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Abstract

I study sorting in a frictional market. Asset owners post their terms, then workers

direct their search. When the owners switch from prices to shares, the competition

between workers is handicapped. The unique equilibrium features inefficient positive

assortative matching. The queue lengths are distorted, even though the Hosios effi-

ciency condition holds for every pair of types. For any distribution of types, all workers

pair up with better assets. The best workers suffer while the weakest workers gain; the

opposite occurs on the asset side. Competition drives the asset owners to post flatter

contracts. It leads to constrained efficiency whenever prices are feasible. Otherwise,

handicapped competition results in inefficient sorting.
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1 Introduction

This paper studies sorting in a frictional market where two sides are vertically differentiated.

The two sides enter into contracts specifying how the payment is contingent on a certain

outcome. One side is often better informed about their types. Little is known about how

the use of contingent payment affects the equilibrium sorting pattern and the distribution

of matching surpluses in the presence of private types.

I address this question in a directed search framework. There are double continuums

of assets and workers. A worker’s productivity is privately known whereas the quality of

an asset is public. Asset owners first post their shares of the future outputs. Workers

then decide which type of assets and contract to search for. The meeting is bilateral.

The constrained efficient allocation always features positive assortative matching (PAM)

despite the search friction.1 I identify a novel channel of inefficiency and when it arises. I

analyze its effects on the sorting pattern and the distribution of surpluses.

Channel of inefficiency Let us first consider the setting that owners post prices at

which a worker buys out the asset upfront and assumes the residual claim. Eeckhout and

Kircher (2010), henceforth EK, study sorting in goods market using this framework. They

show that constrained efficient allocations can be decentralized. In equilibrium, everyone

receives her social value, the shadow price in the utilitarian planner’s problem. I refer to

their benchmark by price competition.

The constrained efficient allocations can no longer be decentralized using output shares.

Output shares are steeper than prices: a better worker pays more than a weaker worker

when conceding a larger share to the owner. The use of shares handicaps the competition

between workers for the same type of assets, increasing the asset owners’ payoff. Holding

the allocation unchanged, the shift in the divisions of outputs can be attributed to the link-

age principle in auction theory (DeMarzo et al., 2005; Milgrom and Weber, 1982). PAM

gives rise to an additional spillover. As workers pay more for their supposed partners,

they find deviations to better assets even more attractive, further intensifying the compe-

tition for better assets. To support a constrained efficient allocation, the set of incentive

compatible contracts must provide the asset side with higher payoffs than in the price

competition.

As a result, the private benefit for an asset to get matched is above the social benefit.

1In the presence of search friction, PAM is said to occur if better workers always search for better assets.
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The wedge is largest at the top. Facing search friction, owners of the best assets increase

their matching probability by inducing an inefficiently long queue of workers. This leads

to the unraveling of the constrained efficient allocation.

The preceding discussion begs three questions. Under PAM, the lower quality assets

are left with a pool of weaker workers amid a longer queue of workers for the better

assets. Despite higher shares of the outputs, their owners gain less from matching with

weaker workers and may induce shorter queues of workers instead. Hence, distortions in

the queue lengths and the sorting pattern are intertwined. The first question is what form

of distortion always arises in equilibrium.

There is another potential source of inefficiency. Unlike a fixed price, an asset owner’s

payoff now depends on her partner’ type. She may attempt to screen out better workers

by means of rationing. Chang (2017); Inderst and Müller (2002); Guerrieri et al. (2010);

Guerrieri and Shimer (2014) study how distortion in queue lengths helps screening using

directed search frameworks. The second question is how the distortion caused by handi-

capped competition differs from those in the screening literature. In this light, I consider a

setting that all types of workers have the same preference over the contract term and the

matching probability given the asset quality. Consequently, asset owners never use queue

length to screen out better workers. The distortion in queue lengths is entirely attributed

to the handicapped competition.

Third, the form of contracts determines the distribution of surpluses. If asset owners

may choose from different classes of contracts, what contracts do they post in equilibrium?

Or when do they post output shares?

Main results I first characterize the unique equilibrium when only output shares are

feasible. It features PAM. One type of workers pairs up with one type of assets, and vice

versa. Owners of better assets post less generous terms but still induce longer queues. For

every pair of matched types, Hosios (1990) efficiency condition holds, the division of the

output is given by the elasticity of the matching function.

A key contribution of this paper is the qualitative features of the distortion which are

universal for all distributions. As one may expect, the queue length for the best assets is

always inefficiently high. The novel result is that all (but the highest type of) assets always

pair up with weaker workers. There is either excessive entry of workers or insufficient entry

of assets. In comparison with the price competition or the complete information case, the

best workers suffer while the weakest workers gain; the opposite is true for the asset side.
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The owners of the best assets collectively gain if the asset side posts output shares.

Yet, an owner profits from posting a fixed price to poach better workers. The competition

between the owners drives them to all post prices, whenever feasible. In this sense, this

paper spells out when constrained efficiency is attained or not. Inefficiency arises from

handicapped competition between workers if they are prevented from buying out the assets

upfront. The infeasibility could be caused by workers’ liquidity constraints, risk aversion,

or incentive provision for others.2

I extend the previous observation to general contracts. Introducing steeper contracts

has no effect on the set of equilibrium allocations and payoffs. The asset side posts only

from the flattest class in an equilibrium. Other equilibria feature the same allocation

and payoffs. In particular, suppose the asset side chooses from the affine contracts which

specifies a wage payment as well as a share of the output. They post only the shares in

equilibrium, resulting in the aforementioned distortion.

Applications The market for top executives is a well-documented example. Firms are

ranked by their size. Candidates know their productivity better. Gabaix and Landier

(2008); Terviö (2008) study how PAM accounts for the empirical distribution of CEOs’

pay in the largest U.S. listed companies. Frydman and Jenter (2010) document that from

2000 to 2008, base salary makes up less than 20% of the CEOs’ pay in S&P 500 firms.

Over half of the remuneration is option and restricted stock grants.

In the preceding discussion, the informed party receives the output and pays the unin-

formed.3 In the labor market, the payment flows in the opposite direction. A fixed price

can be seen as a high-powered incentive contract whereas an output share is a low-powered

incentive. Lemieux et al. (2009) document that the fraction of performance-pay jobs in

U.S. increased between late 1970s and 1990s, contributing to the wage inequality. This

paper predicts that firms tend to hire better workers when the availability of high-powered

incentive contracts improves. While it is well-known that PAM increases inequality (e.g.,

Rosen, 1981), I show how the combination of incentive contracts and PAM further amplifies

the inequality across workers.4

2We cannot circumvent the mentioned problems by providing the workers a fixed fraction of the residual
claim. In this case, the asset owners still place a higher private value on their matching probabilities than
the social benefit. The constrained efficient allocation will not be decentralized.

3This convention is in line with the existing literature on security-bid auction and assortative matching
with private types on one side (e.g., Mailath et al., 2016).

4It is not the same as wage inequality as the expected payoff also depends on the matching probability.
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Rhodes-Kropf and Robinson (2008) document PAM between acquiring and target firms

in M&A. This paper also explains how the sorting pattern depends on whether target firms

receive cash or equity shares of the acquiring firms.

Related literature This paper adds to the vast literature on assortative matching with

search friction: Burdett and Coles (1997); Chade (2006); Damiano et al. (2005); Eeckhout

(1999); Jacquet and Tan (2007); Shi (2001); Shimer and Smith (2000); Shimer (2005); Smith

(2006). My model is built on EK. The distribution-free results in the literature center on

the equilibrium matching pattern. My contribution is the distribution-free features on

the distortion in the matching pattern. This is not trivial as both the equilibrium and

constrained efficient allocations vary with the entire distribution of types.5

Chiappori and Reny (2016); Kaya and Vereshchagina (2014); Legros and Newman

(2007); Schulhofer-Wohl (2006); Serfes (2005) consider the use of contracts in assortative

matching with public types. They study how risk sharing or incentive provision shapes

the payoff functions and provide conditions for PAM and negative assortative matching

(NAM). My distribution-free results are about the changes in the matching pattern and

the distribution of surpluses when the form of contract changes.

In the security-bid auction literature (e.g., DeMarzo et al., 2005; Hansen, 1985; Sogo

et al., 2016), the seller in a private value auction always benefits from handicapping the

competition using steeper securities. In my setting, the wedges in the divisions of the

outputs cause adjustments in the queue lengths and the sorting pattern. Consequently,

the competition from the best assets makes owners of the lowest quality assets worse off!

This paper contributes to the efficiency conditions in the search and matching mod-

els. Albrecht et al. (2010); Julien and Mangin (2017) generalize the analysis in Hosios

(1990) to account for other externalities within the same market where multiple types are

pooled. I study the spillover effects across markets for different types. Looking at each pair

of matched types in isolation, the equilibrium queue length maximizes the joint payoffs.

However, the queue length and the posted share for one type of assets affect the remaining

pool of workers and their information rent, resulting in inefficient sorting.

5 The above complication does not arise in the textbook competitive screening models and the frame-
work of Guerrieri et al. (2010) where there is free entry of homogeneous principals. In these models, the
set of feasible contracts and allocations does not depend on the type distribution. The support of the
type distribution alone pins down all incentive compatible conditions. Consequently, the set of separating
equilibria is invariant to the type distribution.
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Layout Section 2 details the baseline setting and the equilibrium definition. Section

3 characterizes the unique equilibrium under output shares. Section 4 characterizes the

constrained efficient allocation. Section 5 studies the form of distortion. Section 6 considers

the setting where different classes of contracts are feasible. Section 7 remarks on the setting

and the results. All omitted proofs are relegated to Appendix.

2 Model Setting

Production Every male worker privately knows his productivity p ∈ [0, 1]. Assets are

ranked by their public quality q ∈ [0, 1]. Each female owner has a unit of asset. All parties

are risk neutral. A worker may operate an asset to produce an expected output Y (p, q),

where Y : [0, 1]2 → R++ is positive, strictly increasing and C2.

Assumption (Y). Y (p, q) is strictly log-supermodular (log-SPM) in p and q.

Assumption (Y) states that a better worker generates a greater percentage increase in

the output using a better asset. It has two important implications even in a frictionless

setting. First, it is stronger than strict supermodularity (SPM). Without search friction,

aggregate surplus is maximized under perfect PAM. Second, the use of output shares raises

the hurdle for PAM as a better worker now must accept a lower percentage of the output

in exchange for a better asset. Hence, Assumption (Y) is necessary for decentralizing PAM

using output shares.

Example (O-ring production in Kremer (1993)). Assumption (Y) is satisfied if Y (p, q) =

y + pq(y − y), where y > y > 0: Production is composed of two tasks. The probabilities

of success for the tasks are p and q. Production yields a high output y only if both tasks

are successful. Otherwise, a base output y is produced. The probabilities of success can be

generalized to any strictly increasing functions in p and q.

