would

make if he were to lose the first auction and win the second. This corresponds to the equilibrium

bid in a one shot first price auction with reserve price r2 and n − 1 bidders.4 Krishna (2010)

illustrates this result for sequential auctions with no reserve prices, so that the only difference

in (6) comes from bidders with values below r2.

4We notice that this result would not hold if bidders were not risk neutral or if there was some time discounting.
Risk averse bidders will shade less their bids in the first stage to reduce the risk of losing the object when the
winning bid is still below their value. Impatient bidders will also bid more aggressively in the first stage because
to them, de facto, an object is more valuable today than tomorrow.
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3.2 Descending reserve prices

In the equilibrium of Proposition 1, with r1 ≤ r2, each bidder participates in the auction at stage

j if and only if his value is grater (or equal) than rj , for j = 1, 2. Conversely, when r1 > r2 we

clearly have that bidders with value smaller than r2 never bid, since they cannot make a positive

payoff in either stage. For this reason, we will consider only x ≥ r2. However, when r1 > r2 not

all bidders with value greater than r1 bid at stage one, since it could be more profitable to try

to win the second auction, which has a lower reserve price. As we will see, it is especially true

when r1 is much larger than r2, but this principle holds in general. For instance, a bidder with

type x = r1 does not bid in the first auction because he cannot make a positive payoff in that

auction, but has a positive payoff from participating in the stage two auction given that r2 < r1.

This suggests that the equilibrium analysis is more complicated with descending reserve

prices. In fact, no equilibrium with a strictly increasing bidding function at stage one exists

(about this, we provide an explanation in next subsection). We show that, nevertheless, a

pure strategy equilibrium exists, and its features depend on the (relative) magnitude of r1.

In particular, when r1 is large, we have an equilibrium in which nobody participates the first

auction. The value of r1 is so big that no type prefers to pay r1 for the object when he can

compete against all the other bidders for the remaining one in the second stage auction.

When r1 takes on intermediate values, we find an equilibrium in which bidders with high

values bid r1 in the first auction, and the others do not bid. For intermediate values of r1 bidders

with high values are induced to participate the stage one auction but none of them wants to bid

more than r1.

Finally, when r1 takes on small values, we have an equilibrium with two cutoffs: bidders

with small values do not join the first auction, those with intermediate values bid r1, and the

remaining bidders bid according to βn−1,r2 . As r1 becomes small, a type close to x prefers to

bid marginally above r1 (if all the active bidders are expected to bid r1). This breaks down the

equilibrium computed for intermediate values of r1 and the equilibrium is restored by introducing

the second cutoff.

In order to formally state our results at the end of this section, it will be convenient to

analyze these cases separately.

3.2.1 Large r1

When r1 is sufficiently large, GTX find an equilibrium in which no bidder bids at stage one.

Precisely, we define r̄1 ≡ x̄− vn(x̄) and consider

b̄
(1)
S (x) = no bid for each x ∈ [x, x̄]

If r1 ≥ r̄1, there exists an equilibrium in which each bidder follows b̄
(1)
S , essentially because

bidding at stage one is unprofitable with respect to competing at stage two, when the reserve
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price is considerably lower. More in detail, given that all other bidders do not bid in stage

one, (i) each type x ≥ r2 obtains the payoff vn(x) by not bidding at stage one; (ii) for each

type x ≥ r2, the payoff from bidding r1 in stage one is x− r1; (iii) the first alternative is more

profitable than the second since the inequality vn(x) ≥ x − r1 holds for each x ∈ [r2, x̄], given

r1 ≥ r̄1.
5

3.2.2 Intermediate r1

When r2 < r1 < r̄1, it may be natural to inquire the existence of an equilibrium (b
(1)
S , b

(2)∗
S )

with a cutoff γ such that all bidders with value below γ do not participate at stage one, and the

others follow a strictly increasing bidding function. In other words we are interested in whether

there exists a γ ∈ (x, x̄) such that (i) b
(1)
S (x) = no bid for x ∈ [x, γ) (i.e., types with value in

[x, γ) do not bid in stage one); (ii) b
(1)
S (γ) ≥ r1; (iii) b

(1)
S is strictly increasing in [γ, x̄] (i.e., types

with value in [γ, x̄] bid according to a strictly increasing function, and γ is the smallest type to

participate the first stage auction).

However, such an equilibrium fails to exist. Arguing as for ascending reserve prices, if b
(1)
S

were strictly increasing for x > γ, then b
(1)
S (x) should be type x’s expected payment in the stage

two auction, conditional on winning at stage two, that is βn−1,r2(x). Therefore we should have

βn−1,r2(γ) ≥ r1, from which we conclude that γ > r1. Moreover, type γ must be indifferent

between bidding b
(1)
S (γ) and not bidding. This indifference is equivalent to γ − r1 =

vn(γ)
Fn−1(γ)

. In

fact, given the proposed equilibrium strategy, type γ wins an object if and only if he has the

highest or the second highest value. If he has the highest value, his expected payoff is γ − r1

if he bids b
(1)
S (γ) at stage one, is

∫ γ
r2

(
F (s)
F (γ)

)n−1
ds = vn(γ)

Fn−1(γ)
if he does not bid at stage one. If

type γ has the second highest value, his expected payoff is the same regardless of whether he

bids b
(1)
S (γ) or does not bid at stage one, as in both cases the highest value bidder wins the

stage one auction and type γ’s beliefs about his opponents’ values are the same. Rearranging

the indifference condition one gets r1 = βn,r2(γ). As γ > r2 we obtain r1 = βn,r2(γ) > βn−1,r2(γ)

which contradicts βn−1,r2(γ) ≥ r1 mentioned above.6

To overcome this problem, GTX suggest to look for a mixed strategy equilibrium but they

do not compute it. Conversely, we find an equilibrium such that the bidding function at stage

one is flat in a suitable interval. Specifically, we look at b
(1)
S such that b

(1)
S (x) = r1 for all x in

an interval [γ, λ] for some λ > γ to be properly defined. Indeed, for r1 slightly smaller than

r̄1 we identify an equilibrium in which each type in [γ, x̄] bids r1 (here λ = x̄), that is b
(1)
S is

horizontal in the whole interval [γ, x̄], and type γ is indifferent between not bidding and bidding

5Notice that r̄1 can be viewed as the expected payment for type x̄ from participating in the second period
auction, given that he will face n − 1 opponents. In case that r1 ≥ r̄1, type x̄ prefers to wait for the stage two
auction. If r1 < r̄1, then type x̄ prefers to purchase the object at the stage one auction by paying r1.

6When r1 = r2 the contradiction does not arise as we can set γ = r1. See (6).
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r1 at stage one:

b̂
(1)
S (x) =

no bid if x ∈ [x, γ)

r1 if x ∈ [γ, x̄]
(7)

The formal statement of our result is reported in Proposition 2 (ii). In this equilibrium there is

substantial pooling in stage one, as each two types in [γ, x̄] have the same probability to win in

stage one. This plays a key role in complicating the updated beliefs at stage two of each stage

one losing bidder.

For each x and y in [x, x̄] we use ûS(x, y) to denote the payoff of bidder with value x if he

bids b̂
(1)
S (y) in stage one (i.e., if he bids as a bidder with value y is supposed to do according

to b̂
(1)
S ), given that each other bidder follows the strategy (b̂

(1)
S , b

(2)∗
S ). Hence, ûS(x, x) is the

payoff of a bidder with value x from not bidding at stage one; ûS(x, γ), or ûS(x, x̄), is his payoff

from bidding r1 at stage one. We now describe how ûS(x, x), ûS(x, γ) are derived, and how γ is

determined. In order to shorten notation, we write Γ = F (γ).

Remark that in the following the word beliefs indicates the updated beliefs at stage two of a

losing bidder about the highest value among the other bidders who lost at stage one, and these

beliefs will be represented by a c.d.f. G which depends on the stage one winning bid and the

bidder’s stage one bid.

Regarding ûS(x, x), if a bidder has not bid at stage one and learns that there has been no bid

by any bidder, an event with probability Γn−1 from his ex ante point of view, then b̂
(1)
S implies

that his beliefs are given by the c.d.f. Ĝ(·|no,no) such that

Ĝ(s|no, no) =


Fn−1(s)
Γn−1 if s ∈ [x, γ]

1 if s ∈ (γ, x̄]
(8)

On the other hand, if a bidder has not bid at stage one and learns that the winning bid has

been r1, an event with probability 1− Γn−1 from his point of view, his beliefs are given by the

c.d.f. Ĝ(·|no, r1) such that (the details of the derivation of (9) and (11) below are in the proof

of Proposition 2 in the Appendix.)

Ĝ(s|no, r1) =


(n−1)(1−Γ)
1−Γn−1 Fn−2(s) if s ∈ [x, γ]

1−Γ
1−Γn−1

Fn−1(s)−Γn−1

F (s)−Γ if s ∈ (γ, x̄]
(9)

At the time of choosing to make no bid, the bidder’s expected c.d.f. for the highest value among

the other losing bidders is Ĝno, such that Ĝno(s) = Γn−1Ĝ(s|no,no) + (1 − Γn−1)Ĝ(s|no, r1).
Therefore, in view of (5), the payoff from not bidding at stage one of type x ≥ r2 is

ûS(x, x) =

∫ x

r2

Ĝno(s)ds (10)

Regarding ûS(x, γ), let p̂(γ) denote the probability to win at stage one for a bidder bidding
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r1, which we derive explicitly in (62) in the Appendix. In case the bidder loses, his beliefs are

given by

Ĝ(s|r1, r1) =


(n−1)(1−Γ)
2(1−p̂(γ)) Fn−2(s) if s ∈ [x, γ]

1−Γ
n

(n−1)Fn(s)−nΓFn−1(s)+Γn

(1−p̂(γ))(F (s)−Γ)2
if s ∈ (γ, x̄]

(11)

Hence, the payoff of a type x ≥ r2 from bidding r1 is

ûS(x, γ) = p̂(γ)(x− r1) + (1− p̂(γ))

∫ x

r2

Ĝ(s|r1, r1)ds (12)

Now that ûS(x, x) and ûS(x, γ) are defined, we identify γ in b̂
(1)
S as the unique solution to the

equation

ûS(γ, x) = ûS(γ, γ) (13)

In order to prove that (b̂
(1)
S , b

(2)∗
S ) is an equilibrium, in the Appendix (see Section A) we show

that: (i) there exists a unique solution to (13) in the interval (r2, x̄); (ii) ûS(x, x) > ûS(x, γ)

for each x ∈ [x, γ), and ûS(x, x) < ûS(x, γ) for each x ∈ (γ, x̄]. Moreover, we also need to take

into account that a bidder wins for sure at stage one if he bids more than r1. This deviation

is unprofitable if and only if the inequality ûS(x, x) ≥ x − r1 holds for each x ∈ [x, γ), and

ûS(x, γ) ≥ x− r1 holds for each x ∈ [γ, x̄]. It turns out that both inequalities are satisfied when

r1 is not too small, that is if r1 belongs to the interval (r̃1, r̄1), for a suitable r̃1 between r2 and

r̄1. Conversely, ûS(x̄, γ) < x̄− r1 holds if r1 is smaller than r̃1: for a small r1, a type x̄ prefers

to bid more than r1 in order to secure a win at stage one. This suggests that if r1 is small, then

the equilibrium b
(1)
S is strictly increasing for x close to x̄. The next subsection is about this case.

3.2.3 Small r1

Given r1 between r2 and r̃1, we find an equilibrium with the following bidding function at stage

one, in which the types γ and λ, with r1 < γ < λ < x̄, are identified by suitable indifference

conditions described by (15) and (16) below:

b̃
(1)
S (x) =


no bid if x ∈ [x, γ)

r1 if x ∈ [γ, λ]

βn−1,r2(x) if x ∈ (λ, x̄]

(14)

Hence, b̃
(1)
S prescribes that: (i) bidders with value in [x, γ) do not bid in stage one, but only bid

in stage two (provided that x ≥ r2); (ii) bidders with value in [γ, λ] bid r1 in stage one, that is

b̃
(1)
S is constant in the interval [γ, λ]; (iii) bidders with value in (λ, x̄] bid their expected payment

in the second auction conditional on losing at stage one and winning at stage two, as in (6).

In order to determine γ and λ, for each x and y in [x, x̄] we use ũS(x, y) to denote the payoff

of a bidder with value x if he bids b̃
(1)
S (y) in stage one, given that all the other bidders follow
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the strategy (b̃
(1)
S , b

(2)∗
S ). For instance, ũS(x, x) is the payoff of type x from not bidding in stage

one; ũS(x, γ), or ũS(x, λ), is his payoff from bidding r1 in stage one. We evaluate ũS(x, y) in a

way similar to that described in the previous subsection for ûS(x, y), using the beliefs of each

losing bidder at stage two, given the information he obtains at stage one. Matters are slightly

more complicated here because the equilibrium bids at stage one are not only no bid and r1,

but any bid in the range of b̃
(1)
S .

The values of γ and λ in b̃
(1)
S are obtained as the unique solution of the following two

equations:

ũS(γ, x) = ũS(γ, γ) (15)

ũS(λ, γ) = lim
y↓λ

ũS(λ, y) (16)

Equation (15) states that type γ is indifferent between not bidding, and bidding r1. Equa-

tion (16) states that type λ is indifferent between bidding r1, and bidding just above βn−1,r2(λ)

which is greater than r1. As a result we have that b̃
(1)
S is discontinuous at λ.7

We can therefore summarize our results as follows.

Proposition 2. Suppose that the two objects are offered through sequential second price auctions

with descending reserve prices, that is x ≤ r2 < r1 ≤ x̄. Let r̄1 ≡ x̄ − vn(x̄). There exists a

unique r̃1 ∈ (r2, r̄1) such that

(i) if r1 ∈ (r2, r̃1), then there exists an equilibrium in which each bidder follows the strategy

b̃
(1)
S , b

(2)∗
S and γ, λ satisfy (15)-(16);

(ii) if r1 ∈ [r̃1, r̄1), then there exists an equilibrium in which each bidder follows the strategy

b̂
(1)
S , b

(2)∗
S and γ satisfies (13);

(iii) if r1 ∈ [r̄1, x̄], then there exists an equilibrium in which no bidder bids at stage one, and

each bidder bids according to b
(2)∗
S at stage two.

3.3 Large number of bidders

It is interesting to study the above equilibrium as the number of bidders increases. Remark first

that limn→+∞ r̄1 = x̄. The following proposition shows that the same limit result holds for r̃1.

In addition, it shows that the set of types that pool their bid becomes arbitrarily small.

Proposition 3. As n → +∞, we have that r̃1 tends to x̄, and both γ and λ which solve (15)-(16)

tend to r1.

The implications of Proposition 3 are straightforward: for a large n, the equilibrium described

by Proposition 2(i) arises unless r1 is very close to x̄. Moreover, almost each type of bidder with

7Notice that b̂
(1)
S is a special case of b̃

(1)
S , obtained when λ = x̄, and in such a case we find that (15) is equivalent

to (13). The values of γ in cases (ii) and (iii) of Proposition 2 are otherwise different.
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n 3 5 10 15 20 30 50 75
cγ 1.57735 1.257289 1.111677 1.071574 1.052689 1.034499 1.020411 1.013514
cλ 2.1547 1.365022 1.131076 1.079438 1.056924 1.036304 1.021040 1.013790
r̃1 0.464102 0.732589 0.884114 0.926408 0.946142 0.964968 0.979393 0.986398
r̄1 0.6 0.80 0.90 0.93 0.95 0.97 0.98 0.99

Table 1: Numerical solutions of the cutoffs values when bidders’ values are uniformly distributed
in the unit interval, r2 = 0 and r1 > 0.

value above r1 bids in the stage one auction. The logic for this result is simple: given r1 > r2,

some types of bidder do not bid in stage one because they prefer to compete under the more

favourable terms of stage two, but if n is large then the intensity of the competition in both

stages is mainly determined by the number of bidders, rather than by reserve prices, and then

for a bidder it is unprofitable not to bid at stage one, unless his value is very close to r1.

3.4 Example with uniformly distributed values

Let us provide a parametric example and compare the equilibrium bids under increasing and

decreasing reserve prices. Suppose that values are uniformly distributed on [0, 1] and r2 = 0.

For small r1, using Step 2 in the proof of Proposition 2 (and (50)-(52) in particular) we find

that (15)-(16) reduce to

1

n
· λ

n − γn

λ− γ
(γ − r1)−

1

2
γn−1λ+

n− 2

2n
γn = 0 (17)

−n− 2

2
γn−1 − (n− 1)λn − nλn−1γ + γn

(λ− γ)2
(λ− r1) + λ

λn−1 − γn−1

λ− γ
= 0 (18)

For n = 3 the system of equations (17)-(18) can be solved analytically and we obtain the solutions

γ = (1+
√
3
3 )r and λ = (1+ 2

√
3

3 )r. For larger n, analytical solutions are difficult or impossible to

obtain. However, inspection of (17)-(18) reveals that, for r1 ∈ (r2, r̃1), the solution to (15)-(16)

is homogeneous of degree one in r1, that is γ = cγr1 and λ = cλr1 for suitable coefficients cγ ,

and cλ with cλ > cγ > 1. Therefore λ < 1 if and only if r1 <
1
cλ
. We can conclude that r̃1 =

1
cλ
.

Finally, we have that r̄1 =
n−1
n .

Table 1 reports the values of cγ and cλ obtained numerically for several values of n and

the corresponding values of r̃1 and r̄1. This allows us to visualize the convergence results in

Proposition 3.

For intermediate values of r1, Proposition 2(ii) applies and γ is obtained by solving (17) when

λ = 1. Figure 1 reports the equilibrium bidding functions for the first stage under ascending

(r1 = 0 and r2 = r) and descending (r1 = r and r2 = 0) reserve prices with five bidders, and

r ∈ {0.5, 0.75}. The equilibrium bidding function for the ascending reserve price auction is

given by b
(1)
S in (6) and is plotted in grey. When r1 = 0.5, the equilibrium bidding function for

the descending reserve price auction given by b̃
(1)
S in (14) and is plotted in black in Figure 1(a)
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(a) Equilibrium bidding functions when r1 = 0 and r2 = 0.5 (grey)
or when r1 = 0.5 and r2 = 0 (black)

(b) Equilibrium bidding functions when r1 = 0 and r2 = 0.75
(grey) or when r1 = 0.75 and r2 = 0 (black)

Figure 1: Equilibrium bidding function in the first stage of a sequential second price auction
when r ∈ {0.5, 0.75}. There are five bidders with values independently drawn from a uniform
distribution in the unit interval
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with λ = 1.257289
2 and γ = 1.365022

2 . When r1 = 0.75, the equilibrium bidding function for the

descending reserve price auction is given by b̂
(1)
S in (7) with γ = 0.942 and is plotted in black in

Figure 1(b).

