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1. Introduction

The notion of short-termism behavior among corporations has been widely discussed.

Practitioners of �nance and policymakers often cite short-termism as a major constraint on

value-enhancing corporate investment projects (e.g. Graham et al. 2005). Short-termism

also features prominently in public policy debates on corporate taxation.2 However, despite

the wide attention received, theoretical underpinnings for the linkage between short-termism

and corporate investment remain extremely sparse. This paper attempts to �ll in the gap

by constructing a theoretical model of corporate investment decisions under short-termism

and analyzing its associated policy implications.

In particular, we introduce hyperbolic discounting to corporate investment decisions. We

present a multi-period model under which the �rm makes an investment decision in each

period to maximize the present value of its dividend stream. The �rm invests in one project

that yields return in the �nal period. We show that a �rm exhibiting hyperbolic discounting

preferences faces an underinvestment problem, i.e. there exists another feasible investment

plan that improves all periods�present values. Therefore, Pareto-improving policies by an

outside authority, such as the government, may be justi�ed. In the second part of this paper,

we show that adopting revenue-neutral dividend taxes or investment subsidies can mitigate

the �rm�s underinvestment problem and thus increase all periods�present value of dividends.

This paper is related to a few strands of literature. First, it directly addresses the

issue of short-termism in economics. Experimental and introspective evidence have long

suggested that animal and human behavior are short-term oriented and that their discount

functions are closer to hyperbolic than exponential (Ainslie 1992; Loewenstein and Prelec

1992). Decades ago, Stroz (1956), Phelps and Pollak (1968) and Laibson (1994) have begun

to apply the theory of hyperbolic discounting to consumer�s consumption-saving decision

problems.3 Laibson (1996, 1997) further shows that consumers with hyperbolic discounting

preferences face undersaving problems, resulting in implications that explain US household

saving patterns.

In parallel, the literature in behavioral �nance has also suggested that corporate decisions

are short-term oriented, and such myopic decisions can result in suboptimal equilibrium (see

Stein 1988, 1989; Porter 1992; Bebchuk and Stole 1993; Stein 2003). These theories on

corporate short-termism have focused on agency con�icts between corporate managers and

stockholders. Corporate managers may underinvest due to pressures from boosting earnings

2For examples of these debates, see Barton and Wiseman (2014), Denning (2014), and Lazonick (2015).
Policies to address corporate short-termism have also been discussed extensively in the most recent US
presidential election debates.

3Short-term discounting has also been linked to cognitive ability (Benjamin, Brown, and Shapiro 2013).
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as re�ected in stock values. The agency view to myopia, which maintains rationality, is

distinct from the irrational managerial myopia view. The latter explains short-termism as a

form of irrational intrinsic behavior arising from time inconsistency.

As will be shown in detail, this paper�s framework is able to capture both views. Hyper-

bolic discounting can be interpreted directly as the time-inconsistent preference of investors

and managers. However, this paper also shows that �rm value under hyperbolic discounting

can be interpreted as the reduced-form version of the myopic manager�s preferences under

Stein (1989)�s agency con�ict setting. Under this agency approach, the reduced-form hy-

perbolic preferences are neither the manager nor investors�intrinsic preferences. Therefore,

when evaluating �rm value, time-consistent exponential preferences would be the relevant

criteria. This paper shows that when exponential preferences are used to assess �rm value,

then the �rm experiences a more severe underinvestment problem. This also implies that

a policy that improves all hyperbolic present values is also an improvement based on expo-

nential present value evaluation. Thus, an important feature of our model is that it could

explain corporate myopia arising from agency problems, but yet shows that even under no

agency con�icts, time inconsistency could in itself be a source of myopia that induces under-

investment. The underinvestment behavior resulting from our framework is consistent with

both theories, with di¤ering �rm valuation criteria.

The underinvestment problem in our framework arises jointly from (a) the present-biased

discounting functions and (b) the supermodularity of the return function. Supermodularity

implies that the marginal return of investment in one period is increasing in the investment

level of another period. With this property, lower investment in an earlier period raises

the incentive to decrease investment in a later period. In the earlier period, present bias

causes the �rm to pay more dividends and invest less. Subsequently, from the perspective of

the later period, the investment cutback in the early period induces the �rm to invest less

in the later period by supermodularity. Altogether, this implies that the �rm�s investment

decisions are suboptimal in terms of both periods�present values.

In terms of normative implications, this paper provides perspectives on the optimality

of dividend taxation and investment subsidies.4 Under hyperbolic preferences, dividend

taxes may increase investment and has the ability to address the underinvestment problem.5

4These two types of policies are commonly introduced to boost investment during periods of recessions.
For example, in 2003, the US Congress passed the Jobs and Growth Tax Relief and Reconciliation Act, for
which increasing investments was a justi�cation for dividend tax cuts included in the package.

5The literature on dividend taxation has debated whether dividend tax cuts exerts a signi�cant e¤ect on
investment. Some argue that if corporations �nance marginal investment through new stocks, dividend tax
cuts would increase investment (Chetty and Saez 2004; Poterba and Summers 1995). On the other hand, if
marginal investment is �nanced through retained earnings, then dividend taxes would not a¤ect investment
(Auerbach 1979; Bradford 1981).
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Speci�cally, we consider dividend taxation that are revenue-neutral, as the collected dividend

taxes are returned to the �rm with lump-sum subsidies. Even with this revenue-neutral

policy, we show that such an intervention improves the �rm�s present values in all periods.

This type of Pareto-improving multi-period taxation is distinct from Pigouvian-style lump-

sum transfers, in which taxation in the current period without taxation in other periods

inevitably lowers the �rm�s present value. Therefore, tax policies in all investment periods

are necessary for Pareto-improving investment. We also introduce an investment subsidy

policy, in which the government provides proportional investment subsidies and collects

lump-sum taxes of equal value. Under the same logic as that of dividend taxation, the

investment subsidy boosts investment as a result of lower costs.

The main analysis in this paper is based on a three-period model with general return

functions. However, we also show that the three-period model can be extended into a T -

period model (where T � 3) with the Cobb-Douglas return function. Under this stylized

framework, we show that present bias, in general, induces greater decreases in investment

the later the period. This phenomenon results from the supermodularity property - lower

earlier-period investment decreases the marginal return of later-period investment, providing

an additional incentive for the �rm to decrease investment in the later periods.

In the �nal section of this paper, we conduct a numerical analysis of our model with

the Cobb-Douglas return function and show a number of quantitative implications. For

parameter values that match historical data on the US annual real interest rate, return on

invested capital, and the project horizon of an average �rm, we show that the extent of

underinvestment resulting from present bias may be substantial. An increase in present

bias by 20-25 percent from the benchmark case of no present bias induces a reduction in

investment of up to 30-50 percent. The quantitative implications of our model are broadly

in line with that of the empirical �ndings of Asker, Farre-Mensa, and Ljungqvist (2015), and

suggest that this theoretical framework may be a useful benchmark for understanding the

impact of short-termism on investment decisions.

The rest of the paper proceeds as follows. In Section 2, we present the set-up of the

theoretical framework. In Section 3, we solve for the subgame-perfect Nash equilibrium

�rm investment levels in our model, de�ne underinvestment, and show that in equilibrium,

the �rm faces an underinvestment problem. Section 4 compares our multi-period investment

model with a consumption-savings model under hyperbolic discounting. Sections 5 and

6 consider policy solutions to the underinvestment problem. In particular, section 5 shows

that a revenue-neutral increase in dividend taxes can overcome the underinvestment problem.

Section 6 shows that investment subsidies can also achieve this purpose. Section 7 shows how

our results �t under both the irrationality and agency views of myopia. Section 8 extends the
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three-period framework to a T-period model with the Cobb-Douglas return function. Last

but not least, section 9 shows quantitative implications of the model. Section 10 concludes.

2. Three-period model

We �rst introduce a three-period model of corporate investment decisions under the

hyperbolic discounting framework. The �rm makes an investment decision in each period

to maximize the present value of dividend streams. x1 and x2 denote exogenous cash �ows

in periods 1 and 2, respectively. The �rm chooses to undertake investments of amounts i1
and i2 in periods 1 and 2. The return from investments is realized in period 3 and takes

on the function f(i1; i2). The return function satis�es the Inada conditions and is strictly

supermodular (i.e., @2f= (@i1@i2) > 0 ).6 The �rm�s dividends are denoted as d1 = x1� i1 in
period 1, d2 = x2 � i2 in period 2, and d3 = f(i1; i2) in period 3. We assume that x1 and x2
are large enough to avoid the negative dividend.

We apply the popular �; � functional form in assessing the �rm�s present values. The

present values in periods 1, 2 and 3 are given as

PV1 = d1 + �1
�
�d2 + �

2d3
�
;

PV2 = d2 + �2�d3;

and

PV3 = d3:

where �1 and �2 are hyperbolic discounting factors in periods 1 and 2, respectively; and � is

the long-term discounting factor. In the traditional hyperbolic discounting model, �1 and �2
are identical, which implies that the decision maker has the same incremental discounting rate

between today and the future periods. However, as will be shown in section 7, hyperbolic

discounting preferences can be interpreted as the reduced-form of manager�s preferences

under agency con�icts with asymmetric information. In this case, �1 and �2 would no longer

be interpreted as parameters re�ecting intrinsic irrational myopia, but rather as market-

driven myopia. In this paper, we consider both interpretations of hyperbolic discounting

preferences.

With this �; � functional form, �1 = �2 = 1 corresponds to exponential discounting, while

6The Inada conditions are that the return function is strictly increasing, continuously di¤erenciable,
f(0; i2) = 0, f(i1; 0) = 0, f(0; 0) = 0, @2f=@2i1 < 0, @2f=@2i2 < 0; lim

i1!0
@f=@i1 = 1; lim

i2!0
@f=@i2 = 1;

lim
i1!1

@f=@i1 = 0 and lim
i2!1

@f=@i2 = 0. These limiting conditions are necessary to ensure interior solutions.
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�1; �2 2 (0; 1) re�ects present bias. In other word, �1 and �2 are excess discount factors
between the current and the next period.