The types are continuously distributed. F (p) denotes the measure of workers of pro-

ductivity below p. G(q) is the measure of assets with qualities below q. The total measures

of assets and workers may differ. F and G are C2 and their derivatives are denoted by f

and g, respectively. f and g are strictly positive and bounded.

Contracts The output Y is stochastic and contractible. A contract T : R+ → R specifies

the payment T (y) to the asset owner contingent on the realized output y. We consider
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classes of contracts T (y;x) which can be indexed by some contract term x ∈ [x, x]. To

save on notation, T (p, q, x) := E(T (Y ;x)|p, q) denotes the expected payment for a pair

of types. The worker expects to keep Y (p, q) − T (p, q, x) after production. I require that

Y (p, q) ≥ T (p, q, x) ≥ 0, and both T (p, q, x) and Y (p, q) − T (p, q, x) are C1 and strictly

increasing in p and q.6

Definition (DeMarzo, Kremer, and Skrzypacz, 2005). T (y;x) for x ∈ [x, x] is an ordered

set of securities if

1. T (p, q, x) is continuous and strictly increasing in x; and

2. For any (p, q), Y (p, q)− T (p, q, x) ≤ V and T (p, q, x) ≤ U .

x parameterizes the division of the expected output. The first condition means that

a higher x always represents a less generous term for the worker. The second condition

means that the set of securities can accommodate any mutually acceptable split of the

output. It is fulfilled if T (p, q, x) = 0 and T (p, q, x) ≥ Y (p, q). Examples are fixed prices

T (y; t) = t where t ∈ [0, Y (1, 1)], and output shares T (y; s) = s where s ∈ [0, 1]. To

follow the terminologies in DeMarzo et al. (2005), I use the terms contract and security

interchangeably.

Matching The asset side may post from an ordered set of securities T (y;x). As the asset

quality is public, (sub-)markets are indexed by (q, x) ∈ [0, 1] × [x, x]. An owner of asset

quality q may go to one of the markets (q, x) while a worker may visit any market.

They may choose their outside options instead. The values of the workers’ and assets’

outside options are positive and given by V and U , respectively.

The timing of the events is as follows: Asset owners first make their decisions simulta-

neously. Observing how asset owners are distributed across the markets, the workers make

their decisions. The two sides of each market then pair up randomly.

Define queue length λ ∈ [0,∞] as the ratio of workers to assets in a (sub-)market.

A worker gets matched with probability η(λ) while the matching probability for an asset

owner is δ(λ). Meeting is bilateral, so δ(λ) ≤ min{λ, 1} and λη(λ) = δ(λ). The payoffs for

those who are left unmatched are normalized to zero.

6 DeMarzo et al. (2005) provide the primitive conditions on T (y;x) and the output distribution for the
mentioned properties in this subsection.
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δ(λ) is C2, strictly increasing and strictly concave while η(λ) is strictly decreasing.

Hence, the elasticities d ln δ
d lnλ and − d ln η

d lnλ are always in the unit interval. Following EK, I

assume a decreasing elasticity for δ(λ), which holds for common matching functions.

Assumption (M).
d ln δ(λ)

d lnλ
is decreasing.

Searching for partner is costly as the agent forgoes her outside option. I assume

max
λ≥0

[δ(λ)Y (1, 1)− λV − U ] > 0, (1)

so that it is efficient to have the best agents participating in matching.

2.1 Equilibrium definition

K(q, x) is the measure of asset owners in the markets (q′, x′) ≤ (q, x). L(p, q, x) is the mea-

sure of workers with types p′ ≤ p in the markets (q′, x′) ≤ (q, x). The marginal distributions

are denoted with the corresponding variables as subscripts. For examples, Lpq(p, q) is the

measure of workers of types p′ ≤ p in all markets (q′, x′) where q′ ≤ q; Kq(q) is the measure

of assets of types q′ ≤ q in all markets. We call (Lpq,Kq) an allocation.

Definition. (K,L) is feasible if Kq ≤ G and Lp ≤ F .

G(q) − Kq(q) and F (p) − Lp(p) are respectively the measures of assets below q and

workers below p taking the outside option. supp(K) is the support of K and supp(L)

denotes that of L. A market is active if it is in supp(K); otherwise, it is inactive. Workers

never get matched if deviating to an inactive market unilaterally. Therefore, Lqx is required

to be absolutely continuous w.r.t. K.

The equilibrium concept follows the literature on large games e.g., Mas-Colell (1984).

An agent’s payoff depends on her own decision and others’ actions only through (K,L). K

and L are in turn derived from the optimal decisions of all agents.

Each market (q, x) is associated with a queue length Λ(q, x;K,L) and a composition of

workers F (p|q, x;K,L). For active markets, Λ is the Radon-Nikodym derivative,
dLqx
dK and

F (p|q, x;K,L) is derived using Bayes’ law. In an active market (q, x), a worker of type p

receives an expected payoff of

η(Λ(q, x;K,L))[Y (p, q)− T (p, q, x)], (2)

while an asset owner receives an expected payoff

δ(Λ(q, x;K,L))

∫
T (p, q, x)dF (p|q, x;K,L). (3)
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Given (K,L), a worker of type p can attain

V (p;K,L) = max{V , sup
(q,x)∈supp(K)

η(Λ(q, x;K,L))[Y (p, q)− T (p, q, x)]}.

V (.;K,L) in turn determines the asset owners’ deviating payoff. For an inactive mar-

ket, Λ(q, x;K,L) and F (p|q, x;K,L) are the belief regarding the queue length and the

composition of workers attracted after an owner of asset q deviates to that market. If

V (p;K,L) ≥ η(0)[Y (p, q)− T (p, q, x)] for all types, then no workers will be attracted and

F (p|q, x;K,L) is set to be degenerate at p = 0. If V (p;K,L) < η(0)[Y (p, q)−T (p, q, x)] for

some types, Λ(q, x;K,L) is pin down by the lowest matching probability some workers are

willing to endure. Only the lowest type among these workers will be attracted. Formally,

Λ(q, x;K,L) = inf{λ ∈ [0,∞] : V (p;K,L) ≥ η(λ)[Y (p, q)− T (p, q, x)], ∀p ∈ [0, 1]}.

If Λ(q, x;K,L) > 0, then F (p|q, x;K,L) is degenerate at

inf{p ∈ [0, 1] : V (p;K,L) ≤ η(Λ(q, x;K,L))[Y (p, q)− T (p, q, x)]}.

Facing Λ(q, x;K,L) and F (.|q, x;K,L), an owner of asset quality q can attain

U(q;K,L) = max{U, sup
(q,x)∈[0,1]×[x,x]

δ(Λ(q, x;K,L))

∫
T (p, q, x)dF (p|q, x;K,L)}.

Definition. An equilibrium is a pair of feasible distributions (K̃, L̃) satisfying:

• Asset owners’ optimality: (q, x) ∈ supp(K̃) only if x maximizes the asset owner’s

expected payoff (3). K̃ ′q(q) = g(q) if U(q; K̃, L̃) > U .

• Workers’ optimality: (p, q, x) ∈ supp(L̃) only if (q, x) maximizes the worker’s expected

payoff (2). L̃′p(p) = f(p) if V (p; K̃, L̃) > V .

The optimality conditions are interpreted as follows: Everyone takes the queue length

and the composition of workers in the markets as given. If participating, they go to the

markets where their expected payoff is the highest. f(p) > L′p(p) indicates some workers of

type p take their outside options. It never happens if the workers can get higher expected

payoffs in some market. Similarly for the asset side.

The belief restriction for the inactive markets follows Guerrieri et al. (2010). EK adopt

the same restriction on the queue length.

Fix an equilibrium (K̃, L̃), V (p; K̃, L̃) and U(q; K̃, L̃) are the equilibrium payoffs. The

arguments K̃ and L̃ will be omitted if no confusion arises.
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We say (K,L) induces voluntary participation of the asset owners if their expected

payoff (3) in any active market is no less than U . (K,L) is incentive compatible (IC) if

it satisfies workers’ optimality condition in the equilibrium definition. These two notions

will be useful for discussing the utilitarian planner’s problem.

Assortative Matching

Definition. A pair of distributions (K,L) features positive assortative matching (PAM) if

there exists a pair of threshold types (p, q) < (1, 1) and an increasing function κ : [p, 1] →
[q, 1] such that κ(p) = q, κ(1) = 1 and Lpq(p, κ(p)) = F (p)− F (p).

κ(p) is the quality of assets assigned to type p. The definition of PAM also requires that

every worker above p participates in matching. The requirement is not restrictive. A better

worker gains more in the same market. The outside option is only optimal for the lowest

types. On the asset side, monotonic participation is efficient. I will show that monotonic

participation occurs in equilibrium as well. In both cases, κ is strictly increasing, and its

inverse is denoted by r : [q, 1]→ [p, 1]. r(q) is the type of workers assigned to quality q.

3 Equilibrium Characterization

We turn to the setting that only output shares T (y; s) = s is feasible. s and 1− s are the

shares for the asset owner and worker, respectively. The workers’ expected payoff (2) is

separable into Y (p, q) and η(λ)(1− s). Only the former depends on the private type.

Figure 1: Properties of workers’ indifference curves
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There are two important implications. First, workers’ preferences over q and η(1 − s)
satisfy a strict single crossing property (SCP) under Assumption (Y). The sorting of workers

into the active markets turns into a one-dimensional problem. Second, fix the asset quality,

workers of all types have the same preference over their matching probability and the

contract term.

Matching pattern The SCP implies that if a worker prefers a market with better assets

to another market with lower quality assets, then all better workers strictly prefer the one

with better assets, and vice versa. This holds irrespective of the queue lengths and the

contract terms in the two markets. Therefore, the participants must match assortatively

in any equilibrium.

Another implication of the SCP is the monotonic participation on the asset side. Sup-

pose some type of workers goes to an active market. An owner of a better asset can find a

less generous term which provides these workers the same payment. Such a poaching offer

will not draw weaker workers because of the SCP. Hence, the owners’ equilibrium payoff

must increase with the quality of their assets.

Let (p̃, q̃, κ̃) represent PAM in the equilibrium under consideration. r̃ denotes the

inverse of κ̃. It satisfies the boundary condition

r̃(q̃) = p̃; r̃(1) = 1. (4)

Figure 2: Characterization of active markets and the Hosios condition

Contract term and queue length The left panel plots the indifference curves over

q and η(1 − s) of the participating workers, which yield their equilibrium payoff. The
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lower envelope of the indifference curves must be η(Λ(q, s))(1− s) for the active markets.