3.5 The optimal order problem

In this section we use Proposition 2 to relook at the optimal order problem for exogenously

given reserve prices analyzed by GTX. Specifically, we assume that values are randomly drawn

from the unit interval, and there are two different sellers, each of whom owns one of the two

objects that are auctioned. One seller has value zero for her own object, and the other seller has

a commonly known value r ∈ (0, 1) for her own object. GTX assume that the objects are offered

through sequential second price auctions8 such that at each stage the reserve price coincides with

the seller’s value for the object auctioned at that stage. An auctioneer then chooses the object

to put on sale first in order to maximize the sum of each seller’s expected profits, π = π0 + πr,

where π0 is just the expected revenue from the sale of the object that has no reserve price, while

πr is the difference between the expected revenue from the object with reserve price r, and the

reserve price times the probability of making the sale.

Hence the auctioneer chooses between r1 = 0, r2 = r (that is, the object with zero reserve

price is auctioned first: reserve prices are increasing), and r1 = r, r2 = 0 (that is, the object

with zero reserve price is auctioned second: reserve prices are decreasing). We use irp, drp to

denote in a succinct way the case of increasing reserve prices and the case of decreasing reserve

prices, respectively. Therefore πirp = π0
irp + πr

irp will indicate the sellers’ total profits given irp.

Likewise, πdrp = π0
drp + πr

drp will indicate the sellers’ total profits given drp.

With respect to this optimal order problem, GTX only study the case of r > r̄1 because they

do not identify equilibria for the drp when r ≤ r̄1. Proposition 4(i) below slightly generalizes

their results. In addition, we exploit Propositions 1 and 2 to obtain some results about the

optimal order when r < r̄1.

Proposition 4. Suppose x = 0, x = 1 and for only one unit we have a positive reserve price

r ∈ (0, 1). The following holds:

(i) If r is close to 1, then πirp < πdrp. Moreover, if πirp ≤ πdrp holds when r = r̄1, then

πirp < πdrp holds for each r ∈ (r̄1, 1).

(ii) If r is close to 0, then πirp > πirp.

(iii) Suppose, in addition, that values are uniformly distributed. If n = 3, then πirp > πdrp

for r < 0.641, and πirp < πdrp for r > 0.641. If n ≥ 4, then πirp > πdrp for r ≤
min{5n−12

5n−5 , r̃1}, and πirp < πdrp for r ≥ r̄1.

8Or sequential first price auctions: see the next section.
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Proposition 4 allows us to conclude that πirp < πdrp when r is close to 1, whereas πirp > πdrp

when r is close to 0. Under the assumption of uniform distribution of values, we can obtain more

specific results. In particular, as n tends to infinity, we have that min{5n−12
5n−5 , r̃1} approaches 1.

We then conclude that, for large n, irp provide bigger profits at all r but those very close to 1.

The proof of Proposition 4 is made via standard mechanism design techniques (see, e.g.

Krishna, 2010; Myerson, 1981) that allow to write the sum of the sellers’ revenues as the ex-

pectation of the virtual values ϕ(x) = x − 1−F (x)
f(x) of the winning bidders. For this reason it is

convenient to introduce order statistics: given the n random variables X1, .., Xn which represent

the bidders’ values, with Yh we denote the h-th highest order statistic, for h = 1, ..., n; yh is a

generic realized value for Yh.

In particular, we obtain first that

πr
irp > πr

drp for each r ∈ (0, 1) (19)

that is, for each r, the profit from the object with reserve price r is higher under irp. This

result is immediate when r ≥ r̃1, since then πr
drp = 0 (the only positive bid is r when r ∈ [r̃1, r̄1)

while nobody bids when r ≥ r̄1) and πr
irp = E[max{Y3 − r, 0}] > 0. Some more care is needed

to show that inequality (19) holds true also for r < r̃1, and the analysis can be found in the

Appendix. In general, inequality (19) holds because drp discourage bidders’ participation at

stage one more than irp do at stage two. Under drp, a bidder knows that if he loses at stage

one he will compete at stage two in a more favorable auction with r2 = 0 < r1 = r; under irp, at

stage two each bidder has his last opportunity to win an object. This generates higher bidding

from a larger set of bidders under irp.

On the other hand, we find that the comparison between π0
irp and π0

drp depends on the

value of r: when r is close to 1, π0
drp > π0

irp by a magnitude that outweighs (19), and therefore

πdrp > πirp if r is close to 1 (Proposition 4(i)). When, instead, r is close to 0, π0
irp > π0

drp. This

reinforces the effect from (19) and we conclude in Proposition 4(ii) that πirp > πdrp if r is close

to 0.

In order to see why the comparison between π0
irp and π0

drp depends on r, notice that if r1 is

close to 1, π0
drp = E(Y2) because with drp each bidder (does not bid at stage one and) bids his

own value at stage two. With irp, π0
irp would be equal to E(Y2) if each bidder was bidding his

own value at stage one (this occurs if r = 1), but Proposition 1 reveals that each bidder with

value greater than r2 = r bids less than his true value. Therefore when r is close to 1 we have

that π0
irp < π0

drp. We then prove that overall πirp < πdrp by writing the expected revenues as

expectation of the winners’ virtual values, which yields

πirp − πdrp = E[(ϕ(Y2)− r)1{Y2≥r}]

where 1{Y2≥r} is a function that assumes value 1 if Y2 ≥ r and 0 otherwise. Following GTX’s

argument, we find that E[(ϕ(Y2)− r)1{Y2≥r}] is negative when r is close to 1. Hence πirp < πdrp
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because irp generate a lower profit from the object with zero reserve price, and this effect

dominates over the effect described by (19).

On the other hand, observe that π0
irp = π0

drp if r = 0, and a small r > 0 increases π0
irp of

a larger magnitude than it increases π0
drp. Specifically, we notice that Proposition 2(i) applies

when r is close to 0 (and, in particular, λ is small too), and distinguish between y2 > λ (where

we find that irp prevail by a magnitude of order rn−1) and y2 ≤ λ (where we find that drp

might prevail, but by a magnitude of order rn). In the first case the profit from the object with

zero reserve price is βn−1,r(y2) under irp, and y3 under drp. One can verify that

βn−1,r(y2) > βn−1,0(y2) = E(Y3|Y2 = y2) (20)

Moreover, the expected profit difference is of order rn−1 since

βn−1,r(y2)− βn−1,0(y2) =

∫ r
0 Fn−2(s)ds

Fn−2(y2)

(see (2)) and

E

[∫ r
0 Fn−2(s)ds

Fn−2(Y2)
1{Y2>λ}

]
=

n(n− 1)(1− F (λ))2

2

∫ r

0
Fn−2(s)ds

which is about equal to nfn−2(0)
2 rn−1 for r close to 0.

Conversely, when y2 ≤ λ in some cases the profit with irp is smaller than with drp because

under drp the stage one winner could be the bidder with the third (or fourth ...) highest value,

and then the stage two revenue would be y2, which is greater than βn−1,r(y2). However, in

expectation this profit difference is negligible with respect to nfn−2(0)
2 rn−1 as (i) there exists a

number ξ > 1 such that λ < ξr if r is close to 0, therefore Pr{Y2 ≤ λ} = F (λ)n + nF (λ)n−1(1−
F (λ)) is of order rn−1; (ii) for each profile of values such that y2 < λ, the profit given drp minus

the profit given irp is smaller than λ − r, which is of order r. From (i) and (ii) it follows that

the expected profit difference in favor of drp from the case y2 ≤ λ is of order rn and thus, given

r close to 0, the sign of π0
irp − π0

drp is determined by nfn−2(0)
2 rn−1, which is positive.

4 First price auctions

In this section we prove that if the objects are offered through two sequential first price auctions,

with reserve prices r1, r2 such that r1 > r2, then an equivalence result holds in the following sense:

there exists an equilibrium for sequential first price auctions which generates the same outcome

(in terms of allocation of the objects and of bidders’ expected payments) as the equilibrium

described by Proposition 2 for sequential second price auctions.9 Therefore, in particular, the

results in Subsections 3.3-3.5 apply also to sequential first price auctions.

9In fact, the equivalence result holds also if r1 ≤ r2, as established by GTX.
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As for the sequential second price auctions we focus on symmetric strategy profiles that are

sequentially rational and we use (b
(1)
F , b

(2)
F ) to denote each bidder’s bidding functions at stage

one and two. We remark that b
(1)
F is a function only of the bidder’s value x, whereas b

(2)
F needs to

specify the bid of a stage one losing bidder as a function of his value x, his stage one bid b, and

the stage one winning bid bw. We use the notation b
(2)
F (x|b, bw), and for example b

(2)
F (x|no, r1)

is the bid of type x at stage two given that he has not bid at stage one (b = no), and given

that the winning bid at stage one has been r1 (bw = r1). With bw =no we represent the case in

which no bid has been submitted at stage one.

Unlike in the second price auctions, there is no dominant strategy for the stage two auction.

A bidder’s equilibrium behavior at stage two must take into account his beliefs about the values

of the other losing bidders at stage one, and these beliefs depend on b and bw. Therefore, the

analysis of sequential first price auctions requires extra care, but this is mainly true for the

case of decreasing reserve prices, because when r1 ≤ r2 there exists an equilibrium in which the

stage one bidding function is strictly increasing (for x ≥ r1), and this generates beliefs which

are relatively simple to manage (see GTX, or Subsection 4.2).

4.1 Descending reserve prices

Given r1 > r2, we consider r̃1, r̄1 defined in Proposition 2, and for each of the three cases

considered in Proposition 2 we identify an equilibrium for sequential first price auctions which

is equivalent to the equilibrium described by Proposition 2 for sequential second price auctions.

4.1.1 Intermediate r1

We start with r1 in the interval [r̃1, r̄1), for which Proposition 2(ii) identifies (b̂
(1)
S , b

(2)∗
S ) where b̂

(1)
S

is from (7) and b
(2)∗
S is from (4). For sequential first price auctions, we find an equilibrium given

by the functions (b̂
(1)
F , b̂

(2)
F ) below, in which γ is the unique solution to (13) as in Proposition 2(ii):

b̂
(1)
F (x) =

no bid if x ∈ [x, γ)

r1 if x ∈ [γ, x̄]
(21)

b̂
(2)
F (x|no, no) =


no bid if x ∈ [x, r2)

βn,r2(x) if x ∈ [r2, γ)

βn,r2(γ) if x ∈ [γ, x̄]

(22)

b̂
(2)
F (x|no, r1) =



no bid if x ∈ [x, r2)

βn−1,r2(x) if x ∈ [r2, γ)

b̂
(2)
F (ŷ(x)|r1, r1) such that ŷ(x) is in

argmaxy∈[γ,x](x− b̂
(2)
F (y|r1, r1))Ĝ(y|no, r1) if x ∈ [γ, x̄]

(23)
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b̂
(2)
F (x|r1, r1) =


no bid if x ∈ [x, r2)

βn−1,r2(x) if x ∈ [r2, γ)
βn−1,r2 (γ)Ĝ(γ|r1,r1)+

∫ x
γ sĝ(s|r1,r1)ds

Ĝ(x|r1,r1)
if x ∈ [γ, x̄]

(24)

b̂
(2)
F (x|b, bw) =

no bid if x ∈ [x, r2)

βn−1,r2(x) if x ∈ [r2, x̄]
for each bw > r1, bw ≥ b (25)

The bidding functions in (22)-(25) refer to stage two and cover all the possible stage one

outcomes.10 In order to make sense of them, first notice that b̂
(1)
F coincides with b̂

(1)
S , hence the

beliefs at stage two of each losing bidder are the same as in sequential second price auctions,

and they are given by (8), (9), and (11).

Consider b̂
(2)
F (·|no,no) in (22). Each bidder’s beliefs are given by Ĝ(·|no,no) in (8), and

ĝ(s|no,no)
Ĝ(s|no,no)

= (n − 1)f(s)/F (s) for s ∈ (r2, γ), therefore (1) reveals that the equilibrium bidding

function for x ∈ [r2, γ) is βn,r2(x), as specified by b̂
(2)
F (·|no,no). Moreover, b̂

(2)
F (·|no,no) needs to

specify a bid also for each type x ∈ [γ, x̄], given bw = no.11 In this case such a bidder expects

all the others to have a value in [x, γ). It is optimal for him to bid βn,r2(γ) i.e. the minimum

bid that guarantees a sure win at stage two, which is what (22) prescribes for x ∈ [x, γ).

The case in which the winning bid at stage one is r1 is more involved, since a losing bidder’s

beliefs and bidding at stage two depend on the bidder’s bid at stage one, which could be no,

or r1. In particular, a type who has not won at stage one expects an opponent of type x to

bid b̂
(2)
F (x|no, r1) if x ∈ [r2, γ), and to bid b̂

(2)
F (x|r1, r1) if x ∈ [γ, x̄]. In order to see how these

functions are determined, assume that the function

b̂
(2)
F,r1

(x) =

b̂
(2)
F (x|no, r1) if x ∈ [r2, γ)

b̂
(2)
F (x|r1, r1) if x ∈ [γ, x̄]

(26)

is strictly increasing and notice that the beliefs of a losing bidder are: Ĝ(·|no, r1) in (9) if the

bidder has not bid at stage one (according to b̂
(1)
F , these are the types in [r2, γ), neglecting the

types in [x, r2)); and Ĝ(·|r1, r1) in (11) if the bidder has bid r1 at stage one (according to b̂
(1)
F ,

these are the types in [γ, x̄]).

Then solving

b(r2) = r2 and b′(x) = (x− b(x))
ĝ(x|no, r1)
Ĝ(x|no, r1)

for x ∈ (r2, γ)

10Of course, in all these bidding functions no type x ∈ [x, r2) bids at stage two.
11This occurs if the bidder did not follow b̂

(1)
F at stage one, perhaps because he made a mistake or because he

chose to deviate from b̂
(1)
F .
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yields b̂
(2)
F (x|no, r1) = βn−1,r2(x) for x ∈ [r2, γ), which is what (23) prescribes. Likewise, solving

b(γ) = βn−1,r2(γ) and b′(x) = (x− b(x))
ĝ(x|r1, r1)
Ĝ(x|r1, r1)

for (γ, x̄]

yields b̂
(2)
F (x|r1, r1) =

βn−1,r2 (γ)Ĝ(γ|r1,r1)+
∫ x
γ sĝ(s|r1,r1)ds

Ĝ(x|r1,r1)
for x ∈ [γ, x̄], which is what (24) pre-

scribes. Hence the resulting function b̂
(2)
F,r1

in (26) is indeed strictly increasing.

We complete the description of b̂
(2)
F (x|no, r1) and b̂

(2)
F (x|r1, r1) by looking at off-the-equilibrium

play. Namely, b̂
(2)
F (x|no, r1) for x ∈ [γ, x̄] is obtained by computing the payoff maximizing bid

for a type x ∈ [γ, x̄] who has not bid at stage one, given the beliefs Ĝ(·|no, r1) and given that

the opponents bid according to (26). In this case, we find that for such a type it is sub-optimal

to bid less than b̂
(2)
F (γ|r1, r1). Likewise, b̂

(2)
F (x|r1, r1) is the payoff maximizing bid for a type

x ∈ [r2, γ) who has bid r1 in stage one. We find that b̂
(2)
F (x|r1, r1) = b̂

(2)
F (x|no, r1) (equal to

βn−1,r2(x)) in the interval [r2, γ) because the equality ĝ(s|no,r1)
Ĝ(s|no,r1)

= ĝ(s|r1,r1)
Ĝ(s|r1,r1)

(equal to (n−2)f(s)
F (s) )

holds for s ∈ [r2, γ).

Finally, the equilibrium strategies include also (25), which covers the off-the-equilibrium case

in which bw > r1. Then we suppose that the beliefs of each losing bidder are equal to the initial

beliefs, and therefore the stage two auction is an ordinary first price auction with n− 1 bidders

and reserve price r2, for which (25) is the equilibrium bidding function.

Given (22)-(24), we can move to stage one and evaluate the total expected payoff (over the

two stages) for each type from not bidding at stage one, and from bidding r1. This allows to

prove that bidding according to (21) is a best reply for a bidder which expects all other bidders

to follow (21). For instance, for a type x ∈ [r2, γ), the payoff from not bidding at stage one is

ûF (x, x) = Γn−1
(
x− b̂

(2)
F (x|no,no)

)
Ĝ(x|no,no) + (1− Γn−1)

(
x− b̂

(2)
F (x|no, r1)

)
Ĝ(x|no, r1)

which is equal to ûS(x, x) = vn(x)+(n−1)(1−Γ)vn−1(x) as it is obtained from (10). Moreover,

the payoff from bidding r1 is

ûF (x, γ) = p̂(γ)(x− r1) + (1− p̂(γ))(x− b̂
(2)
F (x|r1, r1))Ĝ(x|r1, r1)

in which p̂(γ) is the probability to win at stage one after bidding r1 given by (62). Using (12) we

see that ûF (x, γ) = ûS(x, γ) = p̂(γ)(x−r1)+
n−1
2 (1−Γ)vn−1(x). We know from Proposition 2(ii)

that ûS(x, x) ≥ max{ûS(x, γ), x − r1} for each x ∈ [r2, γ), hence not bidding at stage one is a

best reply for each type in [r2, γ).

Finally, remark that the equilibrium (21)-(25) generates the same allocation of the two

objects as the equilibrium described by Proposition 2(ii) for sequential second price auctions,

and since in both cases each bidder with type x has payoff equal to zero, the Revenue Equivalence

Theorem implies that each type of bidder and the seller have the same payoff in both cases.
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4.1.2 Small r1, that is r1 ∈ (r2, r̃1), and large r1, that is r1 ∈ [r̄1, x̄]

When r1 ∈ (r2, r̃1) we find an equilibrium which is equivalent to the equilibrium of Proposi-

tion 2(i) for sequential second price auctions. The analysis is similar to that for the case of

r1 ∈ [r̃1, r̄1), although somewhat more complicated as the equilibrium bidding function at stage

one is strictly increasing for x close to x̄. Therefore we have reported this part in the Appendix,

in the proof of Proposition 5(i).