The use of extra discounting of present values to incorporate short-termism has been

established by corporate �nance research. This approach is grounded on vast empirical evi-

dence that shows corporate discount rates are higher than those implied by e¢ cient markets

(King 1972; Poterba and Summers 1995; Miles 1993; Haldane and Davies 2011). Recently,

Budish, Roin, and Williams (2015) de�ned a benchmark discount rate based on the real

interest rate and risk factors. They de�ned short-termism as an exponential discount rate

that is strictly greater than the benchmark discount rate. In our model, the extra discount-

ing applies only to the current and the immediate future period, which deviates from the

exponential discounting assumption.

We assume that the �rm is sophisticated, as de�ned by knowing how its preferences

change over time.7 The sophisticated �rm in period 1 knows how the �rm in period 2

makes decisions, given the period-1 decision. Therefore, the equilibrium can be derived in a

recursive way. The �rm in period 2 chooses i2 to maximize PV2, conditional on i1:

max
i2ji1

(x2 � i2) + �2�f(i2; i1): (1)

From the maximization problem (1), we have an implicit function of i2 in terms of i1,

denoted as bi2(i1). Even though in most cases, closed-form solutions for bi2(i1) do not exist,
we know that bi2(i1) is a well-de�ned and strictly increasing function due to concavity and
strict supermodularity of the return function. Thus, with bi2(i1), the sophisticated �rm
chooses i1 to maximize PV1:

max
i1
(x1 � i1) + �1�

�
x2 �bi2(i1)�+ �1�2f �bi2(i1); i1� : (2)

3. Underinvestment problem

Having presented the set-up of the model, we analyze how the myopic �rm would make

suboptimally low levels of investment in equilibrium. In other words, there exist other

investment plans that induce higher �rm values in all periods.

Mathematically, the underinvestment problem arises jointly from present-bias (�1; �2 <

1) and supermodularity of the return function (@2f=@i1@i2 > 0). Supermodularity of the

return function means that the marginal return of one period�s investment increases in the

7The behavior of present-biased agents can often be di¤erent depending on whether they are aware
(sophisticated) or unaware (naive) of their self-control problems. O�Donoghue and Rabin (1999, 2015)
carefully compare the decision and welfare di¤erences between naive and sophisticated agents.

5



other period�s investment. Consequently, this induces the choice function, bi2(i1) , to be
increasing. This implies that the �rm will have stronger (weaker) incentive to invest more if

investment level is higher (lower) in the past. With present-bias (� < 1), the �rm in period 1

will pay out higher level of dividends and, consequently, undertake lower level of investment

from the perspective of period 2. Due to the low level of period-1 investment, period-2

investment is also low because bi2(i1) is an increasing function. Therefore, low investment
levels in both periods result in an underinvestment problem.

To demonstrate the underinvestment problem, we will show the existence of an equilib-

rium that solves the two maximization problems de�ned in periods 1 and 2. Next, we show

that marginal increases in both periods�investments from the equilibrium investment level

can improve the �rm�s value in all three periods, which implies that the �rm is facing an

underinvestment problem. In the following section, we will show that there exists tax and

subsidy policies that address this issue by inducing an increase in investment and thus a rise

in the �rm�s value in all periods.

The following proposition shows that there exists an equilibrium(s) from the �rm�s max-

imization problem:

Proposition 1 There exists a subgame perfect Nash equilibrium
�
i�1;bi2(i1)� such that bi2(i1)

solves the period-2 maximization problem, conditional on i1; and i�1 solves the period-1 max-

imization problem by replacing i2 with bi2(i1).
Proof. The �rst order condition from the maximization problem (1) is

�1 + �2�f2(i1; i2) = 0: (3)

The second order condition from the maximization problem (1) is

�2�f22(i1; i2) < 0: (4)

By the �rst and second order conditions, we know that for any value of i1 > 0, there exists a

unique i2 > 0 that solves equation (3). We de�nebi2(i1), which solves the �rst order condition
in (3), such that

�1 + �2�f2
�
i1;bi2(i1)� = 0: (5)

Implicitly di¤erentiating equation (5) with respect to i1, we have

�2�f12

�
i1;bi2(i1)�+ �2�f22 �i1;bi2(i1)�bi02(i1) = 0:
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which in turn equivalently is

bi02(i1) = �f12
�
i1;bi2(i1)�

f22

�
i1;bi2(i1)� > 0: (6)

The �rm maximizes the following in period 1:

PV1 = (x1 � i1) + �1�
�
x2 �bi2(i1)�+ �1�2f �i1;bi2(i1)� :

By the Inada conditions and that bi02(i1) > 0, the optimal solution for i�1 is neither zero nor
in�nite. Because PV1

�
i1;bi2(i1)� is a smooth function of i1 , by the mean value theorem

there is an interior solution i�1 in which the �rst order condition is zero and the second order

condition is negative.8 The �rst order condition is

�1� �1�bi02(i1) + �1�2 �f1 + f2bi02(i1)� = 0: (7)

The second order condition is

�1�bi002(i1) + �1�2�f11 + 2f12bi02(i1) + f22 �bi02(i1)�2�+ �1�2f2bi002(i1) � 0: (8)

Next, we will show that the �rm�s equilibrium decision is suboptimal and the �rm expe-

riences the underinvestment problem. We de�ne the underinvestment problem as follows:

De�nition 1 At the equilibrium investment levels (i�1; i
�
2), the �rm faces the underinvestment

problem if there exists (i01; i
0
2)� 0 such that

i01 > i
�
1; i

0
2 > i

�
2;

PV 1 (i
0
1; i

0
2) > PV 1 (i

�
1; i

�
1) ;

PV 2 (i
0
1; i

0
2) > PV 2 (i

�
1; i

�
1) ;

and

PV 3 (i
0
1; i

0
2) > PV 3 (i

�
1; i

�
1) ;

8If bi2(i1) is linear, the second derivative of PV1 �i1;bi2(i1)� with respect to i1 is strictly negative globally
and, therefore, a unique solution is guaranteed. However, in general, bi2(i1) is not linear and in a special
case, there can be multiple equilibria. Even though multiple maximum equilibria exist, at the equilibrium
the �rst and second order conditions are well-de�ned by the mean value theorem.
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where

PV 1 (i1; i2) = (x1 � i1) + �1� (x2 � i2) + �1�2f (i1; i2) ;

PV 2 (i1; i2) = (x2 � i2) + �2�f (i1; i2) ;

and

PV 3 (i1; i2) = f (i1; i2) :

De�nition 1 states that the �rm has the underinvestment problem if there exists another

investment plan (i01; i
0
2) such that (a) it is strictly higher than the equilibrium investment level

(i�1; i
�
2) and (b) its associated present values are strictly higher than those of the equilibrium

investment decisions. The following proposition shows that based on De�nition 1, the �rm

has an underinvestment problem at the equilibrium:

Proposition 2 The �rm faces an underinvestment problem.

Proof: The proof of Proposition 2 will be based on the following two lemmas. Lemmas
1 and 2 investigate whether the present value functions PV 1 (i1; i2) and PV 2 (i1; i2) increase

or decrease in small variations in (i1; i2) at the equilibrium. The present value in period 3,

PV 3 (i1; i2), trivially increases in (i1; i2) :

Lemma 1 At the equilibrium investment plan (i�1; i
�
2), we have

@PV 1
@i1

< 0 and
@PV 1
@i2

> 0:

Proof of Lemma 1: Taking the partial derivative PV 1 with respect to i1 at the equi-
librium (i�1; i

�
2), we have

@PV 1
@i1

j(i1;i2)=(i�1;i�2) = �1 + �1�
2f1: (9)

From (7) and (9), we have

@PV 1
@i1

j(i1;i2)=(i�1;i�2) = �1 + �1�
2f1 = �1�bi02(i1) (1� �f2) : (10)

From (3) and (10), we have

@PV 1
@i1

j(i1;i2)=(i�1;i�2) = (�2 � 1) �1�
2bi02(i1)f2 < 0: (11)

Taking the derivative of PV 1 with respect to i2 at equilibrium (i�1; i
�
2), we have

@PV 1
@i2

j(i1;i2)=(i�1;i�2) = ��1� + �1�
2f2 = �1� (�1 + �f2) : (12)
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From (3) and (12), we have

@PV 1
@i2

j(i�1;i�2) = �1� (��2�f2 + �f2) = �1�
2 (1� �2) f2 > 0: (13)

End of Proof of Lemma 1.

Lemma 2 At the equilibrium investment plan (i�1; i
�
2), we have

@PV 2
@i1

> 0 and
@PV 2
@i2

= 0:

Proof of Lemma 2: Taking the partial derivative of PV 2 with respect to i2 at equilib-
rium (i�1; i

�
2); we have

@PV 2
@i1

j(i1;i2)=(i�1;i�2) = �2�f1 > 0: (14)

The partial derivative of PV 2 with respect to i2 is the �rst order condition (3). Therefore,

we have
@PV 2
@i2

j(i1;i2)=(i�1;i�2) = 0: (15)

End of Proof of Lemma 2.
From Lemmas 1 and 2, in a small open set around the investment equilibrium (i�1; i

�
2),

there are four di¤erent regions, as depicted in Figure 1. Region I is the area where all three

present values are higher than those associated with equilibrium investment. Furthermore,

in none of the regions is there an overinvestment situation, in which there would exist a lower

investment level that leads to Pareto-improving present values in all periods.

End of Proof of Proposition 2.

From Lemma 2, we know that i2 must be increasing in order to raise PV 2 at the equi-

librium. From Lemma 1, we know that an increase in i1 decreases PV 1 but increases PV 2.