The workers of r̃(q′) accept a lower matching probability in the active market (q′, s′) than

anybody else. They also endure the lowest matching probability in all markets for assets

q′ because all types have the same preference. Hence, a deviating offer always attracts the

same type r̃(q′) in equilibrium. The competition from these workers will result in a long

enough queue driving away all other types.

Thus an owner of asset q′ only trades off between the queue length and her output

share as in the right panel of Figure 2. The tangent point of the indifference curves of the

pair is the optimal contract and the associated queue length for the asset owners. This is

exactly the Hosios (1990) efficiency condition.7 Hence, the owners of assets q ≥ q all post

the share

s = 1− d ln δ(λ̃(q))

d lnλ
= 1− δ′(λ̃(q))

η(λ̃(q))

where λ̃(q) is the equilibrium queue length.

Abusing the terminology, I call (p̃, q̃, λ̃, r̃) the equilibrium allocation. I recover the

corresponding (K̃, L̃) in Appendix A.2.

PAM and monotonic participation requires that for any q ≥ q̃,∫ 1

q
λ̃(q′)dG(q′) = F (1)− F (r̃(q)),

or equivalently

r̃′(q) =
g(q)

f(r̃(q))
λ̃(q). (5)

Equilibrium payoffs Substituting the expression of s into the expected payoffs (2) and

(3), we can restate the Hosios condition in term of the workers’ equilibrium payoff

V (r̃(q)) = δ′(λ̃(q))Y (r̃(q), q), (6)

or in term of the asset owners’ equilibrium payoff

U(q) = [δ(λ̃(q)− δ′(λ̃(q))λ̃(q)]Y (r̃(q), q). (7)

(6) and (7) hold for every type above q. I simply call the whole set of conditions as the

Hosios condition.

7λ̃(q) maximizes δ(λ)Y (r̃(q), q) − λV (r̃(q)). Hence, the joint payoffs for the pair of types attains its
maximum at the equilibrium queue length, subject to free entry of workers at their equilibrium payoff.
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By the same token, the optimality condition for workers above p̃ can be rewritten as

V (r̃(q)) = max
q′∈[q̃,1]

δ′(λ̃(q′))Y (r̃(q), q′).

After accounting for the choices of contracts, the sorting of workers is induced by the

variation in the queue length. The better the asset, the longer the queue. Under assumption

(M), the Hosios condition in turn requires the posted share to increase with the asset

quality. Applying the envelope theorem,

dV (r̃(q))

dp
= δ′(λ̃(q))

∂Y (r̃(q), q)

∂p
. (8)

With strict SCP over q and η(1− s), (8) is not only necessary but also sufficient. Abusing

the terminology, I call it workers’ IC condition.

Threshold types The strict SCP also implies that the active market for assets q̃ is

the most profitable deviation for workers below p̃. By continuity, workers of p̃ must be

indifferent about participation. This yields the boundary condition for the workers side,

p̃(V (p̃)− V ) = 0. (9)

Now consider an owner below q̃. Under the strict SCP, p̃ is the highest type her

deviating offer can attract. Her deviating payoff must be below U(q̃). By continuity, the

boundary condition for the asset side mirrors that for the workers,

q̃(U(q̃)− U) = 0. (10)

Proposition 1. There is a unique equilibrium. This equilibrium features PAM. There exist

strictly increasing and C1 functions (r̃(q), λ̃(q), ṽ(p)) and threshold types (p̃, q̃) satisfying

the conditions (4)–(6) and (8)–(10) such that

1. Asset owners (workers) participate if and only if q ≥ q̃ (p ≥ p̃);

2. Workers of p ≥ p̃ have equilibrium payoffs ṽ(p);

3. λ̃(q) is the queue length for assets q. Owners of assets q ≥ q̃ post s = 1− d ln δ(λ̃(q))
d lnλ .

The output share posted and the queue length strictly increases with the asset quality;

4. F (p|q, s) is degenerate at r̃(q) if q ≥ q̃ and Λ(q, s) > 0.
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The differential equations (5), (6) and (8) and the boundary conditions (4), (9) and

(10) form a boundary value problem.8 I show that it has a unique solution in the proof.

4 Constrained Efficient Allocation

Consider a utilitarian planner who has complete information and dictates the market each

type goes to. She chooses a pair of feasible distributions to maximize the aggregate surplus

max
K,L

∫
η(
dLqs
dK

)Y (p, q)dL+ [F (1)− Lp(1)]V + [G(1)−Kq(1)]U.

The presence of search friction is conducive to NAM because the most efficient way to

increase the matching probability for high types is assigning them to a market flooded with

low types from the other side. Assumption (M) caps the benefit from such an arrangement.

It states that either side sees a diminishing gain in the matching probability when there

are more participants on the opposite side. Assumption (Y) puts a lower bound on the

gain from production complementarity. They jointly ensure that the utilitarian planner’s

solution always features PAM.

Theorem (Eeckhout and Kircher, 2010). The constrained efficient allocation features PAM

for all distributions of types.

Proof. The n-root-supermodularity condition is met under Assumption (Y) and (M). Propo-

sition 4 in EK applies.9

Abusing the terminology, I use (rCE , λCE , pCE , qCE) to represent a constrained efficient

allocation.10 It satisfies (4) and (5). Let vCE(p) and uCE(q) respectively denote the shadow

values of workers of p and assets of q in the planner’s problem. EK state the first-order

conditions in term of vCE(p). For q ≥ q
CE

, vCE satisfies (6) and

dvCE(rCE(q))

dp
= η(λCE(q))

∂Y (rCE(q), q)

∂p
. (11)

8V (p) is defined over [0, 1]. ṽ is the restriction of V over [p̃, 1], part of a solution to the boundary value
problem.

9Unlike EK, I assume the outside options are positive and add the boundary conditions at the bottom.
I also assume a weakly, in place of strictly, decreasing elasticity of δ(λ). Their results remain valid because
I strengthen the assumption on Y (p, q) to strict log-SPM. Lemma 1 will show that the constrained efficient
allocation is unique under Assumption (Y) and (M).

10The aggregate surplus is independent of the divisions of outputs, so a continuum of (K,L) solves the
utilitarian planner’s problem. They all have the same (r, λ, p, q) but different sets of active markets.
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At the threshold types, vCE(p
CE

) and uCE(q
CE

) satisfy (9) and (10).

The differential equations (5), (6) and (11) and the boundary conditions (4), (9) and

(10) form another boundary value problem with a unique solution. Compared to Proposi-

tion 1, the only difference is that (11) replaces (8) in the boundary value problem.

4.1 Price competition

Price competition is the benchmark setting whereby asset owners post prices T (y; t) = t.

Theorem (Eeckhout and Kircher, 2010). A constrained efficient allocation is always de-

centralized in price competition. The equilibrium payoffs are given by vCE and uCE.

Proof. Again by Proposition 4 in EK.

Let tCE(q) denote the posted price for assets q in equilibrium. We can obtain tCE from

vCE and rCE . Under Assumption (Y) and (M), the first-order condition (11) is the same

as the workers’ IC condition in price competition,

vCE(rCE(q)) = max
q′∈[q

CE
,1]
η(λCE(q′))[Y (rCE(q), q′)− tCE(q′)], q ≥ q

CE
.

Bilateral meeting implies that η(λ) > δ′(λ). Under the same allocation, (8) and (11)

indicate that the information rent for workers grows at a slower rate when output shares are

posted. This is an extension of the linkage principle in the security-bid auction literature.

The catch is that the two equilibrium allocations are always different.

5 Form Of Distortion

As indicated by (5), the exact distortion under output shares varies with the distribution

of types. I now establish the form of the distortion which arises for all distributions.

Proposition 2. Compared with the constrained efficient allocation, the equilibrium alloca-

tion has the following features:

1. λCE(1) < λ̃(1);

2. rCE(q) > r̃(q) for q ∈ (q̃, 1);

3. p
CE
≥ p̃, equality holds if and only if p

CE
= 0;
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4. q̃ ≥ q
CE

, equality holds if and only if q̃ = 0.

Corollary 1. vCE(1) > V (1), vCE(p
CE

) < V (p
CE

); and U(1) > uCE(1), U(q̃) < uCE(q̃).

Longer queue for the best assets It is instructive to start with the equilibrium in

price competition. Suppose we replace the equilibrium prices tCE(q) with the output shares

sCE(q) which keep the same divisions of the outputs. A fixed share of the output costs

more to the better workers but less to the low types. The workers have higher deviating

payoffs from the active markets for better assets. In particular, a worker of rCE(q) always

profits from searching for assets incrementally above q.

Nevertheless, deviating to a market for even higher quality assets can be more profitable.

In particular, if λCE(q) is decreasing at q, the market for better assets features a lower

queue length and a lower share sCE .11 Only the best assets always draw a longer queue of

workers. In response, their owners post a greater share to partially offset the increase in

the queue length. On the other side, the best workers suffer from the reductions in both

the output share and the matching probability.

All workers pair up with better assets Under PAM, a pool of weaker workers is left

to the lower quality assets amid a longer queue for the better assets. The asset owners

in the intermediate range face two counteracting forces. First, the asset owners offer less

generous terms as the local competition between workers is intensified. However, they are

also left with weaker workers. In comparison with price competition, these asset owners’

gain from a match may go in either direction, so does the distortion in the queue lengths.

The relative strengths of the two forces depend on the distribution of types.

Surprisingly, all assets but q = 1 must settle with weaker partners. Suppose, to the

contrary, that we move down from the top and find that asset q̂ continues pairing with the

same type p̂. As workers just above p̂ now match with better assets, the queue for assets

q̂ must be shorter, λCE(q̂) ≥ λ̃(q̂), under PAM. Figure 3 depicts the situation.

11Under Assumption (Y) and (M), tCE(q) must be monotonic in q while sCE(q) = 1 − d ln δ(λCE(q))
d lnλ

increases with λCE(q), and needs not be monotonic.
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Figure 3: Implication of same matched pair of types on queue length

Now consider a thought experiment of removing all workers and assets above p̂ and q̂.

The constrained efficient allocation remains the same. Otherwise, the utilitarian planner

would have improved on it in the first place. Replacing r̃(1) = 1 with r̃(q̂) = p̂, the same

set of equilibrium conditions in Proposition 1 applies to the truncated distribution of types.

Although workers of p̂ now have no better assets to deviate to, owners of q̂ still offer the

same contract in order to deter deviation by workers slightly below p̂. We have argued that

the queue for the highest quality assets q̂ in the truncated distribution must be inefficiently

long, λCE(q̂) < λ̃(q̂). This contradicts my previous claim!