When r1 ∈ [r̄1, x̄], we find the following equilibrium which is equivalent to the equilibrium

of Proposition 2(iii) for sequential second price auctions:

b̄
(1)
F (x) = no bid for each x ∈ [x, x̄] (27)

b̄
(2)
F (x|no, no) =

no bid if x ∈ [x, r2)

βn,r2(x) if x ∈ [r2, x̄]
(28)

b̄
(2)
F (x|b, bw) = b̂

(2)
F (x|b, bw) for each bw > r1, bw ≥ b (29)

Given (27), when bw = no the beliefs of each bidder at stage two coincide with the initial

beliefs, and therefore an ordinary first price auction with n bidders and reserve price r2 is held,

for which (28) is the equilibrium bidding function. In case that some bids have been submitted

at stage one (an off-the-equilibrium event), we can argue as for b̂
(2)
F in (25).

Moving at stage one, we see that for each bidder it is a best reply not to bid if he expects

the other bidders to follow (27)-(28): If a type x bids at stage one, his payoff is not larger than

x − r1, which is smaller than the payoff vn(x) he obtains from not bidding at stage one, since

r1 ≥ r̄1.

Proposition 5. Suppose that the two objects are offered through sequential first price auctions,

with descending reserve prices, that is x ≤ r2 < r1 ≤ x̄. Let r̃1, r̄1 be defined as in Proposition 2.

Then

(i) if r1 ∈ (r2, r̃1), then there exists an equilibrium which generates the same outcome as the

equilibrium described by Proposition 2(i) for sequential second price auctions;

(ii) if r1 ∈ [r̃1, r̄1), then there exists an equilibrium in which each bidder follows the strategy

b̂
(1)
F , b̂

(2)
F in (21)-(25);

(iii) if r1 ∈ [r̄1, x̄], then there exists an equilibrium in which each bidder follows the strategy

b̄
(1)
F , b̄

(2)
F in (27)-(29).

4.2 Ascending reserve prices

The ascending reserve prices case is solved by GTX. The following is an adaptation of their

result to the two-object case, in which βk,r1 is the equilibrium bidding function (for x ≥ r1) in
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a one-shot first price auction with k bidders, reserve price r1, and i.i.d. values, each with the

c.d.f. F .

Proposition 6 (Proposition 1 in GTX). Suppose that the two objects are offered through se-

quential first price auctions with ascending reserve prices r1, r2 such that x ≤ r1 ≤ r2 ≤ x̄.

Then there exists an equilibrium in which each bidder plays the following strategy:

b
(1)
F (x) =


no bid if x ∈ [x, r1)

βn,r1(x) if x ∈ [r1, r2]
βn,r1 (r2)F

n−1(r2)+
∫ x
r2

βn−1,r2 (s)dF
n−1(s)

Fn−1(x)
if x ∈ (r2, x̄]

(30)

b
(2)
F (x|no,no) =

no bid if x ∈ [x, r2)

r2 if x ∈ [r2, x̄]
(31)

b
(2)
F (x|b, b(1)F (z)) =

no bid if x ∈ [x, r2)

r2 if x ∈ [r2, x̄]
for each z ∈ [r1, r2], b ≤ b

(1)
F (z) (32)

b
(2)
F (x|b, b(1)F (z)) =


no bid if x ∈ [x, r2)

βn−1,r2(x) if x ∈ [r2, z)

βn−1,r2(z) if x ∈ [z, x̄]

for each z ∈ (r2, x̄], b ≤ b
(1)
F (z) (33)

b
(2)
F (x|b, bw) =

no bid if x ∈ [x, r2)

βn−1,r2(x) if x ∈ [r2, x̄]
for each bw > b

(1)
F (x̄), bw ≥ b (34)

A crucial feature of b
(1)
F is that it is strictly increasing for x ≥ r1, hence if at least a bid is

submitted at stage one and bw = b
(1)
F (z) for some z ≥ r1, then each losing bidder’s beliefs are

given by the c.d.f. which takes value Fn−2(s)
Fn−2(z)

if s ∈ [x, z), and 1 if s ∈ [z, x̄]. In the case that

bw = b
(1)
F (z) for a z ∈ [r1, r2], a losing bidder infers that each other bidder has value smaller

than r2. Therefore bidding r2 suffices to win at stage two, and it is a best reply if the bidder

has value x ≥ r2: see (32), and notice that the same principle holds for (31). Conversely, if

bw = b
(1)
F (z) for a z ∈ (r2, x̄] then each bidder with type x ∈ [r2, z) bids βn−1,r2(x) as it follows

from (1) with the above beliefs: see (33).

Moving to stage one, the rationale for b
(1)
F is as follows: bidders whose value is between r1 and

r2 only participate in the first auction. From their perspective, they are joining a one shot first

price auction with reserve price r1. As a result, they bid as in the equilibrium of that auction.

Each bidder with value above r2 has two attempts at getting an object. At the second and last

one (along the equilibrium path) he will play the equilibrium bid of a one shot first price auction

with reserve price r2: see (32)-(33). This determines that the equilibrium bidding function for

the first stage is obtained from the differential equation b′(x) = (βn−1,r2(x)− b(x)) (n−1)f(x)
F (x) for
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x > r2, with the boundary condition b(r2) = βn,r1(r2). With respect to (1), the value of type

x is replaced by his stage two bid, as illustrated by GTX, and consistently with the analysis

of Krishna (2010) for a setting without reserve prices.

Figure 2 reports the plots of the equilibrium bidding functions in the first stage with sequen-

tial first price auctions when values are uniformly distributed, there are five bidders, one item

has no reserve price and the other has a reserve price r ∈ {0.5, 0.75}. The equilibrium bidding

function for the ascending reserve price auction is given by b
(1)
F in (30) and is plotted in grey.

When r1 = 0.5, the equilibrium bidding function for the descending reserve price auction given

by b̃
(1)
F in (74) and is plotted in black in Figure 2(a) with λ = 1.257289

2 and γ = 1.365022
2 . When

r1 = 0.75, the equilibrium bidding function for the descending reserve price auction is given by

b̂
(1)
S in (21) with γ = 0.942 and is plotted in black in Figure 2(b). The cutoff values λ and γ are

the same as in the sequential sealed bid second price auctions in light of Proposition 5.
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(a) Equilibrium bidding functions when r1 = 0 and r2 = 0.5 (grey)
or r1 = 0.5 and r2 = 0 (black)

(b) Equilibrium bidding functions when r1 = 0 and r2 = 0.75
(grey) or r1 = 0.75 and r2 = 0 (black)

Figure 2: Equilibrium bidding function in the first stage of a sequential sealed bid first price
auction when reserve prices are 0 and 0.5 (left) or 0 and 0.75 (right). There are five bidders
with values independently drawn from a uniform distribution in the unit interval
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A Proof of Proposition 2

A.1 Proof of Proposition 2(i)

We prove that there exists r̃1 ∈ (r2, r̄1) such that if r1 ∈ (r2, r̃1), then there exists a unique

solution to (15)-(16) and there exists an equilibrium in which each bidder bids according to the

strategy (b̃
(1)
S , b

(2)∗
S ). We employ several steps to obtain this result.

Step 1: Derivation of ũS(x, x), ũS(x, γ) and ũS(x, y)

We start by illustrating how ũS(x, x), ũS(x, γ) and ũS(x, y) are derived. To this end we need

to determine the updated beliefs, for a bidder who lost at stage one (because either he did not

participate the auction, or he bid r1 or he bid βn−1,r2(y)), about the highest value among the

other bidders who did not win at stage one, conditional on the information the bidder learns at

stage one: his own bid at stage one (which we denote with b) and the winning bid at stage one

(which we denote with bw). In order to shorten the notation, we set Γ ≡ F (γ) and Λ ≡ F (λ).

Step 1.1: Updated beliefs for a bidder who has not bid at stage one, and ũS(x, x).

Consider a bidder with type x who has made no bid at stage one. Here we describe his beliefs

upon learning bw, and his expected payoff ũS(x, x) from (5).

• In case there has been no bid by any bidder, an event with probability Γn−1 from the

bidder’s ex ante point of view, his beliefs are given by the c.d.f. G̃(·|no,no) such that

G̃(s|no, no) =


Fn−1(s)
Γn−1 if s ∈ [x, γ)

1 if s ∈ [γ, x̄]
(35)

• In case bw = r1, an event with probability Λn−1 −Γn−1 from the bidder’s ex ante point of

view, his beliefs are given by the c.d.f. G̃(·|no, r1) such that

G̃(s|no, r1) =


(n−1)(Λ−Γ)
Λn−1−Γn−1F

n−2(s) if s ∈ [x, γ)

Λ−Γ
Λn−1−Γn−1

Fn−1(s)−Γn−1

F (s)−Γ if s ∈ [γ, λ]

1 if s ∈ (λ, x̄]

(36)

About the derivation of G̃(s|no, r1), consider the point of view of, say, bidder 1; the

following probabilities refer to the n−1 bidders different from 1. For s ∈ [x, γ), G̃(s|no, r1)
is obtained by evaluating the probability that exactly one of the other bidders has value

in [γ, λ] and each other bidder has value smaller than s. This probability is equal to

(n− 1)(Λ− Γ)Fn−2(s).

25



For s ∈ [γ, λ], G̃(s|no, r1) is obtained by evaluating the probability that at least one of the

other bidders has value in [γ, λ], none of them has value bigger than λ, and each of the

non winning bidders with value x ∈ [γ, λ] is such that x ≤ s. Such a probability is given

by12

(n− 1)(Λ− Γ)

n−2∑
j=0

Cn−2,j

j + 1
Γn−2−j(F (s)− Γ)j (37)

Specifically, Λ − Γ is the probability that a bidder (the winner) has value in [γ, λ] and

we have n − 1 possible ways of picking a winner. If there are j other bidders (from the

remaining n − 2) whose value is greater than γ, we need each of them to have value less

than s, and 1
j+1 is the probability that our initially selected bidder wins. Remark that

Cn−2,j

j + 1
Γn−2−j(F (s)− Γ)j =

Cn−1,j+1

(n− 1)(F (s)− Γ)
Γn−2−j(F (s)− Γ)j+1 (38)

for j = 0, 1, ..., n−2. The right hand side of (38) is equal to
Cn−1,h

(n−1)(F (s)−Γ)Γ
n−1−h(F (s)−Γ)h,

for h = 1, 2, ..., n− 1 (with h = j + 1). Hence (37) is equal to

(n− 1)(Λ− Γ)

n−1∑
h=1

Cn−1,h

(n− 1)(F (s)− Γ)
Γn−1−h(F (s)− Γ)h =

Λ− Γ

F (s)− Γ

(
Fn−1(s)− Γn−1

)

• In case bw = b̃
(1)
S (z) for some z ∈ (λ, x̄], an event with probability 1−Λn−1 from the bidder’s

ex ante point of view, his beliefs are given by the c.d.f. with value Fn−2(s)/Fn−2(z) if

s ∈ [x, z), with value 1 if s ∈ [z, x̄]. In fact, this c.d.f. applies as long as the winning bid

has been b̃
(1)
S (z) for some z ∈ (λ, x̄], for each stage one bid b ≤b̃

(1)
S (z); hence we define

G̃(s|b, b̃(1)S (z)) such that

G̃(s|b, b̃(1)S (z)) =


Fn−2(s)
Fn−2(z)

if s ∈ [x, z)

1 if s ∈ [z, x̄]
for each b ≤b̃

(1)
S (z) (39)

When he decides to make no bid, the bidder’s expected beliefs are represented by the c.d.f. G̃no

such that

G̃no(s) = Γn−1G̃(s|no, no) + (Λn−1 − Γn−1)G̃(s|no, r1) +
∫ x̄

λ
G̃(s|no, b̃(1)S (z))dFn−1(z)

=


Fn−1(s) + (n− 1)(1− Γ)Fn−2(s) if s ∈ [x, γ)

Γn−1 + (Λ−Γ)(Fn−1(s)−Γn−1)
F (s)−Γ + (n− 1)(1− Λ)Fn−2(s) if s ∈ [γ, λ]

(n− 1)Fn−2(s)− (n− 2)Fn−1(s) if s ∈ (λ, x̄]

12For any pair of non negative integers k ≥ h we write Ck,h to denote k!
h!(k−h)!

.
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using (35), (36) and (39). Hence the payoff of a type x from not bidding at stage one is

ũS(x, x) =

∫ x

r2

G̃no(s)ds (40)

Step 1.2: Updated beliefs for a bidder who has bid r1 at stage one but has not won

at stage one, and ũS(x, γ). For future convenience, we introduce the following function M ,

defined for a ∈ [0, 1] and b ∈ [0, 1]:

M(a, b) =


(n−1)an−nan−1b+bn

(a−b)2
if a ̸= b

n(n−1)
2 an−2 if a = b

(41)

Multiplying (a− b)2 by (n− 1)an−2 + (n− 2)an−3b+ ...+ 2abn−3 + bn−2 reveals that

M(a, b) = (n− 1)an−2 + (n− 2)an−3b+ ...+ 2abn−3 + bn−2 (42)

and therefore M is strictly increasing both with respect to a and with respect to b.

For a bidder bidding r1, the probability to win at stage one is

p̃(γ) =
n−1∑
j=0

Cn−1,j

j + 1
Γn−1−j(Λ− Γ)j =

n−1∑
j=0

Cn,j+1

n(Λ− Γ)
Γn−1−j(Λ− Γ)j+1

=

n∑
h=1

Cn,h

n(Λ− Γ)
Γn−h(Λ− Γ)h =

Λn − Γn

n(Λ− Γ)
(43)

Let p̃ℓ denote the probability that another bidder wins at stage one with a bid of r1. The

probability that another bidder wins at stage one with a bid b̃
(1)
S (z) for some z ∈ (λ, x̄] is 1−Λn−1.

Since p̃(γ) + p̃ℓ + 1− Λn−1 = 1, it follows that p̃ℓ = Λn−1 − p̃(γ), that is

p̃ℓ =
Λ− Γ

n
M(Λ,Γ) = (n− 1)(Λ− Γ)

n−2∑
j=0

Cn−2,j

j + 2
Γn−2−j (Λ− Γ)j (44)

Now consider a bidder who has bid r1 at stage one but has not won. Then either bw = r1,

or bw = b̃
(1)
S (z) for some z ∈ (λ, x̄].

• In case bw = r1 and another bidder has won, an event with probability p̃ℓ from the bidder’s

ex ante point of view, his beliefs are given by G̃(·|r1, r1) such that

G̃(s|r1, r1) =


(n−1)(Λ−Γ)

2p̃ℓ
Fn−2(s) if s ∈ [x, γ)

Λ−Γ
np̃ℓ

M(F (s),Γ) if s ∈ [γ, λ]

1 if s ∈ (λ, x̄]

(45)
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Considering the point of view of bidder 1, the derivation of G̃(s|r1, r1) for s ∈ [x, γ) is

similar to the derivation of G̃(s|no, r1) for s ∈ [x, γ), taking into account that bidder 1 has

bid r1 rather than abstaining from bidding.

For s ∈ [γ, λ], G̃(s|r1, r1) is obtained from the probability that none of the other bidders

has value greater than λ, at least one of them has value in [γ, λ] and wins, and each losing

bidder with value x ∈ [γ, λ] is such that x ≤ s. This probability is equal to

(n− 1)(Λ− Γ)

n−2∑
j=0

Cn−2,j

j + 2
Γn−2−j(F (s)− Γ)j (46)

From (44) we see that
∑n−2

j=0
Cn−2,j

j+2 Γn−2−j(Λ− Γ)j = M(Λ,Γ)
n(n−1) . Hence (46) is equal to

(n− 1)(Λ− Γ)

n−2∑
j=0

Cn−2,j

j + 2
Γn−2−j(F (s)− Γ)j =

Λ− Γ

n
M(F (s),Γ)

• In case bw = b̃
(1)
S (z) for some z ∈ (λ, x̄], an event with probability 1 − Λn−1 from the

bidder’s ex ante point of view, then his beliefs are given by G̃(·|r1, b̃(1)S (z)) in (39).

When he decides to bid r1 at stage one, the bidder expects to lose with probability 1− p̃(γ) =

p̃ℓ + 1− Λn−1, hence his expected beliefs are represented by the c.d.f. G̃r1 such that

G̃r1(s) =
p̃ℓG̃(s|r1, r1) +

∫ x̄
λ G̃(s|r1, b̃(1)S (z))dFn−1(z)

1− p̃(γ)

=
1

1− p̃(γ)


(n−1)(2−Γ−Λ)

2 Fn−2(s) if s ∈ [x, γ)

Λ−Γ
n M(F (s),Γ) + (n− 1)(1− Λ)Fn−2(s) if s ∈ [γ, λ]

(n− 1)Fn−2(s)− (n− 2)Fn−1(s)− p̃(γ) if s ∈ (λ, x̄]

using (45) and (39). Hence the payoff of a type x from bidding r1 at stage one is

ũS(x, γ) = p̃(γ)(x− r1) + (1− p̃(γ))

∫ x

r2

G̃r1(s)ds (47)

Step 1.3: Updated beliefs for a bidder who has bid b̃
(1)
S (y), with y ∈ (λ, x̄], at stage

one but has not won at stage one, and ũS(x, y). If a bidder has bid b̃
(1)
S (y) at stage one

and has not won, then bw = b̃
(1)
S (z) for some z ≥ y, and his beliefs are given by G̃(·|b̃(1)S (y), b̃

(1)
S (z))

in (39). Hence, the payoff of a type x from bidding b̃
(1)
S (y) at stage one, for y ∈ (λ, x̄], is

ũS(x, y) =

∫ y

x

(
x−max{r1, b̃(1)S (z)}

)
dFn−1(z) +

∫ x̄

y

∫ x

r2

G̃(s|b̃(1)S (y), b̃
(1)
S (z))dsdFn−1(z) (48)
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and notice that the second term is equal to(n− 1)(1− F (x))vn−1(x) +
∫ x
y

(
vn−1(z)
Fn−2(z)

+ x− z
)
dFn−1(z) if y < x

(n− 1)(1− F (y))vn−1(x) if y ≥ x

Step 2: Derivation of γ and λ: Existence of a unique solution for (15)-(16), and

definition of r̃1

Using (40), (47), and (48) we find

ũS(γ, x) = vn(γ) + (n− 1)(1− Γ)vn−1(γ)

ũS(γ, γ) = p̃(γ)(γ − r1) +
n− 1

2
(2− Γ− Λ)vn−1(γ)

ũS(λ, γ) = p̃(γ)(λ− r1) +
(n− 1)(Λ− Γ)

2
vn−1(γ) +

+

∫ λ

γ

Λ− Γ

n
M(F (s),Γ)ds+ (n− 1)(1− Λ)vn−1(λ)

lim
y↓λ

ũS(x, y) = Λn−1(x− r1) + (n− 1)(1− Λ)vn−1(x) ≡ ũS(x, λ
+) for x ≤ λ (49)

Hence (15) and (16) reduce, after some rearranging, respectively to

A(γ, λ) = 0, B(γ, λ) = 0 (50)

with

A(γ, λ) = p̃(γ)(γ − r1)−
(n− 1)(Λ− Γ)

2
vn−1(γ)− vn(γ) (51)

B(γ, λ) =
n(n− 1)

2
vn−1(γ)−M(Λ,Γ)(λ− r1) +

∫ λ

γ
M(F (s),Γ)ds (52)

Step 2.1: Definition of λ∗. Define τ(λ) = Fn−1(λ) (λ− r1) − vn(λ), a strictly increasing

function such that τ(r1) < 0 and τ(x̄) = r̄1− r1 > 0. Hence there exists λ in the interval (r1, x̄),

which we denote λ∗, such that τ(λ) < 0 for λ ∈ (r1, λ
∗), τ(λ∗) = 0, τ(λ) > 0 for λ ∈ (λ∗, x̄].