Therefore, i2 must be increasing su¢ ciently compared to an increase in i1 for PV 1 to be

increasing. From equation (11) and (13), we have the following:

@PV 1
@i1

�i1 +
@PV 1
@i2

�i2 = di1

�
(�2 � 1) �1�2bi02(i1)f2�+ di2�2�2 (1� �1) f2 (16)

In order for (16) to be strictly positive, �i2=�i1 needs to satisfy the following inequality:

�i2
�i1

>bi02(i1) > 0 (17)
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Region I

Region II
Region III

Region IV
PV1 up

PV2 down
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PV2 up
PV3 up

PV1 down
PV2 down
PV3 down

PV1 down
PV2 up

)(̂ 12 iislope ′=

Equilibrium
investment

Investment in period 1

Investment
in period 2

Figure 1: Four regions around the equilibrium investment

Inequality (17) will be used in showing the existence of Pareto-improving tax-policies in the

following sections.

As an example in which f(i1; i2) = 20i
1=4
1 i

1=6
2 ; �1 = �2 = 0:6 and � = 0:9, the indi¤erence

curves of PV 1(i1; i2) and PV 2(i1; i2) are plotted in Figure 2.9 The surrounding region by the

two indi¤erence curves is the Pareto-superior region (Region I). The main goal of policies

that are introduced in the following two sections is to move the equilibrium investment plan

into region I in Figure 2.

4. Comparison to hyperbolic consumption-savings mod-

els

This paper applies the �; � functional form (hyperbolic discounting), which is popularized

by Laibson (1997), to �rm investment decision problems. Even though one might interpret

investment in our model as savings in the Laibson-style model, our model di¤ers from it in

two respects. The �rst is that investments generate return in the last period, while in the

Laibson-style model, savings are liquidated in the immediate next period. Secondly, in our

model, investments across two periods are supermodular (complementary-oriented), while

savings in the Laibson-style model are perfect substitutes. We show that in the consumption-

savings model with concave utility functions, savings are mathematically submodular.

9With a Cobb-Douglas return function, there exists a closed form solution for the equilibrium investment
(See section 8). In this example, we have (i�1; i

�
2) = (4:69; 3:22).
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Figure 2: Equilibrium and Pareto-superior region

The supermodularity property across di¤erent periods�investments is a natural assump-

tion, as otherwise there would be no reason to invest in both periods. Under submodularity,

the �rm would decide to invest in only one period, the one with the higher marginal return.

Therefore, the assumption that the �rm invests in multiple periods for one project, by itself,

implies that investments are supermodular. The supermodular property is widely adopted

across many areas of economics. One example is in macroeconomic growth theory between

productivity (or technology) and capital. Among models in growth theory, productivity and

capital typically take on the Cobb-Douglas form (i.e., multiplicatively separable). For ex-

ample, in the endogenous growth model developed by Romer (1986, 1990), technology can

be improved through long-term R&D investment, and capital can be accumulated through

short-term investment. In our model, i1 and i2 might be interpreted as long-term R&D

investment and short-term capital investment, respectively.10

Coming back to the consumption-savings model, it is possible to interpret d1; d2; and d3
as consumptions and i1(= s1) and i2(= s2) as savings that would be liquidated in period 3.

We can de�ne d3 = Rs1+rs2, where R is a long-term gross interest rate and r is a short-term

gross interest rate. We also interpret x1 and x2 as consumer�s exogenous income �ows. The

perfect substitution between i1 and i2 does not provide any convexity and therefore there does

not exist an interior solution if the utility function is linear. Therefore, in the consumption-

saving model we de�ne consumer�s utility function as u(dt), where u(�) is strictly increasing
and strictly concave. Then, the utility function in the third period is u(d3) = u (Rs1 + rs2),

10Examples of other papers that have been grounded on supermodularity in �rm investment settings
include Bloom, Bond, and VanReenen (2007); Dixit (1997); and Eberly and Mieghem (1997).
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which represents that the two savings are submodular, i.e., @u(d3)2= (@s1@s2) < 0. This

submodularity induces the savings choice function bs2(s1) to be decreasing, which actually
mitigates the underinvestment problem derived from hyperbolic discounting. The lower

value of s1 increases s2 by the choice function and therefore the consumer can even have an

oversavings problem in terms of s2. This stands in contrast to our model, in which the �rm

never has an overinvestment problem (all investment plans in Region I are strictly higher

than the equilibrium investment plans.)

To visualize the role of sub and super-modularity, we present a consumption-savings

example where the utility function is u(d) = ln d, the hyperbolic discount factor is �1 =

�2 = 0:6, the regular discount factor is � = 0:9, exogenous incomes are x1 = 14; x2 = 8; the

long-term interest rate is R = 1 and the short-term interest rate is r = 1. Figure 3 shows that

the choice function bs2(s1) is negatively sloped and consequently, the Pareto-superior region
is extended into the region where the period-2 investment is negative. Also, the portion of

positive investment area in Region I is smaller than that in our model.

Rather than these consumption-savings results, the �rm investment problem in our paper

has a strictly underinvestment problem due to the supermodularity property. That is, if

another investment plan brings higher �rm value in all three periods, the investment levels

of that plan must be higher than that of the equilibrium investment plan. The following

corollary addresses this issue:

Corollary 1 If PV 1 (i01; i
0
2) > PV 1 (i

�
1; i

�
1) ; PV 2 (i

0
1; i

0
2) > PV 2 (i

�
1; i

�
1) ; and PV 3 (i

0
1; i

0
2) >

PV 3 (i
�
1; i

�
1) where (i

�
1; i

�
1) is the equilibrium investment plan, it must be that i01 > i�1 and

i02 > i
�
2:

Proof. See the proof of Proposition 2.
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5. Dividend taxation

In the previous section, we have shown that myopic corporate decisions result in an

underinvestment problem. Now, we move on to policy implications and examine whether

outside authorities�intervention can improve the �rm�s value. For this normative question,

we assume that the authority has no exogenous expenditures so that the tax policy is bal-

anced. The collected amount of dividend taxes would be returned to the �rm in the form of

lump-sum subsidies. We show that even with a revenue-neutral tax policy, the �rm�s value

can be improved.

We examine the e¤ects of proportional dividend taxes on the �rm�s dividend/investment

decisions and present values. Let there be a proportional dividend tax rate � t and a lump-

sum transfer st in period t. The �rm�s budget sets are

(1 + � 1) d1 + i1 = x1 + s1;

(1 + � 2) d2 + i2 = x2 + s2;

and

d3 = f(i1; i2):

Since the government has no exogenous expenditure to �nance, its budget constraints satisfy

st = � td
�
t , where d

�
t is the equilibrium dividend in period t. The tax policies � 1 and � 2 are

fully anticipated and a¤ect both period-1 and period-2 decisions.

For the proof of the existence of Pareto-improving policies, we consider in�nitesimal

changes of two periods�tax policies at (� 1; � 2) = 0 in order to guarantee the existence of

an equilibrium. In Proposition 1, we have shown that without tax policies, there exists

an equilibrium in which the �rst and second order conditions are satis�ed. The result in

Proposition 1 also implies the existence of an equilibrium with (� 1; � 2) = 0. However, for

any strictly positive tax policy (� 1; � 2) > 0, the existence of an equilibrium is not guaranteed,

and therefore we need to focus on local analysis in which small changes in tax-policies are

considered.

Imposing dividend taxes decreases the marginal cost of investment relative to that of

dividends. Because the collected tax is returned as a lump-sum subsidy, an increase in taxes

has a substitution e¤ect but not an income e¤ect.11 The substitution e¤ect, in general,

11It may seem trivial that an increase in the dividend tax in period t causes a decrease in dividend and
increase in investment in the same period. However, our context also accounts for the ability of the tax
policy in one period to a¤ect the �rm�s decision in another period. Because of this intertemporal e¤ect,
investment is not necessarily increasing in dividend taxes in the same period. This will be shown for the
case of period-2 dividend taxation in this section.

13



decreases the level of dividend and increase the level of investment. The following lemma

shows that an increase in � 1 increase both i�1 and i
�
2.

Lemma 3 At the equilibrium of (� 1; � 2) = 0, a (�nite) increase in � 1 increases the equilib-

rium investments in both periods, that is

0 � di�1
d� 1

<1 and 0 � di�2
d� 1

<1: (18)

We also have
di�2
d� 1

=
di�1
d� 1

=bi02(i1): (19)

Proof. The present value in period 1 is

PV1 =
x1 � i1 + s1
1 + � 1

(20)

+�1�

 
x2 �bi2(i1) + s2

1 + � 2

!
+ �1�

2f
�
i1;bi2(i1)� :

The �rst order condition from (20) is

� 1

1 + � 1
� �1�

bi02(i1)
1 + � 2

+ �1�
2f1 + �1�

2f2bi02(i1) = 0: (21)

Where (� 1; � 2) = (0; 0), the �rst-order condition in (21) is equivalent to (7) in the proof of

Proposition 1. The second order condition from (21) is

��1�
bi002(i1)
1 + � 2

+ �1�
2f11 + 2�1�

2f12bi02(i1) (22)

+�1�
2f22

�bi02(i1)�2 + �1�2f2bi002(i1)
� 0:

Where (� 1; � 2) = (0; 0), the second-order condition in (22) is equivalent to (8) in the proof

of Proposition 1. Implicitly di¤erentiating (21) with respect to � 1, we have

1

(1 + � 1)
2d� 1 � �1�

bi002(i1)
1 + � 2

di1 (23)

+�1�
2f11di1 + 2�1�

2f12bi02(i1)di1
+�1�

2f22

�bi02(i1)�2 di1 + �1�2f2bi002(i1)di
= 0:

14



By equation (23) and the second order condition (22), we have

0 � di�1
d� 1

<1: (24)

By (24) and that bi02(i1) > 0, we have
0 � di�2

d� 1
<1; (25)

and
di�2
d� 1

=
di�1
d� 1

=bi02(i1): (26)