Increased participation by workers Let us return to the discussion that the shares

sCE(q) have replaced the prices tCE(q). The workers of p
CE

are strictly better off by

deviating to slightly better assets. If p
CE

> 0, those just below p
CE

pay less under the

share sCE(q
CE

) and will participate.

Reduced participation by assets At the same time, the asset owners of q
CE

suffer

for two reasons. In the case p
CE

> 0, they match with weaker workers as those below

p
CE

enter the market. In the case p
CE

= 0, they compensate their partners with a higher

payoff. Otherwise, the workers of p = 0 will deviate to better assets. As a result, some

owners drop out and the threshold quality increases.

The queue length at the bottom can be distorted in either direction. First, the cost

of changing the queue length increases with the workers’ equilibrium payoff. Second, the

threshold asset quality is higher while the worker’s type is lower. The effect on the expected

output is ambiguous. I provide an example in the symmetric setting below.
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In Appendix A.1, I approach the form of distortion from the utilitarian planner’s per-

spective instead of the agents’ incentives. Given the equilibrium allocation, the planner

may reassign a chosen agent to another market or the outside option. I study the planner’s

reassignment for different types of agents, and connect it to Proposition 2. The advantage

of this “marginal” approach is to relate the gain from a reassignment directly to the Hosios

condition and the workers’ IC condition.

Symmetric setting Suppose two sides are symmetric in every aspect: F = G; V = U

; Y (p, q) = Y (q, p); δ( 1
λ) = η(λ) = 1

λδ(λ). The constrained efficient allocation inherits the

symmetry of the setup. It features rCE(q) = q, λCE(q) = 1 and p
CE

= q
CE

.

Since λ̃(q) is strictly increasing, there is a cut-off quality at which assets of higher

quality have inefficiently long queues and the opposite for the lower quality assets. It is

possible that the queue lengths in active markets are all inefficiently high.

Remark 1. In the symmetric setting, λ̃(q̃) ≤ 1. λ̃(q̃) = 1 if and only if ṽ(p̃) = V .

6 Choice Of Contract

We now consider the setting that contracts other than output shares are also feasible.

Choice between prices and output shares The main result is that the competition for

better workers drives the asset owners to all choose prices over output shares, decentralizing

the constrained efficient allocation.

Let’s start with the equilibrium in the price competition. The equilibrium payoffs satisfy

the extension of the stable matching condition in Koopmans and Beckmann (1957).12

Lemma 1. The constrained efficient allocation is unique. For any p, q and λ,

uCE(q) + λvCE(p) ≥ δ(λ)Y (p, q) (12)

with equality if and only if λ = λCE(q) and p = rCE(q).

We then consider whether any asset owner wants to switch to output shares. Lemma

1 implies that when all others are posting prices, an asset owner can increase her payoff

12Without search friction, δ(λ) = min{λ, 1}, the set of inequalities (12) collapses to uCE(q) + vCE(p) ≥
Y (p, q) for any pair of types.
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only at the expense of the workers. But such an offer draws no workers in a directed search

environment. Hence, an owner cannot gain from posting output shares. For any p,

uCE(q) ≥ δ(Λ(q, s))Y (p, q)− Λ(q, s)vCE(p) = δ(Λ(q, s))sY (p, q).

The above argument applies to other form of contracts as well.

Proposition 3. If prices are feasible, there is an equilibrium in which only prices are

posted. This equilibrium has the same allocation and active markets as that in the price

competition.

The next step is to rule out other equilibria. Suppose we switch the feasible contracts

from prices to output shares. Holding the allocation constant, the workers’ information

rent grows at a slower rate than their social value. Second, the owners pair up with weaker

workers in the new equilibrium allocation. Putting together, an owner always profits from

poaching slightly better workers when the asset side posts output shares.13 She cannot

attract better workers using output shares. But she will succeed by posting prices, which

are flatter.

Now we turn to the case that some asset owners use output shares while others post

prices. When characterizing the equilibrium in Section 3, we rely on that the local de-

viations to other markets (q, s) are unprofitable. The same characterization, conditions

(6)-(8) in particular, must hold locally in the active markets where shares are posted. The

above argument continues to apply.

Proposition 4. When both prices and output shares are feasible, there are no equilibria

in which a positive measure of asset owners post output shares.

Steepness of contracts The fundamental reason why the asset owners choose prices

over output shares is that the latter cost better workers more. DeMarzo et al. (2005)

formalize this notion for general contingent payment.

Definition (DeMarzo, Kremer, and Skrzypacz, 2005). Given Y |(p, q), security T1 strictly

crosses security T2 from below if E(T1(Y )|p, q) = E(T2(Y )|p, q) implies that

1. E(T1(Y )|pH , q) > E(T2(Y )|pH , q) for pH > p; and

13Fix the queue length and the share, an asset owner gains from a better partner. However, a shorter
queue length or a more generous term is needed to attract the better workers in the first place. In Appendix
A.1, I show that an owner profits from poaching better workers but not weaker workers under the conditions
(6)-(8).
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2. E(T1(Y )|pL, q) < E(T2(Y )|pL, q) for pL < p.

An ordered set of securities T1 is steeper than another ordered set T2 if T1(.;x1) strictly

crosses security T2(.;x2) from below for any x1 and x2. We also say T2 is flatter than T1.

In words, steeper contracts always cost more to better workers than weaker workers.

The output shares are steeper than prices. Assuming strict monotone likelihood ratio

property (SMLRP), DeMarzo et al. (2005) rank other standard financial securities, e.g.,

call options and bonds, by their steepness as well.14

When several ordered sets of securities Ti(y;xi) are available, we index the markets

using (q, xi). Appendix A.7 extends the definitions of equilibrium objects.

We now formalize the notion that the asset side prefers flatter securities. Suppose

steeper securities are made feasible. Since steeper securities are more prone to draw weaker

workers, an asset owner never profits from switching to one. However, there can be new

equilibria. The owners may post the steeper securities under a specific circumstance.

Lemma 2. Suppose two ordered sets of securities T1(y;x1) and T2(y;x2) are feasible.

T1(y;x1) is steeper than T2(y;x2). If (q̂, x̂1) is an active market in an equilibrium, then

F (p|q̂, x̂1) is degenerate at p̂ and there exists a unique x̂2 such that

1. T2(p̂, q̂, x̂2) = T1(p̂, q̂, x̂1);

2. Λ(q̂, x̂1) = Λ(q̂, x̂2);

3. F (p|q̂, x̂2) is also degenerate at p̂.

We begin with taking p̂ as the highest type in the market (q̂, x̂1). The first condition

states that we focus on the contract T2(y; x̂2) which provides workers of p̂ the same expected

payment. The deviation to the market (q̂, x̂2) is unprofitable to the asset owners in the

market (q̂, x̂1). It follows that the two markets must have the same queue length and the

same composition of the workers, be it the market (q̂, x̂2) is active or not.

First, the market (q̂, x̂2) must not have a shorter queue because the expected payoff for

workers of p̂ cannot exceed their equilibrium payoff. Second, the market (q̂, x̂2) attracts

no workers below p̂. These workers strictly prefer the market (q̂, x̂1) because its queue is

weakly shorter and T1(y; x̂1) strictly crosses T2(y; x̂2) from below. This in turn rules out

14The conditional density function h(y|p, q) satisfies SMLRP if h(yH |pH ,q)
h(yL|pH ,q) >

h(yH |pL,q)
h(yL|pL,q) for any yH > yL

and pH > pL.
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the possibilities that i) the market (q̂, x̂1) attracts workers below p̂, ii) the market (q̂, x̂2)

attracts workers above p̂ or iii) the queue in the market (q̂, x̂2) is longer. If any of these

occurs, an asset owner would have deviated to the market (q̂, x̂2)!

The key implication of Lemma 2 is that if all participants in the market (q̂, x̂1) move

to the market (q̂, x̂2), the queue length and the composition of the workers in the latter

remain the same. Workers have no profitable deviations as before. The equilibrium payoffs

remain unchanged, so do the queue length and the composition in other inactive markets.

The now inactive market (q̂, x̂1) retains the same queue length and a possibly lower type

of workers. The asset side will not deviate to the market (q̂, x̂1). Applying this procedure

on every active market (q, x1), we obtain an equilibrium with the same allocation and only

contracts in T2 are posted.

Proposition 5. When a steeper ordered set of securities is made feasible, the set of equi-

librium payoffs and allocations remains the same. No one posts from the steeper ordered

set of securities in an equilibrium.

Suppose the feasible contracts are ordered sets of securities fully ranked by the steep-

ness, Proposition 5 states that it is without loss to restrict attention to the flattest class of

contracts.15 This generalizes Proposition 3.

The asset side posts output shares if it is flatter than other feasible contracts. Consider

the following example: The asset side receives the output. An asset owner may pay the

worker a fixed wage w as well as (1− s) fraction of the output. We represent the situation

using affine contracts Taffine(y; s, w) = sy−w, where s ∈ [0, 1] and w ≥ 0.16 The restriction

w ≥ 0 captures the worker’s liquidity constraint and limited liability. Any affine contract

with w > 0 strictly crosses an output share from below. Thus, the output shares are the

flattest ordered set of securities among the affine contracts.

Corollary 2. Suppose that only affine contracts Taffine are feasible. There is an equilibrium

in which the asset side posts output shares and satisfies properties in Proposition 1.

15This result is unlike Gorbenko and Malenko (2011), in which steeper securities may be used in equilib-
rium. The difference is that in their setting, a buyer commits to a seller before he inspects the good and
learns his private value.

16Suppose the output level takes binary values, 0 or 1. A high output is produced with probability
Y (p, q). Furthermore, there are threats of sabotage on both sides, so that y − T (y) and T (y) are weakly
increasing in y. In this setting, all feasible contracts take the form of affine contracts.
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7 Discussion

The use of contracts and PAM are well documented in empirical studies. An important

question is how the interaction of two affects the efficiency and the distribution of surpluses.

The literature centers on the matching pattern when the types are public. This paper is a

first step towards answering this question in a market with private types.

I identify a new channel of inefficiency caused by handicapped competition. The contri-

bution is threefold. I propose a stylized setting that singles out the channel of inefficiency

from a plethora of market forces. The unique equilibrium has two notable features: PAM

and the Hosios condition for every pair of types. Second, I provide clean-cut results on

the distortion and the distribution of surpluses. The distribution-free results indicate that

the underlying forces are always at play. Lastly, I study the form of contracts chosen in

equilibrium. Competition drives the asset side to post from the flattest class of contracts.

It leads to constrained efficiency whenever prices are feasible. Otherwise, the competition

among workers is handicapped, causing the mentioned distortion. Simply put, this paper

spells out the ingredients for the inefficiency.

The remainder of this section remarks on the setting and the results.