Step 2.2: If λ ∈ (r1, λ
∗), then there exists no γ ∈ (r1, λ] such that A(γ, λ) = 0; if

λ ∈ [λ∗, x̄], then there exists a unique γ ∈ (r1, λ] such that A(γ, λ) = 0, denoted

γA(λ). Given a function h of two variables, here and in the remainder of the Appendix we

write hi to denote the partial derivative of h with respect to its i-th variable, i = 1, 2.

First we prove that the function A is strictly increasing with respect to γ:

A1(γ, λ) =
∂p̃(γ)

∂γ
(γ − r1) +

n− 1

2
f(γ)vn−1(γ) + p̃(γ)− (n− 1)(Λ− Γ)

2
Γn−2 − Γn−1
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From the definition of p̃(γ) in (43), we see that

p̃(γ)− (n− 1)(Λ− Γ)

2
Γn−2 − Γn−1 =

n−1∑
j=2

Cn−1,j

j + 1
Γn−j−1(Λ− Γ)j > 0

and, moreover, ∂p̃(γ)
∂γ (γ − r1) > 0 and n−1

2 f(γ)vn−1(γ) > 0.

Now we examine the sign of A(r1, λ) and of A(λ, λ). We have that

A(r1, λ) = −(n− 1)(Λ− F (r1))

2
vn−1(r1)− vn(r1) < 0

and A(λ, λ) = τ(λ). Therefore, if λ ∈ (r1, λ
∗) then A(λ, λ) < 0 and there is no solution to

A(γ, λ) = 0 in the interval (r1, λ]; if λ ∈ [λ∗, x̄], then there exists (A is continuous in λ) a unique

solution to A(γ, λ) = 0 in the interval (r1, λ], which we denote γA(λ).

Step 2.3: There exists r̃1 ∈ (r2, r̄1) such that the equation B(γA(λ), λ) = 0 has

a unique solution in (λ∗, x̄) if r1 ∈ (r2, r̃1); the equation B(γA(λ), λ) = 0 has no

solution in (λ∗, x̄) if r1 ≥ r̃1. First we prove that B(γA(λ), λ) is strictly decreasing in λ.

Notice that Γ below is actually equal to F (γA(λ)). We have that

dB(γA(λ), λ)

dλ
= f(γA(λ))

(∫ λ

γA

(M2(F (s),Γ)ds−M2(Λ,Γ)(λ− r1)

)
γ′A(λ)−M1(Λ,Γ)(λ−r1)f(λ)

and we prove that dB(γA(λ),λ)
dλ < 0. From the previous step we have that

γ′A(λ) = −A2(γ, λ)

A1(γ, λ)
= −

∂p̃
∂λ(γA(λ)− r1)− n−1

2 vn−1(γA(λ))f(λ)
∂p̃
∂γ (γA(λ)− r1) +

n−1
2 vn−1(γA(λ))f(γA(λ)) + p̃− n−1

2 (Λ− Γ)Γn−2 − Γn−1

(53)

From the proof of Step 2.2 we know that the denominator in the right hand side of (53) is

positive. Therefore dB
dλ has the same sign as

−f(γA(λ))

(
∂p̃

∂λ
(γA − r1)−

n− 1

2
vn−1(γA(λ))f(λ)

)(∫ λ

γA(λ)
(M2(F (s),Γ)ds−M2(Λ,Γ)(λ− r1)

)

−M1(Λ,Γ)(λ− r1)f(λ)

(
∂p̃

∂γ
(γA(λ)− r1) +

n− 1

2
vn−1(γA)f(γA(λ)) +K

)
(54)

with K = p̃− n−1
2 (Λ− Γ)Γn−2 − Γn−1 > 0. Moreover,

∂p̃

∂γ
=

M(Γ,Λ)

n
f(γA(λ)),

∂p̃

∂λ
=

M(Λ,Γ)

n
f(λ)
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hence (54) is smaller than

−f(γA(λ))f(λ)

(
M(Λ,Γ)

n
(γA − r1)−

n− 1

2
vn−1(γA(λ))

)(∫ λ

γA

(M2(F (s),Γ)ds−M2(Λ,Γ)(λ− r1)

)
−M1(Λ,Γ)(λ− r1)f(λ)f(γA(λ))

(
M(Γ,Λ)

n
(γA(λ)− r1) +

n− 1

2
vn−1(γA)

)
which is equal to

−f(γA(λ))f(λ)

[
n− 1

2
vn−1(γA(λ))

(
(λ− r1)M1(Λ,Γ) + (λ− r1)M2(Λ,Γ)−

∫ λ

γA

(M2(F (s),Γ)ds

)
+
γA(λ)− r1

n

(
M(Λ,Γ)

∫ λ

γA

M2(F (s),Γ)ds+ (λ− r1) [M1(Λ,Γ)M(Γ,Λ)−M(Λ,Γ)M2(Λ,Γ)]

)]
(55)

We now prove that (55) is negative by showing that the terms inside the square brackets are

positive.

• The inequality γA(λ) > r1 implies (λ−r1)M1(Λ,Γ)+(λ−r1)M2(Λ,Γ)−
∫ λ
γA(λ)(M2(F (s),Γ)ds >

(λ− r1)M1(Λ,Γ) +
∫ λ
γA(λ) (M2(Λ,Γ)−M2(F (s),Γ)) ds, and the right hand side is positive

since M1 > 0 and M2(a, b) =
∑n−3

j=0 (n− 2− j)(j + 1)an−3−jbj is strictly increasing a.

• The term M(Λ,Γ)
∫ λ
γA(λ)M2(F (s),Γ)ds is positive since M2 > 0.

• The term M1(Λ,Γ)M(Γ,Λ) − M(Λ,Γ)M2(Λ,Γ) is positive. In fact, from (41) we have

M1(a, b) =
(n−1)(n−2)an−2bn+n(n−1)an−2b2−2(n−2)nan−1b

(a−b)3
, andM2(a, b) =

(n−2)(an−bn)+nab(bn−2−an−2)
(a−b)3

.

Therefore,

M1(Λ,Γ)M(Γ,Λ)−M(Λ,Γ)M2(Λ,Γ) =

nΛ2n−2Γ

(Λ− Γ)4
(
1− (n− 1)2kn−2 + 2n(n− 2)kn−1 − (n− 1)2kn + k2n−2

)
with k = Γ

Λ ∈ (0, 1). We now define

µ(k) = k2n−2 − (n− 1)2 kn + 2n (n− 2) kn−1 − (n− 1)2 kn−2 + 1 (56)

and show it is positive for each k ∈ (0, 1). Remark that µ(1) = 0. We now prove

that µ(k) > 0 for each k ∈ (0, 1). We find that µ′(k) = kn−3ν(k), with ν(k) = 2(n −
1)kn − n (n− 1)2 k2 + 2n(n − 1) (n− 2) k − (n− 1)2 (n − 2) and ν(1) = 0. In addition,

we have that ν ′(k) = 2n(n − 1)
(
kn−1 − (n− 1) k + n− 2

)
, with ν ′(1) = 0, and ν ′′(k) =

−2n(n − 1)2(1 − kn−2) < 0 for each k ∈ (0, 1). Hence, ν ′ is strictly decreasing and since

ν ′(1) = 0 we can conclude that ν ′(k) > 0 for each k ∈ (0, 1). This, in turn, implies that

ν is strictly increasing, and since ν(1) = 0, we obtain that ν(k) < 0 for each k ∈ (0, 1).
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Therefore µ′(k) < 0 for each k ∈ (0, 1), and since µ(1) = 0 we can conclude that µ(k) > 0

for each k ∈ (0, 1).

Now we prove that B(γA(λ
∗), λ∗) > 0 and then examine the sign of B(γA(x̄), x̄). Given that

B(γA(λ), λ) is a continuous function of λ, if B(γA(x̄), x̄) < 0 then there exists a unique λ̃ ∈ (λ∗, x̄)

such that B(γA(λ̃), λ̃) = 0. Since A(γA(λ̃), λ̃) = 0, it follows that γA(λ̃), λ̃ is a solution to (50),

i.e. to (15)-(16). We prove that there exists r̃1 ∈ (r2, r̄1) such that B(γA(x̄), x̄) < 0 if and only

if r1 ∈ (r2, r̃1).

Regarding B(γA(λ
∗), λ∗), since A(γA(λ

∗), λ∗) = 0 = τ(λ∗) = A(λ∗, λ∗), we have that γA(λ
∗) =

λ∗; hence (42) and (52) imply that

B(γA(λ
∗), λ∗) =

n(n− 1)

2

(
vn−1(λ

∗)− Fn−2(λ∗)(λ∗ − r1)
)

=
n(n− 1)

2F (λ∗)

∫ λ∗

r2

Fn−2(s) (F (λ∗)− F (s)) ds > 0

where the last equality follows from the definition of λ∗.

Regarding B(γA(x̄), x̄), we have that

B(γA(x̄), x̄) =
n(n− 1)

2
vn−1(γA(x̄))−M(1, F (γA(x̄)))(x̄− r1) +

∫ x̄

γA(x̄)
M(F (s), F (γA(x̄)))ds

(57)

We now take into account that γA(x̄) is an increasing function of r1 (dγA(x̄)
dr1

> 0 since ∂A
∂γ > 0

and ∂A
∂r1

< 0), and we view B(γA(x̄), x̄) as a function ℓ(r1) of r1 that is defined for r1 ∈ (r2, r̄1).

As r1 ↑ r̄1, we have that γA(x̄) → x̄ and F (γA(x̄)) → 1, hence

lim
r↑r̄1

ℓ(r1) =
n(n− 1)

2
vn−1(x̄)−

n(n− 1)

2
(x̄− r̄1) =

n(n− 1)

2
(vn−1(x̄)− vn(x̄)) > 0

As r1 ↓ r2, we have that γA(x̄) → r2, hence

lim
r1↓r2

ℓ(r1) =

∫ x̄

r2

(M(F (s), F (r2))−M(1, F (r2))) ds < 0

since F (s) < 1 for s ∈ (r2, x̄). The continuity of ℓ implies that there exists r̃1 ∈ (r2, r̄1) such that

ℓ(r̃1) = 0, and ℓ(r1) < 0 for r1 ∈ (r2, r̃1). The proof that a unique r̃1 exists such that ℓ(r̃1) = 0

is long and is reported in E.

Step 3: b̃
(1)
S is strictly increasing in the interval [λ, x̄]

It is immediate to see that b̃
(1)
S is strictly increasing in (λ, x̄], and here we prove that limx↓λ b̃

(1)
S (x) >

r1, that is (λ − r1)Λ
n−2 ≥ vn−1(λ). Since from B(γ, λ) = 0 in (50) we obtain λ − r1 =
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1
M(Λ,Γ)

(
n(n−1)

2 vn−1(γ) +
∫ λ
γ M(F (s),Γ)ds

)
, it is sufficient to establish below that

n(n− 1)Λn−2

2
vn−1(γ) + Λn−2

∫ λ

γ
M(F (s),Γ)ds ≥ M(Λ,Γ)vn−1(γ) +M(Λ,Γ)

∫ λ

γ
Fn−2(s)ds

Remark that: (i) the inequality n(n−1)Λn−2

2 ≥ M(Λ,Γ) is satisfied as n(n−1)Λn−2

2 = M(Λ,Λ) >

M(Λ,Γ); (ii) the inequality Λn−2
∫ λ
γ M(F (s),Γ)ds ≥ M(Λ,Γ)

∫ λ
γ Fn−2(s)ds reduces to

∫ λ

γ

n−2∑
j=0

(n− 1− j)Λn−2Fn−2−j(s)Γj ≥
∫ λ

γ

n−2∑
j=0

(n− 1− j)Fn−2(s)Λn−2−jΓj

and it is satisfied since Λn−2Fn−2−j(s) ≥ Fn−2(s)Λn−2−j for j = 0, 1, ..., n− 2, for s ∈ [γ, λ].

Step 4: Proof that no profitable deviation exists

Now that b̃
(1)
S is well defined, we prove that if a bidder expects that each other bidder follows

the strategy (b̃
(1)
S , b

(2)∗
S ), then no profitable deviation exists for him. Precisely, we prove that the

following inequalities hold:13

for each x ∈ [r2, γ), ũS(x, x) ≥ max{ũS(x, γ), ũS(x, y)}, for each y ∈ (λ, x̄] (58)

for each x ∈ [γ, λ], ũS(x, γ) ≥ max{ũS(x, x), ũS(x, y)}, for each y ∈ (λ, x̄] (59)

for each x ∈ (λ, x̄] and y ∈ (λ, x̄], ũS(x, x) ≥ max{ũS(x, x), ũS(x, γ), ũS(x, y)} (60)

Step 4.1: Proof of (59) Here we prove that each type in [γ, λ] prefers to bid r1 rather than

not bidding, or bidding b̃
(1)
S (y) for some y ∈ (λ, x̄].

Bidding r1 is preferred to no bidding. We know from (15) that ũS(γ, γ) = ũS(γ, x), and

now we prove that ũS1(x, γ) > ũS1(x, x) for each x ∈ (γ, λ), which implies ũS(x, γ) > ũS(x, x)

for each x ∈ (γ, λ]. Using (40) and (47) we find that ũS1(x, x) = Γn−1 + (Λ− Γ)F
n−1(x)−Γn−1

F (x)−Γ +

(n − 1)(1 − Λ)Fn−2(x), whereas ũS1(x, γ) = p̃(γ) + Λ−Γ
n M(F (x),Γ) + (n − 1)(1 − Λ)Fn−2(x)

for each x ∈ (γ, λ). By using (43) for p̃(γ) and (42) for M(F (x),Γ), after some rearrangements

we see that ũS1(x, x) < ũS1(x, γ) is equivalent to M(Γ,Λ) > M(Γ, F (x)), which holds since

Λ > F (x) for each x ∈ (γ, λ).

Bidding r1 is preferred to bidding like type y > λ. From (48) we see that the payoff of

a type x ∈ [γ, λ] from bidding b̃
(1)
S (y) for some y > λ is

ũS(x, y) =

∫ y

x

(
x−max{r1, b̃(1)S (z)}

)
dFn−1(z) + (n− 1)[1− F (y)]vn−1(x) (61)

13We can neglect bids between r1 and limx↓λ b̃
(1)
S (x), since each bid between r1 and limx↓λ b̃

(1)
S (x) has the same

effect as bidding limx↓λ b̃
(1)
S (x). We can also neglect bids strictly greater than b̃

(1)
S (x) as they cannot increase the

probability of winning while potentially increasing the price to be paid.

33



and ũS2(x, y) = (n − 1)f(y)
∫ y
x (F

n−2(s) − Fn−2(y))ds < 0. Therefore ũS(x, y) is decreasing in

y, and we consider ũS(x, λ
+) defined in (49). We know from (16) that ũS(λ, γ) = ũS(λ, λ

+)

and now we prove that ũS1(x, λ
+) > ũS1(x, γ) for x ∈ (γ, λ), therefore ũS(x, γ) > ũS(x, λ

+) for

x ∈ [γ, λ). Precisely, ũS1(x, λ
+) = Λn−1 + (n− 1)(1− Λ)Fn−2(x) and ũS1(x, λ

+) > ũS1(x, γ) is

equivalent to M(Λ,Γ) > M(F (x),Γ) which holds since Λ > F (x) for each x ∈ (γ, λ).

Step 4.2: Proof of (58) Here we prove that each type in [r2, γ) prefers not to bid rather

than bidding r1, or bidding b̃
(1)
S (y) for some y ∈ (λ, x̄].

No bidding is preferred to bidding r1. We know from (15) that ũS(γ, x) = ũS(γ, γ),

and now we prove that ũS1(x, x) < ũS1(x, γ) for each x ∈ [r2, γ), which implies ũS(x, x) >

ũS(x, γ) for each x ∈ [r2, γ). From (40) and (47) we see that for each x ∈ [r2, γ) we have

ũS1(x, γ) = p̃(γ) + (n−1)(2−Γ−Λ)
2 Fn−2(x), ũS1(x, x) = Fn−1(x) + (n − 1)(1 − Γ)Fn−2(x), and

ũS1(x, γ) > ũS1(x, x) reduces to p̃(γ) > Fn−1(x) + n−1
2 (Λ − Γ)Fn−2(x). We have proved in

Step 2.2 that p̃(γ) > Γn−1 + (n−1)
2 (Λ − Γ)Γn−2, and Γ > F (x) for each x ∈ [r2, γ); hence

ũS1(x, γ) > ũS1(x, x) for each x ∈ [r2, γ).

No bidding is preferred to bidding like type y > λ. The payoff of each type x ∈ [r2, γ)

from bidding b̃
(1)
S (y) for some y ∈ (λ, x̄] is given by ũS(x, y) as in (61) and is decreasing in y. Now

we prove that ũS(x, λ
+) < ũS(x, x) for each x ∈ [r2, γ). From (15) and the last remark in the

proof of (59) we know that ũS(γ, x) = ũS(γ, γ) > ũS(γ, λ
+). We prove below that ũS1(x, λ

+) =

Λn−1 + (n − 1)(1 − Λ)Fn−2(x) is greater than ũS1(x, x) = Fn−1(x) + (n − 1)(1 − Γ)Fn−2(x),

which implies ũS(x, x) > ũS(x, λ
+) for each x ∈ [r2, γ). Precisely, ũS1(x, λ

+) > ũS1(x, x) is

equivalent to Λn−1 > Fn−1(x)+(n−1)(Λ−Γ)Fn−2(x) and holds for each x ∈ [r2, γ) if and only

if Λn−1 −Γn−1 − (n− 1)(Λ−Γ)Γn−2 ≥ 0. This inequality is satisfied since (i) the left hand side

is 0 at Λ = Γ; (ii) the left hand side is increasing in Λ; (iii) Λ > Γ.