Lemma 3 shows that period-1 dividend taxation increases investment levels in both pe-

riods, and the ratio of the marginal increases of the two periods� investments is equal tobi02(i1). The increasing rate bi02(i1) implies that if only period-1 dividend taxation is imposed,
the Pareto-superior investment plan cannot be achieved (see inequality (17)). Therefore, we

also need period-2 dividend taxation. The substitution e¤ect from higher period-2 dividend

taxes can increase the choice function bi2(i1), but does not directly increase the equilibrium
period-2 investment, i�2. The change of the choice function bi2(i1) a¤ects the period-1 in-
vestment choice, and the period-1 investment choice will a¤ect the period-2 investment, i�2,

through the choice function bi2(i1). Therefore, whether the two periods�investments increase
or decrease from period-2 taxation is not a trivial question. Nevertheless, we can derive the

possible range of investment changes by period-2 taxation, which is su¢ cient to show the

existence of Pareto-improving tax policies.12

Lemma 4 At the equilibrium of (� 1; � 2) = 0, the following inequality is satis�ed:

bi02(i1) di1d� 2 < di2
d� 2

: (27)

Proof. The present value in period 2 is

PV2 =
x2 � i2 + s2
1 + � 2

+ �2�f(i1; i2): (28)

12We conjecture that depending on the elasticity of substitution between the two periods� investments,
the period-1 investment can increase or decrease from period-2 taxation. For higher values of the elasticity
of substitution, increases in period-2 taxation might decrease the period-1 investment because the increased
period-1 investment (by period-2 taxation) can substitute for period-1 investment. If the elasticity is small,
the reverse result would be expected. Further studies on this issue are necessary.
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The �rst order condition from (28) is

� 1

1 + � 2
+ �2�f2(i1; i2) = 0: (29)

Implicitly di¤erentiating (29) with respect to � 2, we have

d� 2

(1 + � 2)
2 + �2�f22(i1; i2)di2 = 0;

and, equivalently,
dbi2(i1; � 2)
d� 2

d� 2 = �
1

(1 + � 2)
2 �2�f22

> 0: (30)

The maximization problem of period-1 present value can be expressed as

max
i1;i2

PV 1(i1; i2);

subject to bi2(i1) = i2: (31)

Taking a total derivative of equation (31) with respect to � 2, we have

dbi2(i1)
d� 2

+bi02(i1) di1d� 2 = di2
d� 2

: (32)

Because dbi2(i1)
d�2

> 0 from (30), we have

bi02(i1) di1d� 2 < di2
d� 2

:

Lemma 4 indicates that period-2 taxation induces the equilibrium investment to move

above thebi2(i1) curve (i.e.,bi02(i1) di1d�2 < di2
d�2
). Inequality (27) does not imply whether period-1

and 2 investments increase or decrease. From Lemmas 3 and 4, the existence of Pareto-

improving dividends taxation policies is shown in the following proposition:

Proposition 3 There exists positive Pareto-improving proportional dividend taxes (� 1; � 2)�
0.

Proof : In the proof, we consider small changes in dividend taxes at (� 1; � 2) = 0. Because
there exists an equilibrium at (� 1; � 2) = 0, there is also an open set T � R2 such that
T includes (0; 0) and that an equilibrium exists for any (� 1; � 2) 2 T . Therefore, there
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Figure 4: Pareto-improving tax policies

still exists a unique equilibrium with small variations in (� 1; � 2). Lemma 3 indicates that

period-1 taxation induces both periods�investment to move along the bi02(i1)-line in Figure 4
(see (19) in Lemma 3). Inequality (27) in Lemma 4 implies that period-2 taxation induces

the investments in both periods to move above the bi02(i1)-line in Figure 4. Therefore, by
combining dividend taxations in both periods, the equilibrium investment can move into

the Pareto-superior region (region I). Mathematically, this means that at the equilibrium

(� 1; � 2) = (0; 0) ; there exists a positive constant a such that

bi02(i�1) < di�2
d�1
+ a

di�2
d�2

di�1
d�1
+ a

di�1
d�2

<1:

The end of Proof of Proposition 3.

Figure 5 also describes how dividend taxation policies can Pareto-improve the �rm�s

values. As an example in which f(i1; i2) = 20i
1=4
1 i

1=6
2 ; �1 = �2 = 0:6 and � = 0:9, the

equilibrium investment with (� 1; � 2) = (10%; 40%) is indicated in Figure 5. An increase

in period-1 tax can move the equilibrium point along the bi2(i1) curve. Without period-2
taxation, the period-1 taxation cannot improve the period-1 present value (the period-1

present value becomes even lower along thebi2(i1) curve). Together with period 1 and 2�s tax
policies, the equilibrium can move into the Pareto-superior region.
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Figure 5: Pareto-improving dividend taxation

6. Investment subsidy

In this section, we show that investment subsidies can also improve the �rm�s value in all

periods. As in the previous section, we assume that the outside authority adopts revenue-

neutral policies. Therefore, lump-sum taxes in the same amount of the investment subsidies

will be imposed in the same period. The �rm�s budget constraints under investment subsidies

are

d1 + (1� �1) i1 = x1 � �1;

d2 + (1� �2) i2 = x2 � �2;

and

d3 = f(i1; i2);

where �t and �t are the proportional subsidy rate and the lump sum tax in period t, re-

spectively. Since the outside authority has no exogenous expenditure to �nance, its budget

constraints satisfy �t = �ti
�
t for t = 1; 2; where i

�
t is the equilibrium investment level in period

t.

Following the same logic as the dividend-taxation case in Section 5, an increase in (�1; �2)

decreases the cost of investment relative to the cost of dividends. By the substitution e¤ect,

an increase in (�1; �2) induces higher equilibrium investment, and therefore, higher present

value.

Proposition 4 There exists positive Pareto-improving proportional investment subsidies
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Figure 6: Pareto-improving investment subsidy

(�1; �2)� 0.

Proof. We do not state the detailed proof of Proposition 4, because the same logic as
the proof of Proposition 3 applies. The increase in investment subsidies raises the cost of

dividend payout and decreases the cost of investment, which is mathematically equivalent

to the case of an increase in dividend taxation.

Figure 6 describes how investment subsidy policies can Pareto-improve the �rm�s values.

As an example in which f(i1; i2) = 20i
1=4
1 i

1=6
2 ; �1 = �2 = 0:6 and � = 0:9, the equilibrium

investment with (�1; �2) = (10%; 30%) is indicated in Figure 6.

7. Agency problems and hyperbolic discounting

One of the most popular approaches in explaining managerial myopia is agency problems

resulting from information asymmetry, under which investors and shareholders have incom-

plete information about the manager�s internal decisions. Based on Stein (1988, 1989)�s

work, under e¢ cient and rational stock markets, investors naturally infer future stock prices

based on previous dividend payouts. The manager�s preferences are assumed to be dependent

on both the �rm�s current stock price as well as on its long-term value. This provides the

manager an incentive to boost current stock prices in order to increase her utility. Grounded

on Stein�s theory, Asker, Farre-Mensa, and Ljungqvist (2015) empirically compare invest-

ment levels of publicly-listed �rms with that of private �rms. Holding �rm size, industry

characteristics, and investment opportunities constant, they show that on average, public

�rms invest 45% less than private �rms over the period 2001�2011.
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This section incorporates Stein�s (1989) agency-problem model to the multi-period in-

vestment model and shows that even when the investors and managers exhibit the typical

exponential discounted time preferences, asymmetric information would lead to an invest-

ment plan that is the same as that under hyperbolic discounted preferences. The main

premise of Stein�s theory is that investors are not able to observe the manager�s actions and

earnings directly. Since investors have incomplete information on cash �ow, they infer future

cash �ows (future earning) based on current dividend payouts. To induce higher investors�

expectation of future earnings, the manager has an incentive to increase dividend payouts

by decreasing investment. When investors have higher expectations about future earnings,

current stock price rises and subsequently the manager�s utility increases.

To incorporate Stein�s agency-problem framework to our paper, we need to de�ne cash

�ows as a random variable. Speci�cally, we assume that the cash �ow xt (the earning from

the previous project) is incomplete information to the manager and the market. For t � 2,
we have

xt = zt + "t; (33)

where zt and "t represent permanent and transitory components of earnings, respectively.

The "t�s are independent across periods with mean zero and variance �2" (= 1=h"). zt follows

a random walk: zt = zt�1 + ut, where ut are a sequence of independent mean zero normal

variates with variance �2u (= 1=hu). The manager and the market share prior beliefs about

z1. That prior is normally distributed with mean m1 and variance �
2
1(= 1=h1).

The assumptions about dividend payouts in each period are the following: d1 = x1 � i1,
and d2 = x2 � i2, and d3 = x3 + R(i1; i2). Assuming that investors are risk neutral, we

can de�ne their wealth based on exponential discounting time preferences as V1 = d1 +

�E1 [d2 + �d3] ; V2 = d2 + �E2 [d3], and V3 = d3, where E1 and E2 represent the expectations

of future earnings in periods 1 and 2, respectively.

The market price of the �rm�s stock is the investor�s expected valuation. We de�ne the

stock price in period t as the discounted sum of all dividend payouts since period t + 1.

Therefore, we have P1 = EI1
�
�d2 + �

2d3
�
and P2 = EI2 [�d3] ; where E

I
1 and E

I
2 represent the

investors�expectations in periods 1 and 2, respectively.

We also de�ne the manager�s preferences in the same way as in Stein (1989).

V M1 = E1
�
d1 + �P1 + (1� �)

�
�d2 + �

2d3
��

(34)

V M2 = E2 [d2 + �P2 + (1� �)�d3] (35)

V M3 = d3 (36)
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where Pt is the estimated stock price by investors at period t and (1� �) represents the
fraction of the manager�s stock ownership at market value. Stein (1989, p.659) proposes

several interpretations of the positive value of �. Even though managers want to hold the

stock for the longer them, they face a probability � of takeover in each period (see also Stein

1988). Another possibility is that funding requirements might force the manager to go to

the stock market and issue new stocks. Where the exogenous cash �ow is deterministic, the

dividend payouts are perfectly estimated and therefore the managers�preferences become the

same as those of the investors following exponential discounting. In other words, without

information uncertainty, there is no di¤erence across managers�preferences, stock prices, and

investors�preferences.