Recipe for inefficiency It contains three ingredients: handicapped competition, private

types, and search friction. Without any one of them, the equilibrium allocation would be

(constrained) efficient.

Inefficiency stems from the handicapped competition between workers. Proposition 3

and 4 extend the result in EK to a richer contract space, indicating that constrained effi-

ciency is attained whenever prices are feasible. Indeed, the constrained efficient allocation

is supported by an equilibrium if the feasible contracts include an ordered set of securities

which cost weaker workers more than better workers.17 Otherwise, making prices feasible

will expand the set of equilibrium allocations, contradicting Proposition 3 and 5.

If workers’ types are contractible, a menu of output shares can require the same payment

from every type. We can obtain an equilibrium by replacing the equilibrium prices in

EK with menus of output shares requiring the same payments. Lemma 1 holds in this

equilibrium. An asset owner will not deviate to other menus of output shares.18

17Assuming the conditional density function satisfies SMLRP, a contract costs weaker workers more than
better workers if the worker’s payoff y − T (y) increases at a faster rate than the output level.

18The meeting is bilateral, so asset owners do not benefit from inducing different queue lengths for
different types. Even if an asset owner meets with multiple workers and makes the selection as in Shi
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Suppose there is no search friction. The efficient allocation features perfect PAM and

a unit queue length for every matched pair. Efficiency is attained if the asset side post

prices. Now we replace the posted prices with the output shares which keep the same

divisions of the outputs. The workers again deviate to better assets, increasing the queue

length for the best assets. Without search friction, the asset owners cannot improve their

matching probability by distorting the queue length. They increase their shares until the

queue length returns to unity. Their decisions in turn leave the same pool of workers to

lower quality assets. Inductively, the equilibrium allocation remains efficient amid higher

payoffs for the asset owners.

Efficiency benchmark with private types The utilitarian planner’s solution is widely

adopted as an efficiency benchmark in the sorting and directed search literature. A key rea-

son is that it usually coincides with the equilibrium allocations (e.g., Chiappori et al., 2010;

Gretsky et al., 1992; Moen, 1997; Shapley and Shubik, 1971). In the current framework,

this is indeed the case when prices are posted or workers’ types are public.

The constrained efficient allocation remains an appropriate benchmark if the planner

does not observe the workers’ types. She can induce the same allocation by restricting the

set of markets available. The planner first excludes all assets below q
CE

. She imposes ŝ(q)

for each type of assets. For the threshold type,

1− ŝ(q
CE

) =
d ln δ(λCE(q

CE
))

d lnλ
,

so that the two sides’ payoffs are the same as their social values. For q > q
CE

, ŝ(q) satisfies

d

dq
[(1− ŝ(q))η(λCE(q))Y (p, q)]

∣∣∣∣
p=rCE(q)

= 0.

Under Assumption (Y), the above condition ensures incentive compatibility on the

workers’ side. Since workers’ information rent grows at a slower rate than under fixed

prices, the asset side’s payoff is above the outside option. Their participation is voluntary.

However, ŝ(q) does not meet the Hosios condition. An asset owner earns a payoff above

the social value. In a decentralized market, she will deviate to post a lower share improving

her matching probability.

(2002); Shimer (2005), we can again replace the posted prices in their equilibria with some output shares.
The bottom line is that a share is no different from a price if the worker’s type is contractible.
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Policy intervention A Pigouvian intervention can induce the asset side to post ŝ(q),

decentralizing the constrained efficient allocation. Let τ(q) denote the tax payment levied

on assets q when an owner pairs up with a worker. τ(q) satisfies

δ′(λCE(q))[Y (rCE(q), q)− τ(q)] = η(λCE(q))(1− ŝ(q))Y (rCE(q), q), q ≥ q
CE
.

The left hand side is an asset owner’s marginal benefit from increasing the queue length

while the right hand side is the marginal cost.19 As the purpose is to lower asset owners’

gain from a match, τ(q) can be implemented as a subsidy if an asset owner is left unmatched,

or a combination of both to achieve budget balance. However, the Pigouvian intervention

is not distribution-free and requires knowledge of the entire distribution of types.

Outside options The outside option is the opportunity cost of participating in matching.

All results hold for arbitrarily small values of outside options. Setting U = 0 leads to

additional equilibria with the same allocation and payoffs. Instead of taking the outside

option directly, asset owners below q̃ may post contracts which attract no workers. The

assumption V > 0 restricts the mutually acceptable contract terms to the range where

the strict SCP holds. Setting V = 0 introduces trivial equilibria in which asset owners

post only s = 1.As workers receive zero payoff in any active market, a deviating offer

with s < 1 will attract an infinitely long queue of workers of the lowest type. This type of

equilibria can feature a plethora of sorting patterns. The characterized equilibrium remains

an equilibrium if the outside option for either side becomes zero.

Menu of contracts The analysis remains the same if menus of output shares are feasible.

This is because the share cannot be made contingent on the worker’s private type. Posting

a menu of shares is no different from posting only the lowest share in the menu, which the

worker always picks. The conclusion remains valid if the menu may include other contracts

steeper than output shares.20 The underlying reason is that an asset owner meets only one

worker and an incentive-compatible menu reveals his type only upon the meeting.

Contracts and expected output In my setting, the contract term affects the division

but not the size of the expected output. Utility can be transferred between two sides

19When an asset owner posts a different share, the type of her partner remains the same as in Section 3.
20Formally, the steeper contracts satisfy Assumption A1 and A3 in Guerrieri et al. (2010), their Propo-

sition 5 show that allowing menus of contracts does not change the set of equilibrium allocations and
payoffs.
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perfectly via the share or imperfectly via the queue length. So the latter is not distorted

for the purpose of utility transfer. Moreover, switching from prices to shares leaves the

aggregate surplus, hence the constrained efficient allocation, unchanged.

The baseline setting with output shares is consistent with principal-agent models built

on Diamond (1998) and Carroll (2015). The worker has an efficient production decision.

He may undertake other financial transactions that shift returns across different states.

The financial transactions are fair bets at best and may require additional effort. The only

restriction on the contingent payment is that the worker’s payoff must be non-negative, due

to his liquidity constraint. In Diamond (1998), the worker can choose any fair bets to exploit

non-linearity in the payment scheme. The author shows that an output share is optimal.

Alternatively, we assume the owner knows only the efficient production decision, but not

know what financial transactions are feasible or their consequences. An output share

guarantees that the principal’s payoff is proportional to the agent’s. Carroll (2015) shows

that it is the unique optimal contract under the maximin criterion. In this special case,

the worker always chooses the efficient production decision. Consequently, the expected

output is independent of the share, and both sides know the expected payoffs beforehand.

In general, the contract affects the size of the surplus in models of incentive provision

or risk sharing. Incorporating such considerations into assignment models with public

types involves two known complications. Legros and Newman (2007) point out that when

adjusting the contract term to transfer utility, the conversion rate typically depends on

types. The lack of complementarity between type and transferability can lead to NAM.

Besides, Kaya and Vereshchagina (2014) exemplify how the form of the contract may affect

the type dependence of the expected output.

The presence of search friction exacerbates these complications. First, utility is trans-

ferred imperfectly via a combination of the contract term and the queue length. The latter

in turn intertwines with the sorting pattern. Second, the constrained efficient allocation

changes with the form of contract, even if it retains PAM. The above channels hinge on

the model of the post-matching stage. They also affect screening of workers with private

types. As a first step, this paper abstracts away the common reasons behind the use of

output shares and focuses on its consequences on sorting.

Other contracts Suppose the asset side has to use contracts other than prices and

output shares. The handicapped competition leads to inefficient sorting as long as a less

generous contract term costs better workers more. However, the worker’s preference over
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the queue length and the contract differs across types. An asset owner may screen workers

by distorting the queue length. The Hosios condition no longer holds in equilibrium.

Otherwise, an incremental distortion in the queue length leads to a second-order loss while

the improvement in the partner’s type yields a first-order gain. The utilitarian planner’s

reassignment problem in Appendix A.1 sheds light on the obstacle for distribution-free

results. The form of distortion is in line with the planner’s reassignment. Without the

Hosios condition, there is no direct relation between the planner’s gain from a reassignment

and the optimality conditions for the two sides. Bridging the gap between competitive

screening and assortative matching is left to future research. The results here serve as a

useful benchmark.
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A Appendix

A.1 Reassignment by utilitarian planner

Let us start with the equilibrium in Section 3 and consider the following thought experi-

ment. Workers and asset owners are distributed across markets according to (K̃, L̃), and

have not formed matches. A worker or asset owner is randomly chosen. The utilitarian

planner may reassign the chosen agent to another market or her outside option.21 I study

how the reassignment depends on the agent’s type, and its connection to Proposition 2.

Only active markets merit consideration. If an additional worker of p̂ is assigned to the

active market for assets q, the aggregate surplus changes by

η(λ̃(q))Y (p̂, q) + λ̃(q)η′(λ̃(q))Y (r̃(q), q).

The additional worker contributes η(λ̃(q))Y (p̂, q) himself. At the same time, his pres-

ence decreases the number of matched pairs (r̃(q), q), reducing the aggregate surplus by

λ̃(q)η′(λ̃(q))Y (r̃(q), q).22 To maintain symmetry, an asset of q̂ can be assigned to a market

for a different quality, say q. The aggregate surplus changes by

δ(λ̃(q))Y (r̃(q), q̂)− λ̃(q)δ′(λ̃(q))Y (r̃(q), q).

The increase in the surplus generated by the additional asset is δ(λ̃(q))Y (r̃(q), q̂), while

the loss due to the reduction in the matches of the pair (r̃(q), q) is λ̃(q)δ′(λ̃(q))Y (r̃(q), q).

Taking p = κ̃(q̂) and q = q̂, we can see that everyone’s equilibrium payoff is equal to

her marginal contribution, the reduction in the aggregate surplus if she is removed. This

is the implication of the Hosios condition. The utilitarian planner reassigns the agent to a

market where the increase in the surplus exceeds her equilibrium payoff.

Lemma 3. Fix any q ∈ [q̃, 1]. Then for any p < r̃(q),

U(q) + λV (p) > δ(λ)Y (p, q). (A.1)

Furthermore, there exists some type p̂ > r̃(q) such that for any p ∈ (r̃(q), p̂),

U(q) < max
λ≥0

[δ(λ)Y (p, q)− λV (p)]. (A.2)

21The reassignment of a single agent does not affect the expected payoff of any other agent. It does not
matter whether the agents anticipate the reassignment beforehand.

22Let M(l, k) denote the number of matches in a market with l workers and k assets. Hence,

M(l, k) = kδ( l
k

). The number of matched pairs decreases by limε→0+
1
ε

[
M(l, l

l+ε
k)−M(l, k)

]
= l

k
η′( l

k
).