Step 4.3: Proof of (60) Here we prove that each type x in (λ, x̄] prefers to bid b̃
(1)
S (x) rather

than not bidding, or bidding r1, or bidding b̃
(1)
S (y) for some y ∈ (λ, x̄], y ̸= x.

Bidding b̃
(1)
S (x) is preferred to bidding b̃

(1)
S (y) for some y ̸= x. For a type x ∈ (λ, x̄],

the payoff from bidding as type y ∈ (x, x̄] is ũS(x, y) as in (61), and is decreasing in y. Therefore,

type x prefers to bid b̃
(1)
S (x) rather than b̃

(1)
S (y) for y > x. Moreover, from (48) we see that the

payoff of type x from bidding as type y ∈ (λ, x) is constant with respect to y, as ũS2(x, y) =

(n − 1)f(y)
(
yFn−2(y)− b̃

(1)
S (y)Fn−2(y)− vn−1(y)

)
= 0 for each y ∈ (λ, x): Therefore bidding

like type y ∈ (λ, x) is no better than bidding b̃
(1)
S (x).

Bidding b̃
(1)
S (x) is no worse than bidding r1. From (47) we see that ũS1(x, γ) = (n −

1)Fn−2(x)−(n−2)Fn−1(x), which is equal to dũS(x,x)
dx . Therefore ũS(x, γ) and ũS(x, x) have par-

allel graphs in (λ, x̄], but (16) implies ũS(λ, γ) = ũS(λ, λ
+) = limx↓λ ũS(x, x), hence ũS(x, γ) =

ũS(x, x) for each x ∈ (λ, x̄].

Bidding b̃
(1)
S (x) is preferred to no bidding. From (40) we see that ũS1(x, x) = (n −

1)Fn−2(x) − (n − 2)Fn−1(x), which is equal to dũS(x,x)
dx . Therefore ũS(x, x) and ũS(x, x) have

34



parallel graphs in (λ, x̄], but (16) and the proof of (59) imply limx↓λ ũS(x, x) = ũS(λ, λ
+) =

ũS(λ, γ) > ũS(λ, x), hence ũS(x, x) > ũS(x, x) for x ∈ (λ, x̄].

A.2 Proof of Proposition 2(ii)

This proof is largely given by the proof of Proposition 2(i), after setting λ = x̄, consistently

with the remark in footnote 7. Precisely, Ĝ(s|no, r1) in (9) and Ĝ(s|r1, r1) in (11) can be seen

as special cases of (36) and (45) with λ = x̄ and Λ = 1. Remark that the probability of winning

when bidding r1 is now given by (see (43) with Λ = 1)

p̂(γ) =

n−1∑
j=0

Cn−1,j

j + 1
Γn−1−j(1− Γ)j =

1− Γn

n(1− Γ)
(62)

and in (11), 1 − p̂(γ) replaces p̃ℓ at the denominator because 1 − p̂(γ) is a bidder’s probability

of losing after a bid of r1 given b̂
(1)
S , the analog of p̃ℓ.

The proofs that a unique solution to (13) exists and that ûS(x, x) ≥ ûS(x, γ) for each

x ∈ [r2, γ) and ûS(x, x) ≤ ûS(x, γ) for each x ∈ (γ, x̄] are special cases of Steps 2.2, 4.1, and 4.2

in the proof of Proposition 2(i).

Finally, we need to explore the profitability of bidding slightly more than r1 and to prove that

max{ûS(x, x), ûS(x, γ)} ≥ x − r1 holds for each x ∈ [r2, x̄]. Since ûS1(x, x) < 1 for x ∈ [r2, γ)

and ûS1(x, γ) < 1 for x ∈ [γ, x̄], it suffices to prove that ûS(x̄, γ) ≥ x̄ − r1. Using (12) and

rearranging the inequality we obtain

n(n− 1)

2
vn−1(γ) +

∫ x̄

γ
M(F (s),Γ)ds−M(1,Γ)(x̄− r1) ≥ 0 (63)

In examining this inequality, we need to take into account that γ is the unique solution to (13)

given r1. Since (13) is equivalent to (15) (i.e., to A(γ, λ) = 0 in (50) when λ = x̄), it follows that

the left hand side of (63) is a function of r1 which coincides with ℓ(r1) introduced in Step 2.3 in

the proof of Proposition 2(i). From Step 2.3 we know that ℓ(r1) ≥ 0 if and only if r1 ∈ [r̃1, r̄1].

A.3 Proof of Proposition 2(iii)

The proof of this part (from GTX) has been already presented in subsection 3.2.1.

B Proof of Proposition 3

Step 1: limn→+∞ r̃1 = x̄.

Recalling Step 2.3 in the proof of Proposition 2(i), we here show that for each r1 < x̄, B(γA(x̄), x̄)

is negative for a large n; this implies that r̃1 > r1 and that a solution to (50) exists. Precisely,
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given r1 < x̄ we find

B(γA(x̄), x̄) =
n(n− 1)

2

∫ γA(x̄)

r2

Fn−2(s)ds− n− 1− nF (γA(x̄)) + Fn(γA(x̄))

(1− F (γA(x̄)))2
(x̄− r1)

+

∫ x̄

γA(x̄)

(n− 1)Fn(s)− nFn−1(s)F (γA(x̄)) + Fn(γA(x̄))

(F (s)− F (γA(x̄)))2
ds

and the first and third term tend to zero; the second term tends to −∞. Hence B(γA(x̄), x̄) < 0

if n is large.

Step 2: limn→+∞ γ = limn→+∞ λ = r1.

Since for each n we have r1 < γ < λ, it suffices to prove that limn→+∞ λ = r1. Then, recalling

Step 2.3 in the proof of Proposition 2(i), we now show that B(γA(λ), λ) is negative at λ = r1+ε

for a large n; this implies that the λ solution is smaller than r1 + ε for a large n. For the sake

of brevity, we write γA instead of γA(r1 + ε), and recall that r1 < γA < r1 + ε. The inequality

B(γA, r1 + ε) < 0 is equivalent to

ε >
1

M(F (r1 + ε), F (γA))

(
n(n− 1)

2
vn−1(γA) +

∫ r1+ε

γA

M(F (s), F (γA))ds

)
(64)

and now we show that (64) is satisfied for a large n. First notice that

n(n−1)
2 vn−1(γA)

M(F (r1 + ε), F (γA))
<

n(n−1)
2 vn−1(γA)

M(F (γA), F (γA))
=

∫ γA

r2

(
F (s)

F (γA)

)n−2

ds

Hence the first term in the right hand side of (64) tends to zero. Regarding the second term in

the right hand side of (64), we need to consider two cases:

• If γA ≤ r1+
ε
2 , then consider three numbers b, a, c in [0, 1], such that b < a < c and notice

that
M(a, b)

M(c, b)
=

(
c− b

a− b

)2 (n− 1)(ac )
n − n(ac )

n−1 b
c + ( bc)

n

n− 1− b
cn+ ( bc)

n

tends to zero. Then we conclude that
∫ r1+ε
γA

M(F (s),F (γA))
M(F (r1+ε),F (γA))ds tends to zero by taking

c = F (r1 + ε), a = F (s), b = F (γA). Hence, (64) is satisfied for a large n.

• If instead γA > r1 +
ε
2 , we have that∫ r1+ε

γA
M(F (s), F (γA))ds

M(F (r1 + ε), F (γA))
<

M(F (r1 + ε), F (γA))(r1 + ε− γA)

M(F (r1 + ε), F (γA))
= r1 + ε− γA <

ε

2

Since
∫ γA
r2

(
F (s)
F (γA)

)n−2
ds < 1

4ε for a large n, it follows that the right hand side in (64) is

smaller than 3
4ε, and (64) is satisfied.
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C Proof of Proposition 4

Let x = (x1, ..., xn), X = (X1, ..., Xn), and given a sequence of reserve prices (increasing or

decreasing) and an equilibrium for sequential second price auctions, for i = 1, ..., n we use qi(x)

to denote the probability that bidder i wins an object (either in stage one or in stage two)

in that equilibrium, given the profile x of values. Moreover, in each equilibrium described by

Propositions 1 and 2 the expected payoff of each bidder with value 0 is equal to zero, therefore

arguing as in Myerson (1981) we find that the sellers’ total payoff is given by

π = E [ϕ(X1)q1(X) + · · ·+ ϕ(Xn)qn(X)]− rPr{the object with reserve price r is sold} (65)

We have introduced in the main text the order statistics. Here we introduce y = (y1, . . . , yn),

Y = (Y1, . . . , Yn), and the joint density of Y is

fY(y1, . . . , yn) =

{
n!f(y1)f(y2) · · · f(yn) if y1 ≥ y2 ≥ · · · ≥ yn

0 otherwise
(66)

In case of increasing reserve prices, that is r1 = 0, r2 = r, let πirp denote the profit in (65)

given q1, ..., qn,Pr{the object with reserve price r is sold} resulting from the equilibrium described

by Proposition 1. Neglecting ties, that are zero probability events, for each bidder i we have

that qi(x) = 1 if xi = y1 or xi = y2 ≥ r, otherwise qi(x) = 0. This reveals that πirp is equal to

the expectation of the following function θirp:

θirp(y) =

ϕ(y1) if y2 < r

ϕ(y1) + ϕ(y2)− r if r ≤ y2
(67)

Likewise, if reserve prices are decreasing (that is r1 = r, r2 = 0), we denote the profit in (65)

as π̄drp, or π̂drp, or π̃drp depending on which case of Proposition 2 applies, and in each of these

cases the profit can be written as the expectation of a suitable function of y:

• If r̄1 ≤ r, then π̄drp = E[θ̄drp(Y)] with

θ̄drp(y) = ϕ(y1) (68)

• If r̃1 ≤ r < r̄1, then π̂drp = E[θ̂drp(Y)] with

θ̂drp(y) =


ϕ(y1) if y1 < γ

ϕ(y1) + ϕ(y2)− r if y3 < γ ≤ y1

ϕ(y1) +
2
mϕ(y2) +

1
mϕ(y3) + · · ·+ 1

mϕ(ym)− r if ym+1 < γ ≤ ym, m ≥ 3
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• If r < r̃1, then π̃drp = E[θ̃drp(Y)] with

θ̃drp(y) =


ϕ(y1) if y1 < γ

ϕ(y1) + ϕ(y2)− r if y3 < γ < y1 ≤ λ, or λ < y1

ϕ(y1) +
2
mϕ(y2) +

1
mϕ(y3) + · · ·+ 1

mϕ(ym)− r if ym+1 < γ ≤ ym ≤ y1 ≤ λ, m ≥ 3

Notice that the last line in θ̂drp and the last line in θ̃drp take into account that in stage one

the winner is selected randomly when Proposition 2 (i)-(ii) applies and at least two bidders have

values in [γ, x̄] (for θ̂drp) or in [γ, λ] (for θ̃drp).

C.1 Proof of Proposition 4(i)

From (67) and (68) we see that

θirp(y)− θ̄drp(y) =

0 if y2 < r

ϕ(y2)− r if r ≤ y2

that is θirp and θ̄drp differ only when y2 ≥ r. From (66) it follows that the density of Y2 is

f2(y2) = n(n− 1)f(y2)[1− F (y2)]F
n−2(y2), hence

∆̄(r) ≡ πirp− π̄drp = E[θirp(Y)− θ̄drp(Y)] =

∫ 1

r
(ϕ(y2)−r)n(n−1)f(y2)[1−F (y2)]F

n−2(y2)dy2

(69)

with ∆̄(1) = 0, and

∆̄′(r) = (n− 1)2Fn(r)− n(2n− 3)Fn−1(r) + n(n− 1)Fn−2(r)− 1

∆̄′′(r) = n(n− 1)2Fn−3(r)f(r)[1− F (r)]

[
n− 2

n− 1
− F (r)

]
with ∆̄′(1) = 0. We let r′ be such that F (r′) = n−2

n−1 , and distinguish the case of r′ ≤ r̄1 from

the case of r̄1 < r′.

In the first case we have ∆̄′′(r) < 0 for each r ∈ (r̄1, 1), therefore ∆̄′ is strictly decreasing in

[r̄1, 1], and since ∆̄′(1) = 0 it follows that ∆̄′(r) > 0 for each r ∈ (r̄1, 1). Then, from ∆̄(1) = 0

we conclude that ∆̄(r) < 0 for each r ∈ [r̄1, 1).

In the second case we have ∆̄′′(r) > 0 for r ∈ (r̄1, r
′) and ∆̄′′(r) < 0 for r ∈ (r′, 1), therefore ∆̄′

is strictly increasing in (r̄1, r
′), is strictly decreasing in (r′, 1). Since ∆̄′(1) = 0, it follows that

∆̄′ is positive in an interval (r′′, x̄) such that r′′ < r′ and r′′ may be equal to r̄1; if r
′′ = r̄1 holds,

then we conclude that ∆̄(r) < 0 for each r ∈ [r̄1, 1), as in the first case. Conversely, if r̄1 < r′′,

then ∆̄′(r) < 0 in (r̄1, r
′′), ∆̄′(r) > 0 in (r′′, x̄). Since ∆̄(1) = 0, it follows that ∆̄(r) is negative

in an interval (r′′′, 1) such that r′′′ < r′′ and r′′′ may be equal to r̄1. In any case, if ∆̄(r̄1) ≤ 0

then ∆̄(r) < 0 for each r ∈ (r̄1, 1).
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C.2 Proof of (19)

For each r ∈ (0, 1), πr
irp = E[max{Y3 − r, 0}]. We show that for each r ∈ (0, 1), πr

drp < πr
irp

holds.

This is clearly true when πr
drp = 0, which happens for all r ≥ r̃1 (under drp, in fact, no

bidder bids at stage one for r ≥ r̄1, and no bidder bids more than r for r ∈ [r̃1, r̄1)) and for

r ∈ (0, r̃1) if y2 ≤ λ (here again the second largest bid does not exceed r).

Finally, when r ∈ (0, r̃1) and y2 > λ, we have that the profits under drp are given by

βn−1,0(y2)− r. From (20) we can derive the following equality

βn−1,0(y2)− r = E(Y3 − r|Y2 = y2) < E(max{Y3 − r, 0}|Y2 = y2)

while the inequality follows because when y2 > λ we have that Y3 is smaller than r with positive

probability. Therefore πr
drp < πr

irp also if r ∈ (0, r̃1).

C.3 Proof of Proposition 4(ii)

Given (19), here it suffices to show that π0
irp > π0

drp. In order to do this, we denote with ω(y2)

the expected difference in profit (from the sale of the object with zero reserve price) between

irp and drp given Y2 = y2: hence π0
irp − π0

drp =
∫ 1
0 ω(y2)f2(y2)dy2. It is useful to distinguish

between the following cases: y2 ∈ (0, r], y2 ∈ (r, λ], and y2 > λ and write∫ 1

0
ω(y2)f2(y2)dy2 =

∫ r

0
ω(y2)f2(y2)dy2 +

∫ λ

r
ω(y2)f2(y2)dy2 +

∫ 1

λ
ω(y2)f2(y2)dy2

Steps 2-4 below imply that
∫ 1
0 ω(y2)f2(y2)dy2 > 0 for r close to zero, but first we need to prove a

property of λ. For the rest of this proof we define f ≡ minx∈[0,1] f(x) > 0, f̄ ≡ maxx∈[0,1] f(x) ≥
f .

Step 1: There exists a ξ > 1 such that λ < ξr when r is close to zero

We can verify that B in (52) is strictly decreasing in both variables and from the proof of

Proposition 2 (Step 2.3) we know that there exists a solution γ, λ to (50) such that r < γ < λ

exists. We now prove that B(r, ξr) < 0 for a suitable ξ > 1, and this implies that B(γ, z) < 0

for each γ ≥ r and for each z ≥ ξr; therefore λ < ξr. We have that

B(r, z) =
n(n− 1)

2

∫ r

0
Fn−2(s)ds−M(F (z), F (r))(z − r) +

∫ z

r
M(F (s), F (r))ds

with B(r, r) = n(n−1)
2

∫ r
0 Fn−2(s)ds > 0 and B2(r, z) = −M1(F (z), F (r))f(z)(z− r) < 0. Hence,

B(r, z) =
n(n− 1)

2

∫ r

0
Fn−2(s)ds−

∫ z

r
M1(F (s), F (r))f(s)(s− r)ds
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and

M1(F (s), F (r)) = (n− 1)(n− 2)Fn−3(s) + (n− 2)(n− 3)Fn−4(s)F (r) + ...+ 2Fn−3(r)

= Fn−3(r)

(
(n− 1)(n− 2)

(
F (s)

F (r)

)n−3

+ (n− 2)(n− 3)

(
F (s)

F (r)

)n−4

+ ...+ 2

)

≥ Fn−3(r)

n−2∑
j=1

j(j + 1) =
n(n− 1)(n− 2)

3
Fn−3(r)

where the inequality follows because s ≥ r. Since

F (r) =

∫ r

0
f(s)ds ≤

∫ r

0
f̄ds = rf̄ (70)

we have that

B(r, z) <
n(n− 1)

2
rFn−2(r)− n(n− 1)(n− 2)

3
Fn−3(r)f

∫ z

r
(s− r)ds

<
n(n− 1)

2
Fn−3(r)

(
r2f̄ − n− 2

3
f(z − r)2

)

and the right hand side is equal to zero if z = ξr, with ξ = 1 +

√
3f̄

(n−2)f .

Step 2:
∫ r
0 ω(y2)f2(y2)dy2 > 0

Given y2 ∈ (0, r], we find that the profit under irp is y2, whereas the profit under drp is y3 if

y1 ≥ γ, or y2 if y1 < γ; this implies that ω(y2) = E[(y2 − Y3)1{Y1≥γ}|Y2 = y2] > 0 for y2 ≤ r,

hence
∫ r
0 ω(y2)f2(y2)dy2 > 0.