Even though market investors do not observe the manager�s actions, they are able to

infer them through the following observations,

o1 � x1 = d1 + i�1 and o2 � x2 = d1 + i�2; (37)

where i�1 and i
�
2 are the equilibrium investment decisions in periods 1 and 2, respectively.

As will be shown in Proposition 5, i�1 and i
�
2, are not a¤ected by these observations. This

is because the expectation of future cash �ows by the Bayesian learning process is linearly

related to current and past cash �ows (see equations (38) and (39)). This further implies

that in the �rst order conditions of the manager�s investment decisions, the observations

fo1; o2g would be cancelled out. Therefore, both the manager and the stock market know
the Nash equilibrium investment plan (i�1; i

�
2) such that the manager cannot fool the market.

Nevertheless, the manager and investors are trapped into behaving myopically because the

manager�s decision on increasing investment beyond the Nash equilibrium is recognized as

a decrease in cash �ow by investors. Stein (1989) described this situation as analogous to

the prisoner�s dilemma in the sense that the e¢ cient equilibrium is not sustained as a Nash

equilibrium.13

Through the observation of fo1; o2g, the market learns about earnings, zt. Then, the
posterior distribution of zt will remain normal and we have the following expectations:

E1[x2jo1] = E1[x3jo1] = E1[z2jo1] = (1� �1)m1 + �1o1; (38)

and

E2[x3jo1; o2] = E1[z3jo1; o2] = (1� �2)m2 + �2o2; (39)

13The main assumption in Fudenberg and Tirole (1986), Stein (1988, 1989), and Holmström (1999) is
that the manager�s internal decisions, such as investment, are not directly observable by the investors or
shareholders. Therefore, the stock market uses past and current dividend payouts to make a rational forecast
of future earnings.
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where

m2 = (1� �1)m1 + �1o1;

�1 =
h"

h1 + h"
< 1 and �2 =

(h"=hu) + �1
1 + (h"=hu) + �1

< 1: (40)

Equations (38-40) indicate that if the variance of the transitory noise is low (i.e., the

precision of h" is high), expectation of future earnings would be sensitive to the observations.

In this case, the stock price is more dependent on past dividend payouts such that the

manager will behave more myopically.

We now show that under Stein�s setting with asymmetric information, the corresponding

manager�s investment decisions are equivalent to that under hyperbolic discounted �rm value,

expressed in the following proposition:

Proposition 5 The reduced form of the manager�s maximization problem under information
asymmetry leads to equivalent investment plans as that under hyperbolic discounting time

preferences.

Proof. In period 2, the manager maximizes the following problem

max
i2ji1

(x2 � i2) + �P2 + (1� �) � (x3 +R(i1; i2)) : (41)

From the maximization problem of (41), we have the choice function bi2(i1): The choice
function is known to both the manager and the stock market (investors). In the maximization

problem, the choice function is not a¤ected by previous and future cash �ows.

The �rst-order condition of the maximization problem in (41) is

�1 + �dP2
di2

+ (1� �) �R2(i1; i2) = 0: (42)

where we have
dP2
di2

= ���2 + �R2(i1; i2); (43)

because an increase in investment results in a decrease in dividend, which consequently

results in a decrease in observation o2 (see equation (37).

From the �rst order condition (42), we have

�

1 + ���2
R(i1; i2) = 1: (44)

De�ning

�2 =
1

1 + ���2
< 1; (45)

22



the maximization problem in (41) and the �rst-order condition (42) are equivalent to those

under hyperbolic discounted time preferences.

In period 1, given the choice functionbi2(i1) , the manager has the following maximization
problem

max
i1

24 (x1 � i1) + �P1 + (1� �) � �x2 �bi2(i1)�
+(1� �) �2

�
x3 +R(i1;bi2(i1))�

35 (46)

Because we have
dP1
di1

= ���1 � �2�1 + �2R1 + �2R2bi02(i1); (47)

the �rst-order condition of (46) is

�1� �
�
� + �2

�
�1 � �bi02(i1) + �2R1 + �2R2bi02(i1) = 0:

De�ning �2 as

�2 =
1

1 + �
�
� + �2

�
�1
< 1;

we have the following �rst-order condition,

�1� �2�bi02(i1) + �2�2f1 + �2�2f2bi02(i1) = 0; (48)

which is equivalent to that of hyperbolic discounting time preferences.

Proposition 5 indicates that in the presence of the agency problem with asymmetric infor-

mation, the manager�s investment decision can be derived from hyperbolic discounting time

preferences. Speci�cally, de�ning the hyperbolic discount factors �1 = (1 + �� (1 + �)�1)
�1

and �2 = (1 + ���2)
�1, the corresponding hyperbolic discounting preferences are also able

to explain the manager�s myopic behavior under the agency problem.14

Under agency problems, the �rm�s value must be evaluated by exponential discounting,

rather than the manager�s hyperbolic reduced-form utilities. Therefore, a natural question

that arises is whether investment decisions based on hyperbolic discounting also implies

14In this �nite period model, the hyperbolic discounting factors �1 and �2 are not identical. However, in
the steady-state of an in�nite-period model described in Stein (1989) and Holmström (1999), the derived
hyperbolic discounting factors could be identical across all periods. Speci�cally, in the in�nite model, the
steady state �� is given by

�� =

�
1 +

����

1� �

�
where �� =

1

2

�p
h2"=h

2
u + 4h"=hu � hu=hu

�
:

See equation (19) in Holmström (1999) for deriving ��.
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underinvestment in term of exponential discounting preferences.15 The following lemma

shows that the equilibrium investment plan derived from hyperbolic preferences also results

in underinvestment problems based on the original exponential preferences.

Lemma 5 Assume that there are two dividend payout plans, (d�1; d
�
2; d

�
2) and (d

0
1; d

0
2; d

0
2). If

the hyperbolic discounted present values in all three periods based on (d01; d
0
2; d

0
2) is strictly

higher than those based on (d�1; d
�
2; d

�
2), then the exponential discounted present values under

the former plan is strictly higher than those under the latter plan, that is,

d01 + �d
0
2 + �

2d03 > d
�
1 + �d

�
2 + �

2d�3; (49)

and

d02 + �d
0
3 > d

�
2 + �d

�
3; (50)

Proof. We have
d01 + �1�d

0
2 + �1�

2d03 > d
�
1 + �1�d

�
2 + �1�

2d�3; (51)

d02 + �2�d
0
3 > d

�
2 + �2�d

�
3; (52)

and

d03 > d
�
3: (53)

Inequality (52) can be expressed as

d02 + �d
0
3 � (1� �2) �d03 > d�2 + �d�3 � (1� �2) �d�3: (54)

Multiplying (1� �2) in inequality (53) and adding it to inequality (54), we have

d02 + �d
0
3 > d

�
2 + �d

�
3: (55)

Inequality (51) can be expressed as

d01 + �d
0
2 + �

2d03 � (1� �1) � (d02 + �d03) (56)

> d�1 + �d
�
2 + �

2d�3 � (1� �1) � (d�2 + �d�3) :
15O�Donoghue and Rabin (1999) have argued that policy e¤ectiveness should be evaluated with unbiased

discounted values. They proposed a long-run value function from a prior perspective, in which the agent
weighs all future periods based on unbiased exponential discounting. This long-term perspective criterion is
widely used in the literature for analyzing policy implications. For policy evaluations based on the long-run
criterion, see O�Donoghue and Rabin (1999, 2003, 2006), Krusell and Smith (2002), Diamond and Koszegi
(2003) and Guo and Krause (2015). In the corporate �nance context, unbiased present value has been
interpreted as shareholders�present value, whereas biased present value refers to that of corporate managers.
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Figure 7: Pareto-superior regions with biased and unbiased present value

Multiplying (1� �1) � in inequality (55) and adding it to inequality (56), we have

d01 + �d
0
2 + �

2d03 > d
�
1 + �d

�
2 + �

2d�3:

Lemma 5 implies that if there is an underinvestment problem based on the welfare func-

tion of hyperbolic preferences, there would also be an underinvestment problem based on the

original exponential preferences.16 Speci�cally, Lemma 5 indicates that at any investment

plan, the Pareto-superior region (Region I) de�ned for the hyperbolic �rm value is smaller

than and strictly included by the Pareto-superior region de�ned for the exponential (i.e. un-

biased) �rm value. Figure 7 shows this in an example of f(i1; i2) = 12i
1=4
1 i

1=6
2 ; �1 = �2 = 0:75

and � = 0:95. The dashed curves in Figure 7 represent the indi¤erence curves of unbiased

(i.e., � = 1) present values in periods 1 and 2.Therefore, with agency problems, the �rm

su¤ers from two underinvestment problems: one is the internal decisions con�ict due to hy-

perbolic discounting time preferences (i.e., reduced form of manager�s preferences) and the

other is from the preference di¤erence between hyperbolic and exponential.

Propositions 3 and 4 show that outside authority�s policies can result in Pareto-improvement

of hyperbolic discounted values in all periods. Lemma 5 shows that the Pareto-superior region

based on exponentially discounted values includes the region based on hyperbolic discounted

values. Therefore, we can conclude that if a policy improves biased present values in all

three periods, it also improves the exponential present values. This is shown in the following

corollary:

16However, the reverse is not true. See Kang (2015).
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Corollary 2 There exist positive dividend taxes (� 1; � 2) that improve the �rm�s unbiased
values. There exist positive investment proportional subsidies (�1; �2) that improve the �rm�s

unbiased values.

Proof. Directly from Propositions 3 and 4, and Lemma 5.