The remaining expressions are derived in a similar manner.
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Proof. Fix some q ∈ [q̃, 1]. Define

Ũ(p, q) = max
λ≥0
{δ(λ)Y (p, q)− λV (p)}.

The unique maximizer Λ̃(p, q) satisfies δ′(Λ̃(p, q))Y (p, q) = V (p). For p ∈ [p̃, 1], (6) implies

that Λ̃(p, q) > (<)λ̃(κ̃(p)) if q > (<)κ̃(p). By envelope theorem and (8),

∂

∂p
Ũ(p, q) = δ(Λ̃(p, q))

∂

∂p
Y (p, q)− Λ̃(p, q)

∂

∂p
V (p)

= δ(Λ̃(p, q))
∂

∂p
Y (p, q)− Λ̃(p, q)δ′(λ̃(κ̃(p)))

∂Y (p, κ̃(p))

∂p

> Λ̃(p, q)

[
η(Λ̃(p, q))

∂

∂p
Y (p, q)− η(λ̃(κ̃(p)))

∂Y (p, κ̃(p))

∂p

]
= Λ̃(p, q)V (p)

[
η(Λ̃(p, q))

δ′(Λ̃(p, q))

∂ lnY (p, q)

∂p
− η(λ̃(κ̃(p)))

δ′(λ̃(κ̃(p)))

∂ lnY (p, κ̃(p))

∂p

]
Under Assumption (Y) and (M), ∂

∂p Ũ(p, q) > 0 for p ≤ r̃(q). U(q) = Ũ(r̃(q), q) under (7).

Hence, we obtain the inequalities (A.1) and (A.2).

Lemma 3 describes how the equilibrium payoffs violate the inequality (12) systemati-

cally. Its proof indicates the role of Assumption (Y) and (M) in shaping the distortion.

We first consider the case that a worker of p̂ < p̃ is chosen. He is contributing V .

If he is reassigned to the active market for assets q, the aggregate surplus changes by

η(λ̃(q))Y (p̂, q) + λ̃(q)η′(λ̃(q))Y (r̃(q), q). The planner never reassigns him because

V > δ′(λ̃(q))Y (p̂, q) = η(λ̃(q))Y (p̂, q) + λ̃(q)η′(λ̃(q))Y (p̂, q)

> η(λ̃(q))Y (p̂, q) + λ̃(q)η′(λ̃(q))Y (r̃(q), q).

The first inequality comes from the worker’s IC condition. The second inequality holds

because the reassigned worker displaces better workers r̃(q).

Now consider a worker of type p̂ = r̃(q̂) > p̃. The planner would not reassign him to

the outside option because V (p̂) > V . The worker is not reassigned to better assets either.

For qH > q̂, the change in the aggregate surplus is given by

η(λ̃(qH))Y (p̂, qH) + λ̃(qH)η′(λ̃(qH))Y (r̃(qH), qH)

<δ′(λ̃(qH))Y (p̂, qH) < δ′(λ̃(q̂))Y (p̂, q̂) = V (p̂).

Again, the first inequality is due to the displacement of better workers, while the second

inequality is due to the workers’ IC condition. Instead, the planner reassigns him to some
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lower quality assets qL. The aggregate surplus changes by

η(λ̃(qL))Y (p̂, qL) + λ̃(qL)η′(λ̃(qL))Y (r̃(qL), qL)− δ′(λ̃(q̂))Y (p̂, q̂)

=η(λ̃(qL))[Y (p̂, qL)− Y (r̃(qL), qL)]− [δ′(λ̃(q̂))Y (p̂, q̂)− δ′(λ̃(qL))Y (r̃(qL), qL)].

As η(λ̃)(q̂) > δ′(λ̃(q̂)), the above expression is positive when qL is sufficiently close to q̂.

The root cause is that under output shares, the information rent grows slower with the

worker’s type. By continuity, the planner cannot gain from reassigning a worker of p̃, be

it p̃ > 0 or V (p̃) > V .

We now carry out the same exercise for the asset side. First, the utilitarian planner

reassigns an asset of q̂ ≥ q̃ to better workers. Lemma 3 states that there are some types,

say qH > q̂, satisfying

U(q̂) < δ(λ̃(qH))Y (r̃(qH), q̂)− λ̃(qH)V (r̃(qH)).

The aggregate surplus increases if reassigning the asset to the active market for assets qH .

For the active market for assets qL in between q̂ and q̃, let us rearrange the inequality

(A.1),

U(q̂) > δ(λ̃(qL))Y (r̃(qL), q̂)− λ̃(qL)δ′(λ̃(qL))Y (r̃(qL), qL).

The aggregate surplus drops if the asset is reassigned to markets with weaker workers. As

U(q̂) ≥ U , the outside option is ruled out. By continuity, the above reassignment also

applies to assets of quality slightly below q̃.

Connection to the form of distortion Like Proposition 2, the conclusion on the

reassignment applies to all distributions of types. Let us reconcile the two results. The

equilibrium features excessive entry of workers and inefficiently low participation on the

asset side. This is consistent with the planner’s decision to leave a worker of type below p̃

to his outside option, but reassign some assets slightly below q̃ to match with workers.

The planner reassigns a worker above p
CE

to lower quality assets or an asset above

q̃ to better workers. This observation is consistent with two features of the distortion.

First, the participating workers pair up with better assets than in the constrained efficient

allocation. Second, the equilibrium queue length is inefficiently high for the best assets, as

the planner reassigns the best workers but not the best assets.

In comparison, it is less obvious why the planner reassigns a worker of p ∈ (p̃, p
CE

) to

lower quality assets instead of his outside option. Insufficient participation on the asset

side is the reason. The quality of assets to which the worker is reassigned is still above the
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efficient threshold q
CE

. Therefore, the reassignment increases the aggregate surplus.

Poaching by posting price Lemma 3 also sheds light on Proposition 4. Again we start

with the equilibrium in Section 3. Suppose that prices are now feasible to an asset owner.

When the owner switches to a fixed price, the attracted workers are compensated with

their equilibrium payoff. Which type will she target? The inequality (A.1) implies that

the owner never poaches weaker workers. The inequality (A.2) indicates that poaching

workers slightly better than the current partner r̃(q) is always profitable. The competition

for better workers eventually drives the owners to all post prices.

A.2 Proof of Proposition 1

I first characterize the equilibrium. I then show that the boundary value problem admits

a unique solution.

Every equilibrium satisfies the properties in Proposition 1 Fix an equilibrium

(K̃, L̃). The assumption (1) ensures that the set of active markets is non-empty.

Step 1: The equilibrium allocation must feature PAM.

From the discussion in the main text, the participation on the workers’ side must be

monotonic as Y (p, q) is strictly increasing in p. The workers and asset owners in the active

markets must match assortatively because of the strict SCP.

Step 2: U(q) is strictly increasing for q ≥ q.
Suppose (qL, sL) ∈ supp(K̃) and pL is the highest type in supp(F (p|qL, sL)). Fix any

qH > qL. Consider the inactive market (qH , sH), where sH is given by (1−sH)Y (pL, qH) =

(1−sL)Y (pL, qL). Note that sH > sL. Λ(qH , sH) ≥ Λ(qL, sL) because V (pL) ≥ η(Λ(qH , sH))(1−
sH)Y (pL, qH). For all p < pL,

V (p) ≥ η(Λ(qL, sL))(1− sL)Y (p, qL) > η(Λ(qH , sH))(1− sH)Y (p, qH).

The strict inequality follows from Assumption (Y). Hence, supp(F (p|qH , sH)) contains no

types below pL. An asset owner of qH can obtain

δ(Λ(qH , sH))sH
∫
Y (p, qH)dF (p|qH , sH) > δ(Λ(qL, sL))sLY (pL, qL) ≥ U(qL).

Therefore, the participation of the asset side is monotonic and r(q) is well defined.
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Step 3: For any p ∈ [0, 1] and (q, s) ∈ supp(K̃),

V (p) > η(Λ(q, s))(1− s)Y (p, q) if q 6= κ(p).

Consider two active markets (qH , s1) and (qL, s0), where qH > qL. Suppose a worker

of r(qH) is indifferent between these two markets. His decision is optimal only if

η(Λ(qL, s0))(1− s0)Y (r(qH), qL) =η(Λ(qH , s1))(1− s1)Y (r(qH), qH)

≥η(Λ(q, s′))(1− s′)Y (r(qH), q)

for all active markets (q, s′) with q ∈ (qL, qH). Strict SCP implies that all workers below

r(qH) strictly prefer the market (qL, s0) to any active market with q ∈ (qL, qH). PAM then

implies that all such active markets have zero queue lengths. Hence, U(q′) = U ≤ U(qL),

contradicting my previous claim. A symmetric argument rules out that a worker of r(qL)

is indifferent between (qL, s0) and another active market (qH , s1).

As the distribution of types is atomless, κ(p) and r(q) are strictly increasing and C1.

Step 3: Characterize the active markets supp(K̃).

Lemma 4. Suppose (q, s′) ∈ supp(K̃) and for any p ∈ [0, 1],

V (p) ≥ η(Λ(q, s′))(1− s′)Y (p, q),

and equality holds if and only if q = κ(p). Then, for any s ∈ [0, 1), F (p|q, s) is degenerate

at r(q) if Λ(q, s) > 0. Furthermore, an owner of asset q has no profitable deviations if and

only if Λ(q, s′) satisfies

δ′(Λ(q, s′)) = η(Λ(q, s′))(1− s′). (A.3)

For s ∈ [0, 1) and p 6= r(q),

V (p)

V (r(q))
>

Y (p, q)

Y (r(q), q)
=

η(Λ(q, s))(1− s)Y (p, q)

η(Λ(q, s))(1− s)Y (r(q), q)
.

Suppose Λ(q, s) > 0. Then, V (p) = η(Λ(q, s))(1 − s)Y (p, q) if and only if p = r(q), and

hence F (p|q, s) is degenerate at r(q). In this case, Λ(q, s) is determined by

V (r(q)) = η(Λ(q, s′))(1− s′)Y (r(q), q) = η(Λ(q, s))(1− s)Y (r(q), q).

An asset owner has no profitable deviations if and only if U(q) ≥ δ(Λ(q, s))sY (r(q), q).

This is equivalent to (A.3), which ensures

Λ(q, s′) = arg max
λ∈[0,∞]

δ(λ)− λη(Λ(q, s′))(1− s′).
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Step 4: There exists a strictly increasing function λ̃ : [0, 1]→ (0,∞) such that

supp(K̃) =
{

(q, s) : q ∈ [q, 1], s = 1− d ln δ(λ̃(q))

d lnλ

}
,

and Λ(q, s) = λ̃(q) for (q, s) ∈ supp(K̃). V (p) satisfies (6) and (8).