Step 3:
∫ λ
r ω(y2)f2(y2)dy2 > −η1r

n for a suitable η1 > 0

Given y2 ∈ (r, λ], we find that the profit under irp is βn−1,0(y2), whereas the profit under drp

is y3 (if at stage one the highest or the second highest value bidder wins), or y2 (if at stage one

the highest or the second highest value bidder does not win). Therefore the profit difference is

necessarily larger than βn−1,0(r)−λ = r−λ > −(ξ−1)r. As a result,
∫ λ
r ω(y2)f2(y2)dy2 > −(ξ−

1)r
∫ λ
r f2(y2)dy2. Now observe that

∫ λ
r f2(y2)dy2 <

∫ λ
r n(n − 1)f̄n−1yn−2

2 dy2 < n(f̄ ξ)n−1rn−1,

where the first inequality follows again from (70). The result is then obtained once we let

η1 = (ξ − 1)n(f̄ ξ)n−1.

Step 4:
∫ 1
λ ω(y2)f2(y2)dy2 ≥ η2r

n−1 for a suitable η2 > 0

Given y2 > λ, we have described in the main text (see page 16) that ω(y2) =
∫ r
0 Fn−2(s)ds

Fn−2(y2)
, and∫ 1

λ ω(y2)f2(y2)dy2 = n(n−1)(1−Λ)2

2

∫ r
0 Fn−2(s)ds ≥ n(n−1)(1−Λ)2

2

∫ r
0 (fs)

n−2ds = η2r
n−1 where the
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inequality follows by using the logic in (70) and using f instead, and by letting η2 =
n(1−Λ)2fn−2

2 .

C.4 Proof of Proposition 4(iii)

When the values are uniformly distributed, we know that r̄1 = n−1
n and we can verify that

ϕ(x) = 2x− 1 is an increasing function.

C.4.1 Case of r̄1 ≤ r

For each n ≥ 3 we prove that ∆̄(r̄1) < 0, and then Proposition 4(i) implies that ∆̄(r) < 0 for

each r ∈ (r̄1, 1). From (69) we find

∆̄(r̄1) =
8n2 − 7n+ 1

n (n2 − 1)

[(
1− 1

n

)n

− 3n2 − 4n+ 1

8n2 − 7n+ 1

]
and (1− 1

n)
n − 3n2−4n+1

8n2−7n+1
is equal to − 4

351 < 0 for n = 3, is equal to − 267
25 856 < 0 for n = 4. We

now prove that (1− 1
n)

n − 3n2−4n+1
8n2−7n+1

< 0 for each n ≥ 5, which implies ∆(r̄1) < 0. We have that

(
1− 1

n

)n

=
n∑

k=0

Cn,k

(
− 1

n

)k

= 1− 1 +
4∑

k=2

Cn,k

(
− 1

n

)k

+
n∑

k=5

Cn,k

(
− 1

n

)k

Now consider the case of n even, because when n is odd the last term in the sum above is

negative and so makes our point easier. We have that

n∑
k=5

Cn,k

(
− 1

n

)k

=

(n−2)/2∑
k=2

(
−Cn,2k+1

1

n2k+1
+ Cn,2k+2

1

n2k+2

)

and

−Cn,2k+1
1

n2k+1
+ Cn,2k+2

1

n2k+2
= −

(2k + 1)Cn+1,2k+2

n2k+2
< 0

for k = 2, ..., n−2
2 . Therefore

(
1− 1

n

)n

<

4∑
k=2

Cn,k

(
− 1

n

)k

=
(n− 1)

(
3n2 + n+ 2

)
8n3

Last,

(n− 1)
(
3n2 + n+ 2

)
8n3

− 3n2 − 4n+ 1

8n2 − 7n+ 1
= − (n− 1)

n (n− 1) (5n− 7) + 6n− 2

8n3(8n2 − 7n+ 1)
< 0
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C.4.2 Case of 0 < r < r̃1

When r < r̃1, recall that γ and λ are solutions of (50), and from Subsection 3.4 we know that

γ = cγr, λ = cλr. Moreover we have that:

θirp(y)−θ̃drp(y) =



0 if y1 < γ and y2 < r, or y3 < γ ≤ y1 ≤ λ, or λ < y1

ϕ(y2)− r if r ≤ y2 ≤ y1 < γ

r − ϕ(y2) if y2 < r < γ ≤ y1
m−2
m ϕ(y2)− 1

mϕ(y3)− · · · − 1
mϕ(ym) if ym+1 < γ ≤ ym ≤ y1 ≤ λ, m ≥ 3

(71)

Since ϕ is increasing, it follows that m−2
m ϕ(y2)− 1

mϕ(y3)− · · · − 1
mϕ(ym) ≥ 0. Therefore ∆̃(r) ≡

πirp − π̃drp = E[θirp(Y)− θ̃drp(Y)] is such that

∆̃(r) ≥
∫ γ

r

∫ γ

y2

(ϕ(y2)− r)f1,2(y1, y2)dy1dy2 +

∫ r

0

∫ 1

γ
(r − ϕ(y2))f1,2(y1, y2)dy1dy2

= n(n− 1)

(∫ cγr

r
(2y2 − 1− r) (cγr − y2)y

n−2
2 dy2 + (1− cγr)

∫ r

0
(r − 2y2 + 1) yn−2

2 dy2

)
= rn−1W (cγ , r)

in which f1,2(y1, y2) = n(n− 1)yn−2
2 is the joint density of Y1, Y2, obtained from (66), and

W (cγ , r) ≡ n− (2n− 3 + cnγ)r +
(n− 1)2 + (2cγ(n− 1)− n− 1)cnγ

n+ 1
r2

From the proof of Proposition 2(i) (Step 2.3), we know that the function B defined in (52) is

strictly decreasing in both its variables. Therefore if z∗ is the unique solution to B(z, z) = 0,

then γ, λ solutions to (50) are such that γ < z∗ < λ. The equation B(z, z) = 0 is equivalent to
n(n−1)

2

∫ z
0 sn−2ds− n(n−1)

2 zn−2(z − r) = 0, hence z∗ = n−1
n−2r and cγ < n−1

n−2 < cλ, r̃1 =
1
cλ

< n−2
n−1 .

Step 1: W is strictly decreasing with respect to its first variable. Therefore,

W (cγ, r) > W (n−1
n−2

, r). We have thatW1(cγ , r) = cn−1
γ r (2cγr(n− 1)− n− nr), and 2cγr(n−

1)− n− nr < 2n−1
n−2

n−2
n−1(n− 1)− n− nn−2

n−1 = −n−2
n−1 < 0 since cγ < n−1

n−2 and r < n−2
n−1 .

Step 2: For each n ≥ 4 we have W (n−1
n−2

, r) > 0 for each r ≤ 5n−12
5n−5

. We find that

W (n−1
n−2 ,

5n−12
5n−5 ) > 0 for each n ≥ 4 since

W
(
n−1
n−2 ,

5n−12
5n−5

)
=

(5n− 12) (17n2 − 61n+ 58)

25 (n+ 1) (n− 2) (n− 1)2

(
2 (127n− 162) (n− 1) (n− 2)

(5n− 12) (17n2 − 61n+ 58)
−
(
n− 1

n− 2

)n)

42



and, therefore, W (n−1
n−2 ,

5n−12
5n−5 ) =

344
1125 > 0 for n = 4, while for n ≥ 5 we have that

2 (127n− 162) (n− 1) (n− 2)

(5n− 12) (17n2 − 61n+ 58)
−
(
n− 1

n− 2

)n

>
2 (127n− 162) (n− 1) (n− 2)

(5n− 12) (17n2 − 61n+ 58)
−275

100

(
n− 1

n− 2

)2

=

(n− 1)
((
(27n− 8)2 + 5534

)
(n− 5)2 + 23 742(n− 5) + 3168

)
36 (5n− 12) (17n2 − 61n+ 58) (n− 2)2

> 0

Moreover, W (n−1
n−2 , 1) = − 2(n−3)

(n+1)(n−2)

((
n−1
n−2

)n
− 2− 2

n−3

)
is negative for each n ≥ 4. Since

W (n−1
n−2 , r) is a convex quadratic function of r, it follows that W (n−1

n−2 , r) > 0 for each r ∈
(0, 5n−12

5n−5 ].

Step 3: ∆̃(r) > 0 for each r ≤ min{5n−12
5n−5

, r̃1}. If r̃1 ≤ 5n−12
5n−5 , then Steps 1 and 2 establish

that W (cγ , r) > W (n−1
n−2 , r̃1) > 0 for each r ∈ (0, r̃1). If r̃1 >

5n−12
5n−5 , then Steps 1 and 2 establish

that W (cγ , r) > W (n−1
n−2 ,

5n−12
5n−5 ) > 0 for each r ∈ (0, 5n−12

5n−5 ).

C.4.3 Case of n = 3

Given n = 3, we computed (see Table 1) r̃1 = 2
√
3− 3 and r̄1 =

2
3 . We have proved above that

πirp − π̃drp < 0 for each r ∈ [r̄1, 1] (for each n ≥ 3). Here we consider r ∈ (0, 23).

When r ∈ (0, 2
√
3− 3), we use (71) to find that ∆̃(r) = πirp − π̃drp is equal to∫ γ

r

∫ γ

y2

(2y2 − 1− r)6y2dy1dy2 +

∫ r

0

∫ 1

γ
(r − 2y2 + 1)6y2dy1dy2 +

∫ λ

γ

∫ y1

γ

∫ y2

γ
(
2

3
y2 −

2

3
y3)6dy3dy2dy1

=
7

6
γ4 − (r +

2

3
λ+ 1)γ3 + λ2γ2 − 2

3
λ3γ + r4 − 3r3 + 3r2 +

1

6
λ4

and we know from subsection 3.4 that γ = (1 + 1
3

√
3)r, λ = (1 + 2

3

√
3)r, hence ∆̃(r) =

r2(36
√
3+115
54 r2 − 45+10

√
3

9 r + 3) is positive for each r ∈ (0, 2
√
3− 3).

When r ∈ [2
√
3− 3, 23), in order to evaluate ∆̂(r) ≡ πirp − π̂drp = E[θirp(Y)− θ̂drp(Y)] we

use

θirp(y)− θ̂drp(y) =



0 if y1 < γ and y2 < r, or y3 < γ ≤ y1 and r ≤ y2

ϕ(y2)− r if r ≤ y2 ≤ y1 < γ

r − ϕ(y2) if γ ≤ y1 and y2 < r

1
3ϕ(y2)−

1
3ϕ(y3) if γ ≤ y3
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Figure 3: Plot of ∆̂(r) when n = 3 and r ∈ (2
√
3− 3, 2/3).

Therefore

∆̂(r) =

∫ γ

r

∫ y1

r
(2y2 − 1− r)6y2dy2dy1 +

∫ 1

γ

∫ r

0
(r − 2y2 + 1)6y2dy2dy1

+

∫ 1

γ

∫ y1

γ

∫ y2

γ
(
2

3
y2 −

2

3
y3)6dy3dy2dy1

=
7

6
γ4 − (r +

5

3
)γ3 + γ2 − 2

3
γ + r4 − 3r3 + 3r2 +

1

6
(72)

The value of γ is determined as the unique solution in the interval (r, 1) to the equation 3γ3 −
γ2 + 2γ − 2(1 + γ + γ2)r = 0 (from (51) with λ = 1). Hence we find

γ =
1

9
(2r + 1) +

1

9

3

√
8r3 + 66r2 + 222r − 26 + 9

√
3
√

12r4 + 112r3 + 276r2 − 126r + 23

+
4r2 + 22r − 17

9
3
√

8r3 + 66r2 + 222r − 26 + 9
√
3
√
12r4 + 112r3 + 276r2 − 126r + 23

(73)

Inserting (73) into (72) reveals that the graph of ∆̂ in the interval [2
√
3− 3, 23) is as in Figure 3,

and ∆̂(r) = 0 if and only if r = 0.641.

44



D Proof for Proposition 5

D.1 Proof of Proposition 5(i)

Consider r1 ∈ (r2, r̃1), and let γ, λ be the unique solution to (15)-(16). Here we prove that the

following bidding functions constitute an equilibrium:14

b̃
(1)
F (x) =


no bid if x ∈ [x, γ)

r1 if x ∈ [γ, λ]∫ x
x

max{r1,b̃(1)S (s)}dFn−1(s)

Fn−1(x)
if x ∈ (λ, x̄]

(74)

b̃
(2)
F (x|no, no) =

βn,r2(x) if x ∈ [r2, γ)

βn,r2(γ) if x ∈ [γ, x̄]
(75)

b̃
(2)
F (x|no, r1) =


βn−1,r2(x) if x ∈ [r2, γ)

b̃
(2)
F (ỹ(x)|r1, r1) such that ỹ(x) is in

argmaxy∈[γ,λ](x− b̃
(2)
F (y|r1, r1))G̃(y|no, r1)

if x ∈ [γ, x̄]
(76)

b̃
(2)
F (x|r1, r1) =


βn−1,r2(x) if x ∈ [r2, γ)
βn−1,r2 (γ)G̃(γ|r1,r1)+

∫ x
γ sg̃(s|r1,r1)ds

G̃(x|r1,r1)
if x ∈ [γ, λ]

βn−1,r2 (γ)G̃(γ|r1,r1)+
∫ λ
γ sg̃(s|r1,r1)ds

G̃(λ|r1,r1)
if x ∈ (λ, x̄]

(77)

b̃
(2)
F (x|b, b̃(1)F (z)) =

βn−1,r2(x) if x ∈ [r2, z)

βn−1,r2(z) if x ∈ [z, x̄]
for each z ∈ (λ, x̄], b ≤ b̃

(1)
F (z) (78)

b̃
(2)
F (x|b, bw) =

{
βn−1,r2(x) if x ∈ [r2, x̄] for each bw > b̃

(1)
F (x̄), bw ≥ b (79)

Remark that, in light of b̃
(1)
F (x), b̃

(2)
F (x|no,no) for x ∈ [γ, x], b̃

(2)
F (x|no, r1) for x ∈ [γ, x],

b̃
(2)
F (x|r1, r1) for x /∈ [γ, λ], b̃

(2)
F (x|b, b̃(1)F (z)) for x ∈ [z, x], and b̃

(2)
F (x|b, bw) for x ∈ [x, x] re-

late to off-the-equilibrium play. Remark also that b̃
(2)
F (x|r1, r1) is constant for x ∈ (λ, x].

Step 1: Proof for stage two

In this first step we prove that for each possible outcome at stage one, the bidding specified

by (75)-(79) constitutes an equilibrium at stage two. We start by noticing that b̃
(1)
F generates

the same stage two beliefs for losing bidders as b̃
(1)
S . Precisely, by comparing (74) with (14), we

see that this property is true if bw = no, or if bw = r1; in these cases the updated beliefs are

given by (35), (36), and (45). But the property is true also if bw = b̃
(1)
F (z) for some z ∈ (λ, x̄],

14For the sake of brevity, in each bidding function relative to stage two we consider only x ≥ r2, since each type
with value smaller than r2 does not bid at stage two, regardless of the outcome of stage one.
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as b̃
(1)
S is strictly increasing in the interval (λ, x̄]: in this case the updated beliefs are given by

the c.d.f.

G̃(s|b, b̃(1)F (z)) =


Fn−2(s)
Fn−2(z)

if s ∈ [x, z)

1 if s ∈ [z, x̄]
for each b ≤b̃

(1)
F (z) (80)

which is essentially equivalent to (39) for each z ∈ (λ, x̄], b ≤b̃
(1)
F (z).

Regarding b̃
(2)
F (·|no,no) in (75), we can argue as for (22), and regarding b̃

(2)
F (·|b, bw) in (79)

we can argue as for (25).

In order to consider the case in which bw = r1 (the bidding functions (76) and (77)) we first

prove a stochastic dominance relation between G̃(·|r1, r1) and G̃(·|no, r1).

Step 1.1: G̃(·|r1, r1) dominates G̃(·|no, r1) in terms of the reverse hazard rate.

g̃(s|no, r1)
G̃(s|no, r1)

=
g̃(s|r1, r1)
G̃(s|r1, r1)

for s ∈ [x, γ),
g̃(s|no, r1)
G̃(s|no, r1)

<
g̃(s|r1, r1)
G̃(s|r1, r1)

for s ∈ (γ, λ]

It is immediate to verify that g̃(s|no,r1)
G̃(s|no,r1)

= g̃(s|r1,r1)
G̃(s|r1,r1)

for each s ∈ [x, γ). Now consider s ∈ (γ, λ],

and in order to prove that g̃(s|no,r1)
G̃(s|no,r1)

< g̃(s|r1,r1)
G̃(s|r1,r1)

, notice that

g̃(s|no, r1)
G̃(s|no, r1)

=
f(s)

F (s)− Γ

(n− 1)Fn−2(s)(F (s)− Γ)− (Fn−1(s)− Γn−1)

Fn−1(s)− Γn−1
,

g̃(s|r1, r1)
G̃(s|r1, r1)

=
f(s)

F (s)− Γ

n(n− 1)Fn−2(s)(F (s)− Γ)2 − 2[(n− 1)Fn(s)− nFn−1(s)Γ + Γn]

(n− 1)Fn(s)− nFn−1(s)Γ + Γn

After defining k ≡ Γ
F (s) ∈ (0, 1), we can write g̃(s|r1,r1)

G̃(s|r1,r1)
− g̃(s|no,r1)

G̃(s|no,r1)
as

f(s)

F (s)− Γ

(
n(n− 1)(1− k)2 − 2(n− 1− nk + kn)

n− 1− nk + kn
− (n− 1)(1− k)− 1 + kn−1

1− kn−1

)
and rearranging the last expression, we see that it has the same sign as

k2n−2 − (n− 1)2 kn + 2n (n− 2) kn−1 − (n− 1)2 kn−2 + 1

Remark that this is the equal to µ(k) in (56) that we know is positive for each k ∈ (0, 1).