8. Multi-period case with Cobb-Douglas return func-

tion

We have shown that a �rm with hyperbolic preferences faces the underinvestment prob-

lem in a three-period model. In this section, we introduce a multi-period model with Cobb-

Douglas return function under quasi-hyperbolic discounted present values.17�18 The main

purpose of this extension is to create a more realistic model with multiple investment deci-

sions and facilitate applications of our theoretical model with empirical data. We will show

that in this multi-period Cobb-Douglas setting, the �rm also faces an underinvestment prob-

lem if � < 1 (i.e. present bias). In Section 3, we have shown that the three-period model

can be reduced into a two-period maximization problem by plugging a choice function into

the original three-period model. In the same way, a four-period model can be reduced into

a three-period model with a choice function of the last-period investment, and so on. In

this section, we show that a multi-period model with Cobb-Douglas return function can be

solved in a recursive way, in which we consecutively reduce the T period model into T � 1,
T � 2, and down to a 3-period model.
This recursive approach is feasible with a Cobb-Douglas return function because the

derived return function in a reduced model is also a Cobb-Douglas function: any T -period

model (where T � 3) can be reduced into a 3-period model with another Cobb-Douglas return
function. This �preservation�property of the Cobb-Douglas return function is not satis�ed

under other return functions, such as non-Cobb-Douglas CES functions. Using the main

result of this section, we present examples showing how investment levels are changing over

time for di¤erent values of �. Finally, we will show that with Cobb-Douglas return functions,

17In a three-period model, there is no mathematical distinction between hyperbolic discounting and quasi-
hyperbolic discounting. However, over more than three periods, these two discounting concepts are dif-
ferent. Psychologists �rst proposed hyperbolic discounting, but economic theorists more frequently use
quasi-hyperbolic discounting time preferences, mainly due to computational convenience.
18The quasi-hyperbolic discounting funtions are applied in various economic models, such as the contract

design model of Dellavigna and Malmendier (2004), the repeated games model of Chade, Prokopovych and
Smith (2008), the mechansim design problems of Gilpatric (2008) and principal-agent problems with moral
hazard by Yilmaz (2013).
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present bias combined with supermodularity decrease late-period investments more than

early-period investments.

Consider the Cobb-Douglas return function in a T -period model. The return function is

given by

f (i1; i2::::; iT�1) = z
Qas
s=1 i

as
s ; (57)

where

z > 0, aj > 0 for all j 2 f1; :::; t� 1g, and
T�1P
j=1

aj < 1.

With quasi-hyperbolic discounting, proposed by Laibson (1997), the present value of period

t is de�ned as

PVt = (xt � it) + �
T�1�tP
s=1

�s (xt+s � it+s) + ��T�tf (i1; i2::::; iT�1)

where t 2 f1; 2; :::; T � 1g

and

PVt = f (i1; i2::::; iT�1) where t = T;

where xt is an exogenous cash �ow in period t. We assume that the cash �ow in each

period is large enough to avoid negative dividends. If � = 1, then (�; �) present values are

simply exponential discounting. However, � < 1 implies present-biased present values. Thus,

the �rm gives more relative weight to the period-t dividend in period t than it did in any

period prior to t. In the multi-period model, the hyperbolic discounting factor � can also be

interpreted as irrational myopia or reduced-form implication of corporate agency issues. We

assume that � is constant across time in this section, a setting that seems more applicable to

when the hyperbolic discounting factor is a result of irrational myopic preferences. However,

as mentioned in section 7, even with asymmetric information, an in�nite-period model results

in the steady-state constant ��.

With this multi-period Cobb-Douglas return function, there exists an equilibrium and

the equilibrium possesses an underinvestment problem. The following Proposition addresses

this issue:

Proposition 6 For any �nite period T � 3, there exists a unique equilibrium under a Cobb-
Douglas return function. At the equilibrium, the �rm faces an underinvestment problem.

Proof. See Appendix A.

Proposition 6 shows that for any Cobb-Douglas return function and for any �nite number

of periods, there exists an equilibrium investment plan and the equilibrium decisions possess
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an underinvestment problem if � < 1. The equilibrium investment plan can be analytically

and recursively solved from equations (71�72) in the proof of Proposition 6. In Figure 8,

we show the investment plans across di¤erent values of � in a model with 11 periods. The

example is based on the return function, f(i1; :::; i10) = 100
Q10
s=1 i

as
s where a1 = 0:1 and

at�1 = at� for t = f2; :::; 10g. The discount rate is � = 0:9.
Figure 8 clearly shows that investment is decreasing (constant) in time if � < 1 (� = 1).

In general, the existence of present bias decreases all periods�investment levels. However,

due to the supermodularity property of the return function (i.e. marginal product of one

period�s investment is positively related to the levels of other periods�investments), present

bias uneven impacts investments across di¤erent time periods. The low investment levels

from the earlier periods will decrease the marginal return of later period investments, and

thus the �rm in the later-period will have an incentive to decrease investment further. The

combination of present bias and supermodularity causes the later-period investment to be

even lower compared to earlier-period investments. On the other hand, the supermodularity

property a¤ects the earlier-period investments di¤erently. The �rm in the earlier period

knows that the low investment in the current period will decease future investments and also

knows that low future investment will decrease the marginal product of current investment.

Therefore, the supermodularity property provides the early-period �rm an incentive to de-

crease investment less intensively than in the later period. The following proposition shows

that present bias disproportionately a¤ects the later-period investment as compared to the

earlier-period investment.
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Proposition 7 For any �nite period T � 3 with a Cobb-Douglas return function satisfying
at = at�1� for all t 2 f2; :::; Tg, investment levels are strictly decreasing (constant) over time
if � < 1 (� = 1):

Proof. See Appendix B.

In Proposition 7, in order to show the investment decisions across time, we need a bench-

mark case. We consider a special case of � = 1, where investment is constant across time

in the model. The condition for the constant investment stream is �
�

@f
@it�1

�
= @f
@it
= 1, which

is the condition at = at�1� with a Cobb-Douglas return function. Then, where � = 1; the

ratio of marginal product to marginal cost is identical for all periods, and consequently equi-

librium investment levels are identical across time. If � < 1, investment is decreasing over

time, which is shown in Proposition 7.

However, the key equation in the proof of Proposition 7, equation (81), not only applies

to the Cobb-Douglas return function, but also any return function in a three-period model.

Equation (81) in the three-period model with general production functions is

�

�
@f

@i1

�
=
@f

@i2
= 1� �bi02(i1) (1� �) : (58)

In equation (58), we know that the two properties of bi02(i1) > 0 (due to supermodularity)

and � < 1 (due to present bias) induce the marginal product of period-2 investment to

be relatively higher than that of period-1 investment. The higher marginal product in

period-2 equilibrium investment implies disproportionately lower level of period-2 equilibrium

investment due to diminishing marginal product of the return function. Therefore, we can

conclude that supermodularity in general ampli�es present-bias-induced underinvestment

problems for later-stage investment decisions.

9. Quantitative implications

This section derives quantitative implications from our model by attempting to assess the

impact of short-termism on the magnitude of underinvestment, as well as how tax policies

can address this issue. We calibrate the model with the Cobb-Douglas return function.19 As

19Not only is the Cobb-Douglas return function commonly used in economics research, but it also has
a number of other important properties. First, it satis�es the limiting conditions, which implies that zero
investment in any given period would cause the project to fail, i.e., yield zero return. Secondly, the choice
of the Cobb-Douglas return function makes the model calibration more tractable, as its parameters has a
clear connection to the several major empirical data series (see equation (63)). The choice of Cobb-Douglas
function implies the value of 1 for the elasticity of substitution. While 1 is a reasonable assumption for the
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in Section 8, we assume that investment levels are constant across periods when corporate

decisions are not myopic (� = 1). Table 1 summarizes how the parameters can be calibrated

from empirical data:

Parameter Interpretation/Derivation

T � 1 = Investment period

1=� = Annual gross real interest rate

z = Productivity�PT�1
j=1 aj

��1
= Present value of return

Present value of investment = ROIC+1

at = 1
ROIC

1��
1��T�1 �

t�1

Table 1. Parameters and Calibration

The values of T and � can be directly derived from data on project investment duration

and annual real interest rate. The percentage change in investment and net present value

resulting from lower � (i.e. greater present bias) are not a¤ected by the productivity of the

Cobb-Douglas return function, denoted as z in (57). Thus, calibrating z is not necessary.

The value for
PT�1

j=1 aj can be derived from the return on invested capital (ROIC), which

is shown in the following formula. Equation (59) shows the relationship among ROIC, the

present value of investment and the present value of project return in the benchmark case

of � = 1:

ROIC + 1 =
Present value of total revenue
Present value of total investment

(59)

=
�T�1f (i1; :::; iT�1)

i1 + �i2 + :::+ �
T�2iT�1

:

Given the assumption of constant investment over time, i = i1 = i2 = ::: = iT�1, equation

(59) can be expressed as

ROIC + 1 =
�T�1

1 + � + :::+ �T�2
zia1+a2+:::+aT�1�1: (60)

From the �rst-order conditions, we have

�
�
1 + � + :::+ �T�2

�
+ (a1 + a2 + :::+ aT�1) �

T�1zia1+a2+:::+aT�1�1 = 0 (61)

elasticity of substitution based on the existing literature, further studies are needed in order to more fully
understand the elasticity of substitution for investment choices over time.
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From (60) and (61), we have

ROIC + 1 =
�PT�1

j=1 aj

��1
(62)

Since we have at = at�1� by the assumption of constant investment over time (see Proposi-

tion 7) from (62), we can derive at :

at =
1

ROIC

1� �
1� �T�2

�t�1 (63)

From (63), we know that parameters (a1; :::; aT�1) relate to data on the real interest rate,

the duration of investment, and the ROIC ratio. In the U.S., the annual real interest rate from

2006 to 2015 ranged from 1.2 to 4 percent. We choose 2 percent as the parameter value for

the real interest rate. Based on Porter (2008), the average annual return on invested capital

in the U.S. from 1992 to 2006 is 14.9 percent after corporation taxes, and, for the industries

engaged in long-term investments such as semiconductors and medical instruments, the value

for ROIC is approximately 21%. We choose the parameter value for ROIC to be 21 percent.