Participation is monotonic on both sides, so there is at least one active market (q, s)

for any q ∈ [q, 1]. Substituting (A.3) into (2), workers’ optimality condition requires

V (r(q′)) = max
(q,s)∈supp(K̃)

{δ′(Λ(q, s))Y (r(q′), q)}.

The envelope theorem implies that V is C1. As r(q), δ′(λ) and Y (p, q) are C1, there

must exist a C1 function λ : [0, 1]→ (0,∞) satisfying (8). This also establishes that for any

q ≥ q, there is exactly one active market (q, s) where Λ(q, s) = λ(q) and s = 1− d ln δ(λ(q))
d lnλ .

Combining with (A.3), we obtain (6).

From (6) and (8), λ̃(q) is strictly increasing to offset the gain from a better asset.

Step 5: Establish the boundary value problem.

We have discussed (4), (5) and (9) in the main text. We now turn to (10). Suppose

q > 0 and U(q) > U. Let (q, s) be the active market for assets q. If p = 0, an owner

of q′ slightly below q can secure a payoff δ(λ(q))s′Y (0, q′) > U by posting s′ satisfying

η(λ(q))(1 − s′)Y (0, q′) = V (0). For the case p > 0, V (p) = η(λ(q))(1 − s)Y (p, q) = V .

By continuity, for q′ slightly below q, there must exist s′ < s and p′ < p satisfying both

δ(λ(q))s′Y (p′, q′) > U and η(λ(q))(1 − s′)Y (p′, q′) = V . By construction, Λ(q′, s′) ≥ λ(q),

and η(Λ(q′, s′))(1− s′)Y (p, q′) < V for any p < p′. Workers below p′ will not be attracted.

The deviating payoff must be above U ! Therefore, U(q) = U if q > 0.

The preceding analysis verifies all properties in Proposition 1.

An allocation is an equilibrium if it satisfies the properties in Proposition 1.

Fix a solution (p̃, q̃, r̃, λ̃, ṽ) to the boundary value problem. We can recover a candidate equi-

librium (K̃, L̃) satisfying all properties listed in Proposition 1. Define s̃(q) = 1− d ln δ(λ̃(q))
d lnλ .

As λ̃(q) is continuous and strictly increasing, s̃(q) is also continuous and increasing in q

under Assumption (M). If q′ ≥ q̃ and s′ ≥ s̃(q̃),

K̃(q′, s′) = G(sup{q ≤ q′ : s̃(q) ≤ s′})−G(q̃).

Otherwise, K̃(q′, s′) = 0. κ̃ is the inverse of r̃. If p ≥ p̃, q′ ≥ q̃ and s′ ≥ s̃(q̃),

L̃(p′, q′, s′) = F (sup{p ≤ p′ : κ̃(p) ≤ q′, s̃(κ̃(p)) ≤ s′})− F (p̃).
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Otherwise, L̃(p′, q′, s′) = 0.

I first verify that workers’ optimality condition. Combining (6) and (8),

d ln ṽ(p)

dp
=
∂ lnY (p, κ̃(p))

∂p
, p ≥ p̃.

V (p) = ṽ(p) for p > p̃. Consider any p0 ≥ p̃ and p1 6= p0,

lnV (p1)− ln δ′(κ̃(p0))Y (p1, κ̃(p0)) = [lnV (p1)− ln ṽ(p0)]− [lnY (p1, κ̃(p0))− lnY (p0, κ̃(p0)]

=

∫ p1

p0

d lnV (p)

dp
− ∂ lnY (p, κ̃(p0))

∂p
dp ≥

∫ max{p1,p̃}

p0

∂ lnY (p, κ̃(p))

∂p
− ∂ lnY (p, κ̃(p0))

∂p
dp > 0.

The last strict inequality is due to assumption (Y) and κ̃ is strictly increasing. η(Λ(q, s̃(q)))(1−
s̃(q)) = δ′(λ̃(q)) holds for any active market (q, s̃(q)). A worker of p = r̃(q) receives his

highest expected payoff in the market (q, s̃(q)). The outside option is optimal for the

workers of p < p̃ because V (p̃) = V .

I now turn to the asset side. By Lemma 4, the optimality condition is met for q ≥ q̃ as

U(q) = [δ(λ̃(q))− λ̃(q)δ′(λ̃(q))]Y (r̃(q), q) ≥ U.

Now suppose q̃ > 0. It is not optimal for an owner of q < q̃ to participate. Consider an

inactive market (qL, s′) where qL < q̃. The strict SCP implies that workers above p̃ strictly

prefer the market (q̃, s̃(q̃)) to the market (qL, s′). F (p|qL, s′) must be degenerate at some

pL ≤ p̃.
The case Λ(qL, s′) = 0 is trivial. Suppose Λ(qL, s′) > 0, η(Λ(qL, s′))(1− s′)Y (pL, qL) =

V (pL) = V holds. If deviating to market (qL, s′), an asset owner will receive

δ(Λ(qL, s′))s′Y (pL, qL) =δ(Λ(qL, s′))Y (pL, qL)− Λ(qL, s′)V (pL)

≤max
λ

[δ(λ)Y (pL, qL)− λV ] < U(q̃) = U.

The boundary value problem admits a unique solution

First notice that (r̃, λ̃, ṽ) in any solution must be continuously differentiable and strictly

increasing. By differentiating (6) w.r.t. q and combining with (8), I obtain

d ln δ′(λ̃(q))

dq
= −∂ lnY (r̃(q), q)

∂q
(A.4)

There exists a unique pair of λ and λ satisfying [δ(λ)−δ′(λ)λ]Y (1, 1) = U and δ′(λ)Y (1, 1) =

V , respectively. Note that λ > λ.

We first consider the following initial value problem (IPV-λ(1)): r(q) and λ(q) satisfy
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(5) and (A.4) with initial values r(1) = 1 and λ(1) = λ1 ∈ [λ, λ].

As (5) and (A.4) are locally Lipschitz, Picard’s existence theorem ensures that IPV-λ(1)

(in the downward direction) admits a unique solution {r(q;λ1), λ(q;λ1)} over the interval

[q(λ1), 1], where q(λ1) is the first level of q where either of the following cases occurs:

0 = r(q;λ1)[δ′(λ(q;λ1))Y (r(q;λ1), q)− V ], or (A.5)

0 = q[(δ(λ(q;λ1))− δ′(λ(q;λ1))λ(q;λ1))Y (r(q;λ1), q)− U ]. (A.6)

Furthermore, q(λ1) and p(λ1) := r(q(λ1);λ1) are continuous in λ1.

For p ∈ [p(λ1), 1], κ(p;λ1) denote the inverse of r(q;λ1). Define

v(p;λ1) = δ′(λ(κ(p;λ1);λ1))Y (p, κ(p;λ1)), p ∈ [p(λ1), 1];

u(q;λ1) = [δ(λ(q;λ1))− δ′(λ(q;λ1))λ(q;λ1)]Y (r(q;λ1), q), q ∈ [q(λ1), 1].

Note that for all q > q(λ1), λ(q;λ1), r(q;λ1), r(q;λ1)[v(r(q;λ1);λ1)−V ] and q[u(q;λ1)−
U ] are positive and strictly increasing in q.23

Existence of a solution The boundary value problem has a solution if there exists some

λ1 such that the solution to the IPV-λ(1) with λ(1) = λ1 satisfies both (A.5) and (A.6)

at q = q(λ1). By construction, (A.5) holds at q = q(λ) for λ1 = λ and (A.6) holds at

q = q(λ) for λ1 = λ. Consider λ̂ = inf{λ′ ≥ λ : [v(p(λ1);λ1) − V ]p(λ1) = 0,∀λ1 ≥ λ′}.
By continuity, [v(p(λ̂); λ̂) − V ]p(λ̂) = 0. If λ̂ = λ. Then, I have argued that (A.6) also

holds at q = q(λ̂). Suppose λ̂ > λ, the construction of λ̂ ensures that there is a convergent

sequence {λ1
n} with limit λ̂ such that λ1

n < λ̂ and only (A.6) holds at q = q(λ1
n) for λ1 = λ1

n.

By continuity, q(λ̂)[u(q(λ̂); λ̂) − U ] = 0 must hold as well. Therefore, the solution to the

IPV-λ(1) with λ(1) = λ̂ solves the boundary value problem.

Uniqueness of the solution Suppose λH > λL. For p ∈ [max{p(λH), p(λL)}, 1),

κ(p;λH) > κ(p;λL), v(p;λH) < v(p;λL) and λ(κ(p;λH);λH) > λ(κ(p;λL);λL).

As r′(1;λH) > r′(1;λL), κ(p;λH) > κ(p;λL), λ(κ(p;λH);λH) > λ(κ(p;λL);λL) and

v(p;λH) < v(p;λL) must hold in some neighborhood of p = 1.

Consider the case that κ(.;λH) and κ(.;λL) intersect somewhere in [max{p(λH), p(λL)}, 1).

pκ = max{p < 1 : κ(p;λH) = κ(p;λL)} is then well defined and, by construction,

κ(p;λH) > κ(p;λL) for all p ∈ (pκ, 1). I now argue that v(.;λH) and v(.;λL) must in-

23v(r(q;λ1);λ1) is strictly increasing in q because ∂ ln δ′(λ(q;λ1))
∂q

+ ∂ lnY (r(q;λ1),q)
∂q

= 0.
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tersect somewhere in [pκ, 1). Suppose not, for all p ∈ (pκ, 1],

δ′(λ(κ(p;λH);λH))Y (p, κ(p;λH)) = v(p;λH) < v(p;λL) = δ′(λ(κ(p;λL);λL))Y (p, κ(p;λL)),

and hence λ(κ(p;λH);λH) > λ(κ(p;λL);λL). This contradicts (5) required by PAM,

0 >

∫ 1

pκ

1

λ(κ(p;λH);λH)
− 1

λ(κ(p;λL);λL)
dF

= [G(1)−G(κ(pκ;λH))]− [G(1)−G(κ(pκ;λL))] = 0!

Consider the case that v(.;λH) and v(.;λL) intersect somewhere in [max{p(λH), p(λL)}, 1).

Define pv = max{p < 1 : v(p;λH) = v(p;λL)}. As v(p;λH) < v(p;λL) for p > pv,

∂ lnY (pv, κ(pv;λ
H))

∂p
=
d ln v(pv;λ

H)

dp
≤ d ln v(pv;λ

L)

dp
=
∂ lnY (pv, κ(pv;λ

L))

∂p
.

Assumption (Y) implies that κ(pv;λ
H) ≤ κ(pv;λ

L). So κ(.;λH) and κ(.;λL) intersect

somewhere in [pv, 1].