Step 1.2: The bidding function b̃
(2)
F (·|no, r1). Consider a bidder of type x ≥ r2 who has

submitted no bid at stage one, and has learned that bw = r1. Then his beliefs on the highest

value among the other losing bidders are given by G̃(s|no, r1) in (36), and we prove that it is

optimal for him to bid b̃
(2)
F (x|no, r1) as specified in (76) if he expects each other losing bidder

with value in [r2, γ) to bid according to b̃
(2)
F (·|no, r1), and each other losing bidder with value in
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[γ, λ] to bid according to b̃
(2)
F (·|r1, r1) in (77).15

In detail, we formulate his bidding problem as the problem of selecting optimally y ∈ [r2, λ],

with the interpretation that choosing y ∈ [r2, γ) is equivalent to bidding b̃
(2)
F (y|no, r1), and

choosing y ∈ [γ, λ] is equivalent to bidding b̃
(2)
F (y|r1, r1). Therefore, for this type of bidder the

stage two payoff is

ũ
(2)
F (x, y|no, r1) =

(x− b̃
(2)
F (y|no, r1))G̃(y|no, r1) if y ∈ [r2, γ)

(x− b̃
(2)
F (y|r1, r1))G̃(y|no, r1) if y ∈ [γ, λ]

and

∂ũ
(2)
F (x, y|no, r1)

∂y
=


G̃(y|no, r1)

(
−∂b̃

(2)
F (y|no,r1)

∂y + (x− b̃
(2)
F (y|no, r1)) g̃(y|no,r1)

G̃(y|no,r1)

)
if y ∈ [r2, γ)

G̃(y|no, r1)
(
−∂b̃

(2)
F (y|r1,r1)

∂y + (x− b̃
(2)
F (y|r1, r1)) g̃(y|no,r1)

G̃(y|no,r1)

)
if y ∈ (γ, λ]

Then notice that b̃
(2)
F (·|no, r1) and b̃

(2)
F (·|r1, r1) satisfy the following differential equations in

[r2, γ) and in (γ, λ], respectively:

∂b̃
(2)
F (y|no, r1)

∂y
= (y − b̃

(2)
F (y|no, r1))

g̃(y|no, r1)
G̃(y|no, r1)

for y ∈ [r2, γ) (81)

∂b̃
(2)
F (y|r1, r1)

∂y
= (y − b̃

(2)
F (y|r1, r1))

g̃(y|r1, r1)
G̃(y|r1, r1)

for y ∈ (γ, λ] (82)

and find that

∂ũ
(2)
F (x,y|no,r1)

∂y =

(x− y)g̃(y|no, r1) if y ∈ [r2, γ)

G̃(y|no, r1)
(
−(y − b̃

(2)
F (y|r1, r1)) g̃(y|r1,r1)

G̃(y|r1,r1)
+ (x− b̃

(2)
F (y|r1, r1)) g̃(y|no,r1)

G̃(y|no,r1)

)
if y ∈ (γ, λ]

Consider a type x ∈ [r2, γ). Then
∂ũ

(2)
F (x,y|no,r1)

∂y is positive for y ∈ [r2, x), negative for

y ∈ (x, γ), and negative also for y ∈ (γ, λ] because g̃(y|r1,r1)
G̃(y|r1,r1)

> g̃(y|no,r1)
G̃(y|no,r1)

for y ∈ (γ, λ] implies

−(y− b̃
(2)
F (y|r1, r1)) g̃(y|r1,r1)

G̃(y|r1,r1)
+(x− b̃

(2)
F (y|r1, r1)) g̃(y|no,r1)

G̃(y|no,r1)
< (x−y) g̃(y|no,r1)

G̃(y|no,r1)
< 0 given x < γ < y.

Hence the optimal y is equal to x, i.e. the optimal bid is b̃
(2)
F (x|no, r1).

Now consider a type x ∈ [γ, x̄]. Then
∂ũ

(2)
F (x,y|no,r1)

∂y > 0 for y ∈ [r2, γ), hence the optimal

y is in [γ, λ], as specified by (76). Moreover, we have seen above that
∂ũ

(2)
F (x,y|no,r1)

∂y ≤ (x −
y)g̃(y|no, r1) for y ∈ (γ, λ], hence for x = γ the optimal y is equal to γ.

Step 1.3: The bidding function b̃
(2)
F (·|r1, r1). Consider a bidder of type x ≥ r2 who has

bid r1 at stage one, and has learned that another bidder has won at stage one with a bid r1.

15In view of G̃(·|no, r1), he expects that no losing bidder has value greater than λ.
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Then his beliefs on the highest value among the other losing bidders at stage one are given

by G̃(s|r1, r1) in (45) and we prove that it is optimal for him to bid b̃
(2)
F (x|r1, r1) as specified

in (77) if he expects each other losing bidder with value in [r2, γ) to bid according to b̃
(2)
F (·|no, r1)

in (76), and each other losing bidder with value in [γ, λ] to bid according to b̃
(2)
F (·|r1, r1).16

Arguing as in the proof of Step 1.2, we can write the bidder’s payoff at stage two as a function

of y as follows:

ũ
(2)
F (x, y|r1, r1) =

(x− b̃
(2)
F (y|no, r1))G̃(y|r1, r1) if y ∈ [r2, γ)

(x− b̃
(2)
F (y|r1, r1))G̃(y|r1, r1) if y ∈ [γ, λ]

and

∂ũ
(2)
F (x, y|r1, r1)

∂y
=


G̃(y|r1, r1)

(
−∂b̃

(2)
F (y|no,r1)

∂y + (x− b̃
(2)
F (y|no, r1)) g̃(y|r1,r1)

G̃(y|r1,r1)

)
if y ∈ [r2, γ)

G̃(y|r1, r1)
(
−∂b̃

(2)
F (y|r1,r1)

∂y + (x− b̃
(2)
F (y|r1, r1)) g̃(y|r1,r1)

G̃(y|r1,r1)

)
if y ∈ (γ, λ]

Then we use (81)-(82) plus g̃(y|no,r1)
G̃(y|no,r1)

= g̃(y|r1,r1)
G̃(y|r1,r1)

for y ∈ [r2, γ) to find

∂ũ
(2)
F (x, y|r1, r1)

∂y
=

(x− y)g̃(y|r1, r1) if y ∈ [r2, γ)

(x− y)g̃(y|r1, r1) if y ∈ (γ, λ]

This reveals that the optimal y is equal to x for each x ∈ [r2, λ]; and it is equal to λ, for each

x ∈ (λ, x̄]. Hence, in either case, the optimal bid is b̃
(2)
F (x|r1, r1).

Step 1.4: The bidding function b̃
(2)
F (·|b, b̃(1)F (z)). If bw = b̃

(1)
F (z) for some z ∈ (λ, x̄], then

the beliefs of each losing bidder are given by the c.d.f. G̃(·|b, b̃(1)F (z)) in (80). Then essentially

the argument relative to b̂
(2)
F (x|no,no) in (22) applies in this case. We find that

g̃(s|b, b̃(1)F (z))

G̃(s|b, b̃(1)F (z))
=

(n− 2)f(s)

F (s)
for s ∈ (r2, z)

hence (1) reveals that the equilibrium bidding function for x ∈ [r2, z) is βn−1,r2(x), as specified

by b̃
(2)
F (·|b, b̃(1)F (z)). Finally, given bw = b̃

(1)
F (z), a type x ∈ [z, x̄] expects each other bidder to

have value smaller than z, and βn−1,r2(z) is his payoff maximizing bid, as prescribed by (78).

Step 2: Proof for stage one

Here we consider the point of view of a bidder at stage one, given (75)-(78), and prove that it is

profitable for him to bid as specified in b̃
(1)
F in (74), if he expects the other bidders to do so. For

16In view of G̃(·|r1, r1), he expects that no losing bidder has value greater than λ.
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each x and y in [x, x̄], we use ũF (x, y) to denote the total payoff of type x from bidding b̃
(1)
F (y)

in stage one, and prove that the following inequalities hold:17

for each x ∈ [r2, γ), ũF (x, x) ≥ max{ũF (x, γ), ũF (x, y)}, for each y ∈ (λ, x̄] (83)

for each x ∈ [γ, λ], ũF (x, γ) ≥ max{ũF (x, x), ũF (x, y)}, for each y ∈ (λ, x̄] (84)

for each x ∈ (λ, x̄] and y ∈ (λ, x̄], ũF (x, x) ≥ max{ũF (x, x), ũF (x, γ), ũF (x, y)} (85)

The proof of (83)-(85) is closely linked to the proof of (58)-(60). The first step consists in

using (75)-(78) to prove that

ũF (x, x) = ũS(x, x) for each x ∈ [r2, γ) (86)

ũF (x, γ) = ũS(x, γ) for each x ∈ [r2, x̄] (87)

ũF (x, y) = ũS(x, y) for each x ∈ [r2, x̄] and each y ∈ (λ, x̄] (88)

Given (58), it follows that (86)-(88) imply that (83) is satisfied. In order to prove (84)-(85), we

use (87)-(88) and then prove directly that ũF (x, γ) ≥ ũF (x, x) for x ∈ [γ, λ], and ũF (x, x) ≥
ũF (x, x) for x ∈ (λ, x̄].

Step 2.1: Proof of (86). For a type x ∈ [r2, γ), the payoff from not bidding at stage one is

equal to ũS(x, x) (see (40)) since

ũF (x, x) = Γn−1
(
x− b̃

(2)
F (x|no,no)

)
G̃(x|no,no) + (Λn−1 − Γn−1)

(
x− b̃

(2)
F (x|no, r1)

)
G̃(x|no, r1)

+

∫ x̄

λ

(
x− b̃

(2)
F (x|no, b̃(1)F (z))

)
G̃(x|no, b̃(1)F (z))dFn−1(z)

= vn(x) + (n− 1)(1− Γ)vn−1(x)

Step 2.2: Proof of (87). For a type x ∈ [r2, x̄], the payoff from bidding r1 is

ũF (x, γ) = p̃(γ)(x− r1) + p̃ℓ(x− b̃
(2)
F (x|r1, r1))G̃(x|r1, r1)

+

∫ x̄

λ
(x− b̃

(2)
F (x|r1, b̃(1)F (z)))G̃(x|r1, b̃(1)F (z))dFn−1(z)

in which p̃(γ) is the probability to win at stage one for a bidder bidding r1, and p̃ℓ is the

probability that another bidder bidding r1 wins at stage one (see (43) and (44)). Routine

17Again, it is understood that bidding more than b
(1)
F (x) is an unprofitable option for all x, since it does not

increase the probability of winning while increasing the price to pay for the object.
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manipulations reveal that

ũF (x, γ) =



p̃(γ)(x− r1) +
n−1
2 (2− Λ− Γ)vn−1(x) if x ∈ [r2, γ)

p̃(γ)(x− r1) +
n−1
2 (Λ− Γ)vn−1(γ) + (n− 1)(1− Λ)vn−1(x)

+
∫ x
γ

Λ−Γ
n M(F (s),Γ)ds if x ∈ [γ, λ]

p̃(γ)(x− r1) + p̃ℓ(x− βn−1,r2(γ)G̃(γ|r1, r1)−
∫ λ
γ sg̃(s|r1, r1)ds))

+
∫ x
λ (x− z)dFn−1(z) + (n− 1)

∫ x
λ vn−1(z)f(z)dz + (n− 1)[1− F (x)]vn−1(x) if x ∈ (λ, x̄]

From (47) it is immediate to see that ũF (x, γ) = ũS(x, γ), for x ∈ [r2, λ]. For x ∈ (λ, x̄],

the equality holds since (i) ũF (λ, γ) = ũS(λ, γ) = p̃(γ)(λ − r1) + p̃ℓ
∫ λ
γ G̃(s|r1, r1)ds + n−1

2 (Λ −
Γ)vn−1(γ)+(n−1)(1−Λ)vn−1(λ); (ii) ũF1(x, γ) = ũS1(x, γ) = Fn−1(x)+(n−1)Fn−2(x)[1−F (x)].

Step 2.3: Proof of (88). For a type x ∈ [r2, x̄], the payoff ũF (x, y) from bidding b̃
(1)
F (y), for

y ∈ (λ, x̄], is

(x− b̃
(1)
F (y))Fn−1(y) +

∫ x̄

y

(
x− b̃

(2)
F (x|b̃(1)F (y), b̃

(1)
F (z))

)
G̃(x|b̃(1)F (y), b̃

(1)
F (z))dFn−1(z)

= (x− b̃
(1)
F (y))Fn−1(y)

+


∫ x
y (x− z)dFn−1(z) + (n− 1)

∫ x
y vn−1(z)f(z)dz + (n− 1)(1− F (x))vn−1(x) if y < x

(n− 1)(1− F (y))vn−1(x) if x ≤ y

From (48) it is immediate to see that ũF (x, y) = ũS(x, y).

Step 2.4: Proof of (84). Note that (87) and (88) imply that ũF (γ, γ) = ũS(γ, γ), ũF (λ, γ) =

ũS(λ, γ) and limy↓λ ũF (x, y) = limy↓λ ũS(x, y) for x ≤ λ. Moreover, from (87)-(88) and (59), it

follows that ũF (x, γ) ≥ ũF (x, y) for each y ∈ (λ, x̄]. Below we prove that ũF (x, γ) ≥ ũF (x, x)

for x ∈ [γ, λ]. In fact, the payoff from not bidding at stage one for a type x ∈ [γ, λ] is

ũF (x, x) = Γn−1
(
x− b̃

(2)
F (x|no, no)

)
+ (Λn−1 − Γn−1) max

y∈[γ,λ]
(x− b̃

(2)
F (y|r1, r1))G̃(y|no, r1)

+

∫ x̄

λ
(x− b̃

(2)
F (x|no, b̃(1)F (z)))G̃(x|no, b̃(1)F (z))dFn−1(z)

= Γn−1 (x− βn,r2(γ)) + (Λn−1 − Γn−1) max
y∈[γ,λ]

(x− b̃
(2)
F (y|r1, r1))G̃(y|no, r1)

+ (n− 1)(1− Λ)vn−1(x)

Let ỹ(x) ∈ argmaxy∈[γ,λ](x− b̃
(2)
F (y|r1, r1))G̃(y|no, r1), and recall from the analysis in Step 1.2 of

the bidding function b̃
(2)
F (·|no, r1) that ỹ(γ) = γ, hence ũF (γ, x) = vn(γ)+(n−1)(1−Γ)vn−1(γ) =
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ũS(γ, x). Moreover, in Step 1.2 we have also proved that ỹ(x) ≤ x, therefore

ũF1(x, x) ≤ Γn−1 + (Λn−1 − Γn−1)G̃(x|no, r1) + (n− 1)(1− Λ)Fn−2(x) = ũS1(x, x)

hence ũF (x, x) ≤ ũS(x, x) ≤ ũS(x, γ) = ũF (x, γ) for each x ∈ [γ, λ] (the middle inequality

follows from (59)).

Step 2.5: Proof of (85). From (87)-(88) and (60) it follows that ũF (x, x) ≥ max{ũF (x, γ), ũF (x, y)}
for each y ∈ (λ, x̄]. Below we prove that ũF (x, x) ≥ ũF (x, x).

The payoff from not bidding at stage one is

ũF (x, x) = Γn−1
(
x− b̃

(2)
F (x|no, no)

)
+ (Λn−1 − Γn−1) max

y∈[γ,λ]
(x− b̃

(2)
F (y|r1, r1))G̃(y|no, r1)

+

∫ x̄

λ
(x− b̃

(2)
F (x|no, b̃(1)F (z)))G̃(x|no, b̃(1)F (z))dFn−1(z)

= Γn−1 (x− βn,r2(γ)) + (Λn−1 − Γn−1) max
y∈[γ,λ]

(x− b̃
(2)
F (y|r1, r1))G̃(y|no, r1)

+

∫ x

λ
(x− z)dFn−1(z) + (n− 1)

∫ x

λ
vn−1(z)f(z)dz + (n− 1)(1− F (x))vn−1(x)

Let ỹ(x) ∈ argmaxy∈[γ,λ](x − b̃
(2)
F (y|r1, r1))G̃(y|no, r1). From G̃(ỹ(x)|no, r1) ≤ 1 it follows

that ũF1(x, x) ≤ Fn−1(x) + (n − 1)Fn−2(x)[1 − F (x)], which is equal to dũF (x,x)
dx . Since

limx↓λ ũF (x, x) = ũF (λ, λ
+) = ũF (λ, γ) ≥ ũF (λ, x),

18 we conclude that ũF (x, x) ≥ ũF (x, x)

for each x ∈ (λ, x̄].

D.2 Proof of Proposition 5(ii)

The proof is largely given by the proof of Proposition 5(i), after setting λ = x̄. Precisely,

regarding stage two, in the main text we have already taken care of (22) and (25). In order

study the case in which bw = r1, we can refer to steps 1.1-1.3 in the proof of Proposition 5(i).

Regarding stage one, we use ûF (x, y) to denote the total payoff of type x from bidding b̂
(1)
F (y).

We have proved in the main text that ûS(x, x) ≥ max{ûS(x, γ), x− r1} for each x ∈ [r2, γ). We

can argue as in Step 2.2 in the proof of Proposition 5(i) to conclude that (i) ûF (x, γ) = ûS(x, γ)

for each x ∈ [γ, x̄], hence ûF (x, γ) ≥ x− r1; (ii) ûF (x, γ) ≥ ûS(x, x).