For investment horizons, we assume T = 6, which implies that the investment gestation

period before return realization is 5 years.20

The following table summarizes the empirical parameter choices for the calibration:

Data Choice

Investment period 5 years

Return on investment (ROIC) 21%

Annual real interest rate 2%

Table 2. Empirical parameter choices

For the values of � = 1; 0:9; 0:8; 0:7, the �gure in Figure 9 plots the �rm investment

decisions over the period of 5 years. We set investment where � = 1 to be 100% in the

graph. The graph shows that corporate investment decisions are sensitive to the degree

of short-termism. For � = 0:8 (i.e. exhibiting present bias of 20 percent relative to no

present bias), there is an approximately 45 percent reduction in investment. This would

be in line with the empirical estimates of Asker, Farre-Mensa and Ljungqvist (2015), who

conclude that short-termism, as measured by the agency gap between public and private

�rms, contributed to investment reduction of up to 45 percent during the sample period

20Even though the time horizons of speci�c projects vary across industries, in practice, a �ve-year horizon
is commonly adopted in corporate project evaluations (Jacobs and Shivdasani 2012)
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Figure 9: Short-termism and investment

2001-2011. Experimental and �eld data show the individual�s myopic parameter � is around

0:7 (see Angeletos et al. 2001 and Laibson et al. 2007).21 Even considering that the degree

of corporate myopia may di¤er from the individual�s, the value of 0:8 is not a particularly

low one. We have also conducted numerical analysis for di¤erent values of T 2 [3; 11];

ROIC 2 [1:1%; 1:6%]; and real interest rate 2 [1%; 6%]. For these parameter ranges, the
amount of investment reduction is within [30%; 65%] where � is 0.8, and within [50%; 90%]

where � is 0.7.22

The main results of our paper are that short-termism decreases investment as well as

both biased and unbiased net present values. In our model, the existence of agency prob-

lems is not necessary for the �rm to experience the underinvestment problem. This means

that even if the manager and the shareholders have aligned incentives, the underinvestment

problem would still arise as long as they share short-term oriented objectives. Nevertheless,

as shown in section 7, this framework is inclusive of the case in which agency problems exist,

a potentially more reasonable assumption based on existing corporate �nance research. The

result in Lemma 5 implies that asymmetric information between managers and investors

21This means that if a consumer equally prefers $100 (for example) t years later and $120 t+1 years later
where t � 2, the consumer would be indi¤erent between $100 today and $171 (� 120� (1=�)) a year later.
Because the consumer�s degree of myopia is not necessarily the same as that of the �rm, further research is
needed in this area.
22Numerical results show that higher values of T, higher values of ROIC, and lower values of real interest

rates cause greater reductions in investment. However, there is no analytical proof for these results. The
numerical anlaysis in this section were performed with MATLAB 9. All MATLAB codes can be downloaded
from minwook.host22.com/code/�rm_investment_hyperbolic.
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Figure 10: Short-termism and unbiased pro�ts

necessarily decreases unbiased �rm values and, therefore, decreases unbiased pro�t.23

Figure 10 shows how the unbiased pro�t decreases as � decreases, as we use the pro�t

level with � = 1 as a numeraire (100%). The graph shows that where � = 0:7 (0.8), there

would be about a 30% (14%) loss of unbiased pro�t relative to the pro�t level where � = 1.

We consider the case where the outside authority imposes a proportional dividend taxation

� in each period. Figure 11 shows how the dividend taxation policy increases the �rm�s

investment where � = 0:8. See Appendix C for the analytical derivation of investment

decision under the dividend taxation policy. Figure 12 shows how revenue-neutral dividend

taxation increases unbiased pro�t where � = 0:8. Where there is no dividend taxation i.e.,

� = 0, the pro�t loss due to short-termism under � = 0:8 is around 14%, i.e., the unbiased

pro�t with � = 0:8 is 86% of the pro�t with � = 1: The graph shows that by implementing

dividend taxation policy, the pro�t loss could be almost recovered up to 99.5%.

In this section, we have shown a benchmark calibration along with simulation results that

exemplify an average �rm for which long-term projects are part of its business operations.

Naturally, these parameters would vary across di¤erent types of industries. This evaluation

framework, however, can be �exibly adapted towards assessing underinvestment in speci�c

sectors as well as potential policies (e.g. corporate tax policies) that are industry-speci�c.

For example, our theory indicates that for investment projects with long gestation periods

(typical in the pharmaceutical industry, for instance), short-termism generates more severe

23The unbiased pro�t is the net present value in period 1 with � = 1, that is

Unbiased pro�t = � i1 � �i2 � ::::� �T�2iT�1 + �T�1f(i1; :::; iT�1)

The expression �unbiased pro�t�implies that there is an agency problem where the decision maker (man-
ager) has present-biased (i.e, � < 1) objectives, while pro�t and �rm values are evaluated based on unbiased
(i.e, � = 1) objective functions.
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Figure 11: Dividend taxation and investment where � = 0:8
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Figure 12: Dividend taxation and unbiased pro�t where � = 0:8

underinvestment problems. Bearing in mind the important heterogeneities across industries,

the quantitative results derived in the benchmark model appear to be broadly in line with

existing empirical evidence on the extent of short-termism�s e¤ect on corporate investment.

10. Conclusion

We construct a theoretical framework that incorporates hyperbolic discounting prefer-

ences into corporate investment decisions. In doing so, we rigorously establish the linkage

between short-termism and underinvestment. In our three-period framework, the �rm with

present bias makes investment decisions that result in suboptimally low levels of investment,

as de�ned by the existence of a higher-level investment plan that improves all periods�present

value of dividends.

We then conduct two policy analyses that can overcome this underinvestment problem:
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dividend taxation and investment subsidies. We show that revenue-neutral dividend taxes

and investment subsidies can correct the market distortions imposed by present bias. In

a �nite multi-period extension of the model, we demonstrate that the underinvestment in-

duced by hyperbolic discounting preferences is uneven across time. Finally, quantitative

implications based on calibration of our model suggest that the e¤ect of short-termism on

corporate investment may be substantial, consistent with recent empirical evidence. The

�rm�s underinvestment problem is more severe as time elapses. The analysis in this paper

provides theoretical underpinnings for arguments in the policy arena that advocate corporate

taxation as a method for addressing corporate short-termism.

Theories of myopia have been separately developed in two strands: 1) agency problems

in the corporate �nance literature, and 2) irrational decision-making behavior. Our paper

is able to bridge these two theories in a uni�ed framework. This paper indicates that the

two main approaches can be modeled by the same mathematical framework �hyperbolic

discounted time preferences, and that both of these theories lead to underinvestment prob-

lems. Therefore, the same types of policies can improve �rm value regardless of whether

managerial myopia is attributed to intrinsic nature or agency con�ict.

More recently, empirical and survey evidence have demonstrated that short-termism is a

prominent feature of corporations (Asker, Farre-Mensa and Ljungqvist 2015; Budish, Roin

and Williams 2015; Poterba and Summers 1995). In particular, Asker, Farre-Mensa and

Ljungqvist (2015) have directly investigated the e¤ect of short-termism on corporate in-

vestment. They argue that public �rms would invest substantially less than private �rms,

because the former are subject to short-termism arising from pressure on current share prices.

The strong ownership in private �rms, on the contrary, allows more e¤ective monitoring of

management to pursue long-term values. Consistent with their hypothesis, in a sample of

US �rms spanning 2001-2011, they show that the average annual gross �xed investment (as

scaled by total assets) is 4.1% for public �rms and 7.5% for private �rms. This implies that

short-termism may have contributed to investment reductions of up to 45 percent.

Despite these empirical evidence and the prevalent view that short-termism features im-

portantly in manager�s behavior, the theory of hyperbolic discounting has not been formally

applied to corporate decisions. This stands in contrast to the large volume of literature that

applied hyperbolic discounting preferences to consumers�decision. This paper contributes to

theories of corporate short-termism by introducing the hyperbolic discounting framework to

corporate investments, and shows that this framework can be meaningfully related to both

existing empirical evidence and theoretical approaches.

35



Appendices

A. Proof of Proposition 6

To simplify the notation, we drop the cash �ow xt in the maximization problem. Because

the exogenous cash �ows are eliminated in the �rst order conditions, they do not a¤ect the

�rm�s investment decisions. In period T �1 and for any given (i1; i2; :::; iT�2), the �rm solves
the following maximization problem:

max
iT�1jfisgT�2s=1

�iT�1 + ��f (i1; i2::::; iT�1) : (64)

From maximization problem (64), we can derive a choice function biT�1 : RT�2++ ! R++ such
that biT�1(fisgT�2s=1 ) = f��aT�1f (i1; :::; iT�2; 1)g

1
1�aT�1

:
(65)

The maximization problem in period T � 2 is given as

max
iT�2jfisgT�3s=1

�iT�2 � ��biT�1(fisgT�2s=1 ) + ��
2f
�
i1; i2::::;biT�1(fisgT�2s=1 )

�
; (66)

which is equivalent in turn, to

max
iT�2jfisgT�3s=1

�iT�2 + ��
n
�biT�1(fisgT�2s=1 ) + �f

�
i1; i2::::;biT�1(fisgT�2s=1 )

�o
: (67)

Using (65), the expression inside f�g in (67) can be expressed as

f���aT�1f (i1; :::; iT�2; 1)g
1

1�aT�1 + �f
�
i1; i2::::;biT�1(fisgT�2s=1 )

�
= � (��aT�1)

1
1�aT�1 f (i1; :::; iT�2; 1)

1
1�aT�1

+�f (i1; :::; iT�2; 1) f��aT�1f (i1; :::; iT�2; 1)g
aT�1

1�aT�1

=

�
� (��aT�1)

aT�1
1�aT�1 � (��aT�1)

1
1�aT�1

�
f (i1; :::; iT�2; 1)

1
1�aT�1 (68)

= (��aT�1)
1

1�aT�1

�
1� �aT�1
�aT�1

�
f (i1; :::; iT�2; 1)

1
1�aT�1 :

We de�ne a function f (T�2) : RT�2++ ! R++:

f (T�2)
�
fisgT�2s=1

�
= (��aT�1)

1
1�aT�1

�
1� �aT�1
�aT�1

�
f (i1; :::; iT�2; 1)

1
1�aT�1 ; (69)
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which is also a Cobb-Douglas function that is strictly increasing and strictly concave. With

the function in (69), the maximization problem in (66) can be expressed as

max
iT�2jfisgT�3s=1

�iT�2 + ��f (T�2)
�
fisgT�2s=1

�
; (70)

which is de�ned in the same way as the maximization problem of (64). Therefore, we have

the choice function biT�2, given as
biT�2 = ���a(T�2)f (T�2) (i1; :::; iT�3; 1)	 1

1�a(T�2) ; (71)

where

a(k) =
@f (k)

�
fisgks=1

�
=@ik

f (k)
�
fisgks=1

� jfi1;::;ikg=f1;:::;1g: (72)

In a recursive way, we de�ne a function f (k) : Rk++ ! R++ such that

f (k) =
�
��a(k+1)

� 1

1�a(k+1)

�
1� �a(k+1)
�a(k+1)

�
f (k+1) (i1; :::; ik; 1)

1

1�a(k+1) ; (73)

Then, the maximization problem in period k is expressed as

max
ikjfisgk�1s=1

�ik + ��f (k)
�
fisgks=1

�
: (74)

Since the function f (k) is strictly concave and strictly increasing, the maximization problem

in period k has a unique solution for any given fisgk�1s=1 . In period 1, we have a unique

solution, i�1, from the maximization problem (74) with k = 1. This unique solution is used to

get a unique solution i�2 from the maximization problem with k = 2. Repeating this process,

we have a unique investment equilibrium, fi�sgT�1s=1 .

Next, we move on to the underinvestment issue. From Proposition 2, we know that in

period T � 2, for any given (i1; i2; :::; iT�3), the equilibrium investment

(i�T�2; i
�
T�1) =

�biT�2 �fisgT�3s=1 g
�
;biT�1 �fisgT�3s=1 ;biT�2(fisgT�3s=1 g

��
(75)

is underinvestment in the sense that there is another investment plan (i0T�1; i
0
T�2), which (a)

is strictly greater than the equilibrium investment level and (b) the corresponding present

values in periods T � 2, T � 1 and T are strictly higher than those in the equilibrium. In the
maximization problem in period T � 3 and T � 2, replacing the variable iT�1 with a choice
function biT�1 �fisgT�2s=1 g

�
, we have a �derived�3-period model with Cobb-Douglas function.
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Speci�cally, in period T � 2, the maximization problem is

max
iT�2jfisgT�3s=1

�iT�2 � ��
nbiT�1 + �f(i1; :::; iT�2;biT�1)o ; (76)

and in period T � 3, the maximization problem is

max
iT�3jfisgT�4s=1

�iT�3 � ��biT�2 � ��2 nbiT�1 + �f(i1; :::;biT�2;biT�1)o ; (77)

where biT�2 = biT�2 �fisgT�3s=1 g
�
and biT�1 = biT�1 �fisgT�3s=1 ;biT�2(fisgT�3s=1 g

�
. We have shown

that the term
nbiT�1 + �f(i1; :::;biT�2;biT�1)o is well-de�ned, strictly increasing, and strictly

concave (see (68)). Therefore, by Proposition 2, for any given (i1; :::; iT�4) the equilibrium

investment plan

(i�T�3; i
�
T�2) =

�biT�3 �fisgT�4s=1

�
;biT�2 �fisgT�3s=1 ;biT�3 �fisgT�4s=1

���
(78)

is underinvestment. From (75) and (78), we know that for any given (i1; :::; iT�4), the equi-

librium investment (i�T�3; i
�
T�2; i

�
T�1) is underinvestment in the sense that there is another

investment plan (i0T�3; i
0
T�2; i

0
T�1) that induces higher present values in period T; T �1; T �2

and T�3. Repeating this process, we can show that the equilibrium investment (i�1; i�2:::; i�T�1)
is underinvestment.

B. Proof of Proposition 7

To simplify the notation, we drop the cash �ow xt in the maximization problem in the

same way as in the proof of Proposition 6. The choice function biT�1(i1; :::; iT�1) is strictly
increasing in iT�1 from (65). We have shown that if the return function is supermodular, the

choice function is strictly increasing in a three-period model (See (6) in Section 2). Given

(i1; :::; iT�2); the maximization problem in period T � 1 is

max
iT�1jfisgT�2s=1

�iT�1 + ��f (i1; i2::::; iT�1) ;

and its �rst-order condition is

�1 + �� @f

@iT�1
= 0: (79)
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Given (i1; :::; iT�3), the maximization problem in period T � 2 is

max
iT�2jfisgT�3s=1

�iT�2 � ��biT�1 + ��2f �i1; i2::::;biT�1� ;
and its �rst-order condition is

�1� ��@
biT�1
@iT�2

+ ��2
@f

@iT�2
+ ��2

@f

@iT�1

@biT�1
@iT�2

= 0: (80)

From equations (79) and (80), we have

�

�
@f

@iT�2

�
=
@f

@iT�1
= 1� �@

biT�1
@iT�2

(1� �) : (81)

Because we have at = at�1�; the left term in equation (81) is

�

�
@f

@iT�2

�
=
@f

@iT�1
= �

i
aT�1
T�1 aT�2i

aT�2�1
T�2

aT�1i
aT�1�1
T�1 i

aT�2
T�2

= �
aT�2
aT�1

iT�1
iT�2

=
iT�1
iT�2

: (82)

From (81) and (82), we have

iT�1
iT�2

= 1� �@
biT�1
@iT�2

(1� �) ; (83)

which implies that for any given (i1; :::; iT�3); if � < 1 (� = 1), we have iT�1 > iT�2

(iT�1 = iT�2) because @biT�1=@iT�2 > 0. In the same recursive way as in the proof of

Proposition 6, plugging the choice functionbiT�1(�) into the maximization problems in periods
T � 4 and T � 3, we have the following equation

iT�2
iT�3

= 1� �@
biT�2
@iT�3

(1� �) ; (84)

which also implies that for any given (i1; :::; iT�4); if � < 1 (� = 1), we have iT�2 > iT�3

(iT�2 = iT�3) because @biT�2=@iT�3 > 0. Repeating this recursive analysis, we know that the
equilibrium investment it is strictly decreasing (constant) in t if � < 1 (� = 1).
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C. Multi-period Cobb-Douglas model with dividend

taxation

We assume that in each period, the government imposes proportional dividend tax

� under revenue-neutral policy. In period T � 1 and for any given (i1; i2; :::; iT�2), the �rm
solves the following maximization problem:

max
iT�1jfisgT�2s=1

� iT�1
1 + �

+ ��f (i1; i2::::; iT�1) : (85)

From maximization problem (85), we can derive a choice function biT�1 : RT�2++ ! R++ such
that biT�1(fisgT�2s=1 ) = f(1 + �) ��aT�1f (i1; :::; iT�2; 1)g

1
1�aT�1 : (86)

The maximization problem in period T � 2 is given as

max
iT�2jfisgT�3s=1

� iT�2
1 + �

+ ��
n
�biT�1(fisgT�2s=1 ) + �f

�
i1; i2::::;biT�1(fisgT�2s=1 )

�o
; (87)

Using (86), the expression inside f�g in (87) can be expressed as

f� (1 + �) ��aT�1f (i1; :::; iT�2; 1)g
1

1�aT�1 + �f
�
i1; i2::::;biT�1(fisgT�2s=1 )

�
= � ((1 + �) ��aT�1)

1
1�aT�1 f (i1; :::; iT�2; 1)

1
1�aT�1

+�f (i1; :::; iT�2; 1) f��aT�1f (i1; :::; iT�2; 1)g
aT�1

1�aT�1

=

�
� (��aT�1)

aT�1
1�aT�1 � ((1 + �) ��aT�1)

1
1�aT�1

�
f (i1; :::; iT�2; 1)

1
1�aT�1 (88)

= (��aT�1)
1

1�aT�1

�
1� (1 + �) �aT�1

�aT�1

�
f (i1; :::; iT�2; 1)

1
1�aT�1 :

We de�ne a function f (T�2) : RT�2++ ! R++:

f (T�2)�

�
fisgT�2s=1

�
= (��aT�1)

1
1�aT�1

�
1� (1 + �) �aT�1

�aT�1

�
f (i1; :::; iT�2; 1)

1
1�aT�1 : (89)

With the function in (89), the maximization problem in (87) can be expressed as

max
iT�2jfisgT�3s=1

� iT�2
1 + �

+ ��f (T�2)�

�
fisgT�2s=1

�
; (90)
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which is de�ned in the same way as the maximization problem of (85). Therefore, we have

the choice function biT�2, given as
biT�2 = �(1 + �) ��a(T�2)f (T�2)� (i1; :::; iT�3; 1)

	 1

1�a(T�2) ; (91)

where

a(k) =
@f

(k)
�

�
fisgks=1

�
=@ik

f
(k)
�

�
fisgks=1

� jfi1;::;ikg=f1;:::;1g: (92)

In a recursive way, we de�ne a function f (k)� : Rk++ ! R++ such that

f (k)� =
�
��a(k+1)

� 1

1�a(k+1)

�
1� (1 + �) �a(k+1)

�a(k+1)

�
f (k+1)� (i1; :::; ik; 1)

1

1�a(k+1) ; (93)

Then, the maximization problem in period k is expressed as

max
ikjfisgk�1s=1

� ik
1 + �

+ ��f (k)�

�
fisgks=1

�
: (94)

Since the function f (k)� is strictly concave and strictly increasing, the maximization problem

in period k has a unique solution for any given fisgk�1s=1 . In period 1, we have a unique

solution, i�1, from the maximization problem (94) with k = 1. This unique solution is used to

get a unique solution i�2 from the maximization problem with k = 2. Repeating this process,

we have a unique investment equilibrium, fi�sgT�1s=1 .
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