E Addendum to Step 2.3 in the proof of Proposition 2(i): Proof

that there exists a unique r1 such that ℓ(r1) = 0

In the proof of Proposition 2(i) Step 2.3 we have defined ℓ(r1) from (57) asB(γ, x̄) = n(n−1)
2 vn−1(γ)−

M(1,Γ)(x̄ − r1) +
∫ x̄
γ M(F (s),Γ)ds, in which γ is determined as the unique solution in (r1, x̄)

18The second equality follows from (16); the inequality follows from (84).
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to A(γ, λ) = 0, given λ = x̄, where A(γ, λ) is from (51). Since γ depends on r1, we use the

notation γ(r1), hence

ℓ(r1) =
n(n− 1)

2
vn−1(γ(r1))−M(1,Γ)(x̄− r1) +

∫ x̄

γ(r1)
M(F (s),Γ)ds

in which Γ = F (γ(r1)). It is enough here to prove that if r1 is such that ℓ(r1) = 0, then

ℓ′(r1) > 0 because this implies that no more than one r1 exists such that ℓ(r1) = 0. Remark we

have denoted such r1 with r̃1 in Proposition 2 and elsewhere in the paper. The derivative of ℓ

with respect to r1 is

ℓ′(r1) = M(1,Γ) +

[∫ x̄

γ(r1)
M2(F (s),Γ)ds−M2(1,Γ)(x̄− r1)

]
f(γ(r1))γ

′(r1) (89)

and if r1 satisfies ℓ(r1) = 0, then

x̄− r1 =

n(n−1)
2 vn−1(γ(r1)) +

∫ x̄
γ(r1)

M(F (s),Γ)ds

M(1,Γ)

Inserting this equality in (89) yields

ℓ′(r1) = M(1,Γ) + f(γ(r1))γ
′(r1)

∫ x̄

γ(r1)
M2(F (s),Γ)ds

− f(γ(r1))γ
′(r1)

M2(1,Γ)

M(1,Γ)

(
n(n− 1)

2
vn−1(γ(r1)) +

∫ x̄

γ(r1)
M(F (s),Γ)ds

)

Moreover, from A(γ, x̄) = 0 we obtain

γ′(r1) =
p̂(γ(r1))

Z +
(
n−1
2 vn−1(γ(r1)) + (γ(r1)− r1)

M(Γ,1)
n

)
f(γ(r1))

> 0

with p̂(γ(r1)) =
1−Γn

n(1−Γ) and Z = p̂(γ(r1))− Γn−1 − n−1
2 (1− Γ)Γn−2 > 0, hence

ℓ′(r1) =

∫ x̄

γ(r1)

(
M2(F (s),Γ)− M2(1,Γ)

M(1,Γ)
M(F (s),Γ)

)
dsf(γ(r1))γ

′(r1)

+

M(1,Γ)− M2(1,Γ)

M(1,Γ)

n(n−1)
2 vn−1(γ(r1))f(γ(r1))p̂(γ(r1))

Z +
(
n−1
2 vn−1(γ(r1)) + (γ(r1)− r1)

M(Γ,1)
n

)
f(γ(r1))


The rest of the proof consists in showing that both the terms in ℓ′(r1) are positive.
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E.1 Proof that the first term in ℓ′(r1) is positive

Here we prove that
∫ x̄
γ(r1)

(
M2(F (s),Γ)− M2(1,Γ)

M(1,Γ) M(F (s),Γ)
)
dsf(γ(r1))γ

′(r1) > 0 by showing

that M2(F (s),Γ) − M2(1,Γ)
M(1,Γ) M(F (s),Γ) > 0 for each s ∈ (γ(r1), x̄]. For the sake of brevity, we

write b instead of Γ and a instead of F (s) and prove that M2(a, b)− M2(1,b)
M(1,b) M(a, b) ≥ 0 for each

a, b such that 0 < b < a < 1. We find that

M2(a, b)−
M2(1, b)

M(1, b)
M(a, b) =

Cb(a)

b (1− b) (a− b)3 (bn − bn+ n− 1)

in which Cb is a function of a, given a fixed b in (0, 1):

Cb(a) =
(
2bn − n (n− 1) b2 + 2n (n− 2) b− (n− 1) (n− 2)

)
bn+1

+
(
(n2 + n)b2 − 2bn+1 − 2(n2 − 1)b+ n2 − n

)
bna

+n
(
(n− 1)bn+1 − (n+ 1)bn + (n+ 1)b− (n− 1)

)
b2an−1

+
(
2(n2 − 1)bn − 2(n2 − 2n)bn+1 − (n2 + n)b2 + (n− 1)(n− 2)

)
ban

+(n− 1)
(
(n− 2)bn − nbn−1 + nb− n+ 2

)
ban+1

Hence, the sign of M2(a, b)− M2(1,b)
M(1,b) M(a, b) is equal to the sign of Cb(a) and now we show that

Cb(a) > 0 for each b ∈ (0, 1), a ∈ (b, 1). First notice that Cb(b) = 0, Cb(1) = 0, and then we

prove that there exists an ā in the interval (b, 1) such that C ′
b(a) > 0 for a ∈ (b, ā), and C ′

b(a) < 0

for a ∈ (ā, 1). This implies that Cb(a) > 0 for each a ∈ (b, 1). Precisely,

C ′
b(a) =

(
(n2 + n)b2 − 2bn+1 − 2(n2 − 1)b+ n2 − n

)
bn

+(n2 − n)
(
(n− 1)bn+1 − (n+ 1)bn + (n+ 1)b− (n− 1)

)
b2an−2

+n
(
2(n2 − 1)bn − 2(n2 − 2n)bn+1 − (n2 + n)b2 + (n− 1)(n− 2)

)
ban−1

+(n2 − 1)
(
(n− 2)bn − nbn−1 + nb− n+ 2

)
ban

and C ′
b(b) = 0. Moreover,

C ′′
b (a) = n(n− 1)an−3Ĉb(a)

with

Ĉb(a) = (n− 2)
(
(n− 1)bn+1 − (n+ 1)bn + (n+ 1)b− (n− 1)

)
b2

+
(
2(n2 − 1)bn − 2(n2 − 2n)bn+1 − (n2 + n)b2 + (n− 1)(n− 2)

)
ba

+(n+ 1)
(
(n− 2)bn − nbn−1 + nb− n+ 2

)
ba2

Notice that Ĉb is a second degree concave polynomial in a, and a1 = b is a solution for

the equation Ĉb(a) = 0 since Ĉb(b) = 0. Moreover, there exists another solution a2 such that
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b < a2 < 1, given that Ĉ ′
b(b) > 0 and Ĉb(1) < 0 (precisely, a2 =

n−1
n+1

−b+bn−n−1
n+1

bn+1

1− n
n−2

b+ n
n−2

bn−1−bn
).19 This

implies C ′′
b (a) > 0 for a ∈ (b, a2), C

′′
b (a) < 0 for a ∈ (a2, 1). Therefore C ′

b is strictly increasing

for a ∈ (b, a2), is strictly decreasing for a ∈ (a2, 1). Since C ′
b(b) = 0, if follows that C ′

b(a) > 0 if

a ∈ (b, ā), for some ā between a2 and 1, and C ′
b(a) < 0 if a ∈ (ā, 1).20

E.2 Proof that the second term in ℓ′(r1) is positive

The second term in ℓ′(r1) is equal to

M2(1,Γ)
(
Z + (γ(r1)− r1)

M(Γ,1)
n f(γ(r1))

)
+
(
M2(1,Γ)− nM2(1,Γ)p̂(γ(r1))

)
n−1
2 vn−1(γ(r1))f(γ(r1))

M(1,Γ)
(
Z +

(
n−1
2 vn−1(γ(r1)) + (γ(r1)− r1)

M(Γ,1)
n

)
f(γ(r1))

)
It is immediate that the denominator and M2(1,Γ)

(
Z + (γ(r1)− r1)

M(Γ,1)
n f(γ(r1))

)
are both

positive. We here prove that M2(1,Γ)− nM2(1,Γ)p̂(γ(r1)) > 0, but we use x rather than Γ for

the sake of brevity. We obtain that M2(1, x)− nM2(1, x)p̂ = q(x)
(1−x)4

, with

q(x) = n2 − 3n+3− n(2n− 3)x+ n2x2 − nxn−1 +2(2n− 3)xn − 3nxn+1 + nx2n−1 − (n− 3)x2n

In the following of the proof we show that q(x) > 0 for each x ∈ (0, 1).

Step 1: The proof for n = 3, 4, 5

Here we write down q(x) for n = 3, 4, 5, and it is immediate that q(x) > 0 for each x ∈ (0, 1).

For n = 3, q(x) = (3 + 3x) (1− x)4. For n = 4, q(x) =
(
7 + 8x+ 6x2 − x4

)
(1− x)4. For n = 5,

q(x) =
(
13 + 17x+ 15x2 + 10x3 − 3x5 − 2x6

)
(1− x)4.

Step 2: The proof for n ≥ 6

We prove below that q′′(x) > 0 for each x ∈ (0, 1). Therefore q′ is strictly increasing in [0, 1],

and since q′(1) = 0, it follows that q′(x) < 0 for each x ∈ (0, 1). Hence, q is strictly decreasing

19The inequality Ĉ′
b(b) > 0 is equivalent to t(b) > 0, with t(b) = (n − 2)(n − 1) − 2 (n+ 1) (n− 2) b + n(n +

1)b2 − 2 (n+ 1) bn + 2 (n− 2) bn+1. We find that t′′′(b) < 0 for each b ∈ (0, 1), hence t′′ is strictly decreasing.
Since t′′(1) = 0, it follows that t′′(b) > 0 for each b ∈ (0, 1), hence t′ is strictly increasing. Since t′(1) = 0, it
follows that t′(b) < 0 for each b ∈ (0, 1), hence t is strictly decreasing. Since t(1) = 0, it follows that t(b) > 0 for
each b ∈ (0, 1).

The inequality Ĉb(1) < 0 is equivalent to t(b) > 0, with t(b) = 2n − 4 − 2 (n+ 1) b + (n + 1)nbn−1 −
2 (n+ 1) (n− 2) bn + (n − 1)(n − 2)bn+1. We find that t′′(b) > 0 for each b ∈ (0, 1) , hence t′ is strictly in-
creasing. Since t′(1) = 0, it follows that t′(b) < 0 for each b ∈ (0, 1), hence t is strictly decreasing. Since t(1) = 0,
it follows that t(b) > 0 for each b ∈ (0, 1).

20It is impossible that C′
b(a) > 0 for each a ∈ (b, 1) since Cb(b) = Cb(1).
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in [0, 1], and since q(1) = 0, it follows that q(x) > 0 for each x ∈ (0, 1). In detail, we find

q′(x) = −n(2n− 3) + 2n2x− n(n− 1)xn−2 + 2(2n− 3)nxn−1 − 3n(n+ 1)xn + n(2n− 1)x2n−2

−2n(n− 3)x2n−1

q′′(x) = 2n2 − n(n− 1)(n− 2)xn−3 + 2(2n− 3)n(n− 1)xn−2 − 3n2(n+ 1)xn−1

+n(2n− 1)(2n− 2)x2n−3 − 2n(n− 3)(2n− 1)x2n−2

Step 2.1: For each n ≥ 6, q′′(x) > 0 for each x ∈ (0, 1
2
]. For each m ≥ 6 we have

that 2m ≥ m2, that is −(12)
m ≥ − 1

m2 . Hence, for each x ∈ (0, 12 ] the following inequalities

hold: −n(n− 1)(n− 2)xn−3 ≥ −n(n− 1)(n− 2) 1
(n−3)2

, −3n2(n+ 1)xn−1 ≥ −3n2(n+ 1) 1
(n−1)2

,

−2n(n− 3)(2n− 1)x2n−2 ≥ −2n(n− 3)(2n− 1) 1
4(n−1)2

. They imply

q′′(x) > 2n2 − n(n− 1)(n− 2)

(n− 3)2
− 3n2(n+ 1)

(n− 1)2
− 2n(n− 3)(2n− 1)

4(n− 1)2

=
n

2 (n2 − 4n+ 3)2
(
(4n3 − 2n2 + 27n+ 125)(n− 5)2 + 652(n− 5) + 104

)
for each x ∈ (0, 12 ], which is positive for each n ≥ 6.

Step 2.2: For each n ≥ 6, q′′(x) > 0 for each x ∈ (1
2
, x1], with x1 = 2n2−5n+3+r

3n2+3n
and

r =
√
n4 − 8n3 + 46n2 − 36n + 9. We write q′′(x) as follows:

q′′(x) = 2n(2n− 1) (n− 1− (n− 3)x)x2n−3

+2n2 +
(
−n(n− 1)(n− 2) + 2n(2n− 3)(n− 1)x− 3n2(n+ 1)x2

)
xn−3

Then notice that 2n(2n− 1) (n− 1− (n− 3)x)x2n−3 > 0 for each x ∈ (12 , 1), and

2n2 +
(
−n(n− 1)(n− 2) + 2n(2n− 3)(n− 1)x− 3n2(n+ 1)x2

)
xn−3

> 2n2xn−3 +
(
−n(n− 1)(n− 2) + 2n(2n− 3)(n− 1)x− 3n2(n+ 1)x2

)
xn−3

= n
(
5n− n2 − 2 + 2(2n− 3)(n− 1)x− 3n(n+ 1)x2

)
xn−3

is non-negative for x between 1
2 and x1.

Step 2.3: For each n ≥ 6, q′′(x) > 0 for each x ∈ (x1, 1). Here we use the third deriva-

tive of q:

q′′′(x) = −n(n− 1)(n− 2)(n− 3)xn−4 + 2(2n− 3)n(n− 1)(n− 2)xn−3 − 3n2(n+ 1)(n− 1)xn−2

+n(2n− 1)(2n− 2)(2n− 3)x2n−4 − 2n(n− 3)(2n− 1)(2n− 2)x2n−3

= n(n− 1)xn−4h(x)
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with

h(x) = −(n−2)(n−3)+2(2n−3)(n−2)x−3n(n+1)x2+2(2n−1)(2n−3)xn−4(n−3)(2n−1)xn+1

and

h′(x) = 2(2n− 3)(n− 2)− 6n(n+ 1)x+ 2(2n− 1)(2n− 3)nxn−1 − 4(n− 3)(2n− 1)(n+ 1)xn

h′′(x) = −6n(n+ 1) + 2(2n− 1)(2n− 3)n(n− 1)xn−2 − 4(n− 3)(2n− 1)(n+ 1)nxn−1

h′′′(x) = (n− 1)(2n− 1) (2n(2n− 3)(n− 2)− 4(n− 3)(n+ 1)nx)xn−3

Step 2.3.1: For each n ≥ 6, we have that 1 − 4n−6
n2+n

< x1 < 1 − 4n−23/3
n2+n

. These

inequalities follow from simple manipulations.

Step 2.3.2: There exists x2 ∈ (x1, 1) such that h′′ is strictly increasing in (x1, x2),

h′′ is strictly decreasing in (x2, 1). It is immediate that h′′′(x) > 0 for x ∈ (x1, x2), and

h′′′(x) < 0 for x ∈ (x2, 1), with x2 =
(2n−3)(n−2)
(2n+2)(n−3) . Then, x2 −

(
1− 4n−23/3

n2+n

)
= (15n−41)2+389

90n(n+1)(n−3) > 0

implies x2 > x1.

Step 2.3.3: h′′(x1) > 0, h′′(1) = −4n(n2 − 8n + 6). From the proof of Step 2.3.2 we

know that h′′ is strictly increasing in the interval (0, x2), hence h′′(1 − 4n−6
n2+n

) < h′′(x1) (from

Step 2.3.1) and now we prove that h′′(1− 4n−6
n2+n

) > 0. Precisely,

h′′(1− 4n− 6

n2 + n
) =

2 (2n− 1) (n2 + n)2(7n2 − 27n+ 36)

(n2 − 3n+ 6)2

×
[(

1− 4n− 6

n2 + n

)n

− 3(n2 − 3n+ 6)2

(n2 + n) (2n− 1) (7n2 − 27n+ 36)

]
and h′′(6) = 14 940

343 > 0, h′′(7) = 307 852 483
4302 592 > 0, h′′(8) = 10 409 940 767

90 699 264 > 0, h′′(9) = 42 860
243 > 0. For

n ≥ 10, we notice that (1− 4n−6
n2+n

)n is a decreasing sequence such that (1− 4n−6
n2+n

)n > e−4 > 9
500

and 9
500 − 3(n2−3n+6)2

(n2+n)(2n−1)(7n2−27n+36)
= 3(2894n+199n2+42n3+27 669)(n−10)2+845616(n−10)+101 460

500n(2n−1)(n+1)(7n2−27n+36)
> 0.

Step 2.3.4: h′(x1) < 0, h′(1) = 2n2 + 2n > 0. From Steps 2.3.2 and 2.3.3 we know

that h′′(x) > 0 for x ∈ (x1, x2), hence h′ is strictly increasing in the interval [x1, x2] and

h′(x1) < h′(1− 4n−23/3
n2+n

) (from Step 2.3.1). Now we prove that h′(1− 4n−23/3
n2+n

) < 0:

h′(1− 4n− 23/3

n2 + n
) = −

2(2n2 + n− 1)
(
27n2 − 100n+ 138

)
3n2 − 9n+ 23

×
(

(3n2 − 9n+ 23)(n2 − 2n+ 17)

(2n2 + n− 1)(27n2 − 100n+ 138)
−
(
1− 4n− 23/3

n2 + n

)n)
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is negative as (i) (3n2−9n+23)(n2−2n+17)
(2n2+n−1)(27n2−100n+138)

> 21
400 for each n ≥ 6, since (3n2−9n+23)(n2−2n+17)

(2n2+n−1)(27n2−100n+138)
−

21
400 =

66(n− 701
44

)2(n−2)2+ 725 357
88

(n−2)2+23 794n+59 318

400(2n−1)(n+1)(27n2−100n+138)
> 0 ; (ii)

(
1− 4n−23/3

n2+n

)n
is a decreasing se-

quence such that 21
400 >

(
1− 4·6−23/3

62+6

)6
≥
(
1− 4n−23/3

n2+n

)n
for each n ≥ 6 .

Step 2.3.5: h(x1) < 0, h(1) = 0. From the proof of Step 2.3.3 we know that h′′(x) > 0

for x ∈ [1− 4n−6
n2+n

, x1], hence h
′(x) < h′(x1) < 0 for x ∈ [1− 4n−6

n2+n
, x1] and h is strictly decreasing

in [1− 4n−6
n2+n

, x1], thus h(1− 4n−6
n2+n

) > h(x1). Now we prove that h(1− 4n−6
n2+n

) < 0:

h(1−4n− 6

n2 + n
) = −2 (2n− 1) (11n2 − 33n+ 36)

n (n+ 1)

(
(n+ 1) (2n2 − 9n+ 18)

(2n− 1) (11n2 − 33n+ 36)
−
(
1− 4n− 6

n2 + n

)n)

is negative as (i) (n+1)(2n2−9n+18)
(2n−1)(11n2−33n+36)

− 1
12 = (n+4)((4n−15)2+279)

96(2n−1)(11n2−33n+36)
> 0; (ii)

(
1− 4n−6

n2+n

)n
is a

decreasing sequence such that 1
12 >

(
1− 4·6−6

62+6

)6
≥
(
1− 4n−6

n2+n

)n
for each n ≥ 6.

Step 2.3.6: There exists x3 between x1 and 1 such that h′(x) < 0 for x ∈ (x1, x3),

h′(x) > 0 for x ∈ (x3, 1). For n = 6, 7 we have h′′(1) > 0. From steps 2.3.2 and 2.3.3 it

follows that h′′(x) > 0 for each x ∈ (x1, 1), hence h′ is strictly increasing. Then the conclusion

follows from Step 2.3.4.

For n ≥ 8 we have h′′(1) < 0. From steps 2.3.2 and 2.3.3 it follows that there exists x4

between x2 and 1 such that h′′(x) > 0 for each x ∈ (x1, x4), h
′′(x) < 0 for each x ∈ (x4, 1).

Hence h′ is strictly increasing in (x1, x4), strictly decreasing in (x4, 1) and the conclusion follows

from Step 2.3.4.

Step 2.3.7: q′′(x) > 0 for each x ∈ (x1, 1). From Steps 2.3.5 and 2.3.6 it follows that

h(x) < 0 for each x ∈ (x1, 1), hence q′′′(x) < 0 for each x ∈ (x1, 1). Then q′′(1) = 0 implies that

q′′(x) > 0 for each x ∈ (x1, 1).
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