We conclude that κ(p;λH) > κ(p;λL) and v(p;λH) < v(p;λL) throughout the interval

[max{p(λH), p(λL)}, 1). Otherwise, pv and pκ are well defined, satisfying pv > pκ and

pκ ≥ pv .

λ(κ(p;λH);λH) > λ(κ(p;λL);λL) then follows from the definition of v(p;λH).

There is a unique initial value of λ(1) for which the solution to the IPV-λ(1) satisfies both

(A.5) and (A.6) at q = q(λ1).

Suppose not, the solutions to the IPV-λ(1) with λ(1) = λH and λ(1) = λL satisfy both

(A.5) and (A.6) at q = q(λ1). Assume λH > λL.

The first case is p(λL) > p(λH). As p(λL) > 0, V = v(p(λL);λL) > v(p(λL);λH). (A.5)

cannot be met at p(λH)! The second case is p(λL) ≤ p(λH). Then q(λH) = κ(p(λH);λH) >

κ(p(λH);λL) ≥ q(λL) and λ(q(λH);λH) > λ(κ(p(λH);λL);λL). This is impossible because

q(λH) > 0 implies U = u(q(λH);λH) > u(κ(p(λH);λL);λL). (A.6) cannot be met at q(λL)!

A.3 Proof of Proposition 2

(p̃, q̃, r̃, λ̃, ṽ, ũ) satisfies (4)–(6) and (8)–(10) whereas (rCE , λCE , pCE , qCE , vCE , uCE) satis-

fies (4)–(6) and (9)–(11). The assumption (1) ensures that p < 1 and q < 1. Combining
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(6) into (8) and (11), we can respectively rewrite the two conditions as

d ln ṽ(r̃(q))

dp
=
∂ lnY (r̃(q), q)

∂p
,

d ln vCE(rCE(q))

dp
=
η(λCE(q))

δ′(λCE(q))

∂ lnY (rCE(q), q)

∂p
.

(A.7)

The subsequent arguments require only dṽ(r̃(q))
dp < η(λ̃(q))∂Y (r̃(q),q)

∂p but not other features

of the sharing contracts.

Lemma 5. Suppose q̂ = κ̃(p̂) = κCE(p̂) for some p̂ > max{p
CE
, p̃}, then λCE(q̂) < λ̃(q̂).

Proof. Suppose to the contrary that λCE(q̂) ≥ λ̃(q̂). (6) implies vCE(p̂) ≤ ṽ(p̂) and (A.7)

implies d ln ṽ(p̂)
dp < d ln vCE(p̂)

dp . Hence, vCE(p) < ṽ(p) and κCE(p) > κ̃(p) in some interval

(p̂− ε, p̂) where ε > 0.24

Consider the case where κ̃ and κCE intersect in [max{p
CE
, p̃}, p̂). pκ denotes the highest

intersection point of κ̃ and κCE in [max{p
CE
, p̃}, p̂), so that κCE(p) > κ̃(p) for all p ∈

(pκ, p̂). Then, vCE and ṽ must intersect somewhere in between pκ and p̂. Otherwise, for all

p ∈ (pκ, p̂), (6) implies δ′(λ̃(κ̃(p)))Y (p, κ̃(p)) > δ′(λCE(κCE(p)))Y (pv, κCE(p)), and hence

λ̃(κ̃(p)) < λCE(κCE(p)). This contradicts PAM and (5),

0 <

∫ p̂

pκ

1

λ̃(κ̃(p))
− 1

λCE(κCE(p))
dF = [G(q̂)−G(κ̃(pκ))]− [G(q̂)−G(κCE(pκ))] = 0!

Consider the case where vCE and ṽ intersect in [max{p
CE
, p̃}, p̂). Let pv be the highest

intersection point of vCE and ṽ in [max{p
CE
, p̃}, p̂). vCE(p) < ṽ(p) for all p ∈ (pv, p̂).

Then κ̃ and κCE must intersect in between pv and p̂. Suppose not, κCE(p) > κ̃(p) for all

p ∈ (pκ, p̂). In the interval (pκ, p̂), λ̃(κ̃(p)) < λCE(κCE(p)) because of (6) and

d ln vCE(p)

dp
=

η(λCE(κCE(p)))

δ′(λCE(κCE(p)))

∂ lnY (p, κCE(p))

∂p

>
η(λ̃(κ̃(p)))

δ′(λ̃(κ̃(p)))

∂ lnY (p, κ̃(p))

∂p
>
∂ ln ṽ(p)

∂p
.

The first strict inequality is due to Assumption (Y) and (M). Hence, vCE(pv) < ṽ contra-

dicting the initial claim that they intersect at pv!

It follows that vCE(p) < ṽ(p) and κCE(p) > κ̃(p) throughout [max{p
CE
, p̃}, p̂). Other-

wise, pv and pκ will co-exist, satisfying p̂ > pκ > pv and p̂ > pv > pκ! (6) then requires

λ̃(κ̃(p)) < λCE(κCE(p)) throughout [max{p
CE
, p̃}, p̂).

24For the case where λCE(q̂) = λ̃(q̂), one can show ∂ ln δ′(λCE(q̂))
∂q

> ∂ ln δ′(λ̃(q̂))
∂q

by differentiating (6) w.r.t.
q and combining it with (A.7 ).
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These conclusions contradict the boundary conditions. If p̃ > p
CE

, (9) requires V =

ṽ(p̃) > vCE(p̃)! If p̃ ≤ p
CE
, then q

CE
= κCE(p

CE
) > κ̃(p

CE
) ≥ q̃ and λCE(q

CE
) >

λ̃(κ̃(p
CE

)). q
CE

> 0 and (10) require U = uCE(q
CE

) > ũ(κ̃(p
CE

)) ≥ ũ(q̃)!

Step 1: λCE(1) < λ̃(1), vCE(1) > ṽ(1) and uCE(1) < ũ(1).

Apply Lemma 5 with p̂ = q̂ = 1.

Step 2: κ̃(p) > κCE(p) for any p ∈ (max{p
CE
, p̃}, 1).

From (5), λCE(1) < λ̃(1) implies r′CE(1) < r̃′(1), and hence κ̃(p) > κCE(p) for suffi-

ciently large p. Suppose κ̃ and κCE intersect somewhere in (max{p
CE
, p̃}, 1). Consider the

highest intersection point p̂ and q̂ = κ̃(p̂) = κCE(p̂). Lemma 5 states that λCE(q̂) < λ̃(q̂).

By construction, rCE(q) > r̃(q) for q > q̂. It implies r′CE(q̂) ≥ r̃′(q̂) and contradicts (5)!

Step 3: p
CE
≥ p̃ and q̃ ≥ q

CE
.

First, suppose that p̃ > p
CE

. Then q̃ = κ̃(p̃) ≥ κCE(p̃) > κCE(p
CE

) = q
CE
. Either (9)

or (10) must be violated in such a case.

U = ũ(q̃) + λ̃(q̃)[ṽ(p̃)− V ]

= max
λ≥0

[δ(λ)Y (p̃, q̃)− λV ] > max
λ≥0

[δ(λ)Y (p
CE
, q
CE

)− λvCE(p
CE

)] (A.8)

= uCE(q
CE

)!

The first equality combines (9) and (10) given that q̃ > 0 and p̃ > 0 while the second and

last equalities are both derived from (6) and (7). We have shown p
CE
≥ p̃ and now proceed

to q̃ ≥ q
CE

. Interchanging the roles of (p
CE
, q
CE

) and (p̃, q̃) in the inequality (A.8), the

case p
CE

> p̃ and q
CE

> q̃ is ruled out. For any p slightly above p̃, κ̃(p) > κCE(p), we rule

out the case p
CE

= p̃ and q
CE

> q̃ based on the continuity of κ̃. p
CE
≥ p̃ and q̃ ≥ q

CE
is

the only remaining possibility.

Step 4: p
CE

= p̃ only if p
CE

= p̃ = 0 and ṽ(0) > vCE(0). q̃ = q
CE

only if q̃ = q
CE

= 0 and

uCE(0) > ũ(0).

We now consider the case where p
CE

= p̃ and q̃ = q
CE
. The first step is to show λ̃(q̃) <

λCE(q̃). Differentiating the log of (6) and subtracting the expressions with the respective

expressions of (A.7 ), I obtain
d ln δ′(λCE(q̃))

dq >
d ln δ′(λ̃(q̃))

dq . Suppose, to the contrary, that

λ̃(q̃) ≥ λCE(q̃). For q slightly above q̃, λ̃(q) > λCE(q) and (5) implies r̃(q) > rCE(q). This

contradicts the previous claim that r̃(q) < rCE(q)!

We can further rule out p
CE

= p̃ > 0. (6) and (9) are met only if λ̃(q̃) = λCE(q̃)! A

symmetric argument applies to the case q̃ = q
CE

> 0. The only remaining possibility is
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that p
CE

= p̃ = q̃ = q
CE

= 0. ṽ(0) > vCE(0) and uCE(0) > ũ(0) because λ̃(0) < λCE(0).

We now consider the case where p
CE

= p̃ and q̃ > q
CE
. From (6), (7) and (10),

max
λ≥0

[δ(λ)Y (p
CE
, q
CE

)− λvCE(p
CE

)] = uCE(q
CE

)

≥ U = ũ(q̃) = max
λ≥0

[δ(λ)Y (p
CE
, q̃)− λṽ(p

CE
)].

This immediately implies that ṽ(p
CE

) > vCE(p
CE

) ≥ V , and hence by (9), p
CE

= p̃ = 0.

For the case p
CE

> p̃ and q̃ = q
CE

, a symmetric argument shows that q̃ = q
CE

= 0

and uCE(0) > ũ(0).

Note that we never rule out the case p
CE

> p̃ and q̃ > q
CE

. Combining step 3 and 4, I

show that p
CE

= p̃ if and only if p
CE

= 0 and q̃ = q
CE

if only if q̃ = 0.

Step 5: ṽ(p
CE

) > vCE(p
CE

) and uCE(q̃) > ũ(q̃)

I have shown in the cases p
CE

= p̃ or q̃ = q
CE
. Suppose p

CE
> p̃, (9) immediately

implies ṽ(p
CE

) > vCE(p
CE

) = V . Similarly, uCE(q̃) > ũ(q̃) = U if q̃ > q
CE
.

Corollary 1 follows from step 1 and 5.

A.4 Proof of Remark 1

I first consider the case δ′(1)Y (0, 0) ≥ V in which p
CE

= q
CE

= 0. Proposition 2 states

that p̃ = p
CE

= 0. Corollary 1 states ṽ(0) > vCE(0) ≥ V . Suppose q̃ > q
CE

, (10) implies

[δ(λ̃(q̃))− λ̃(q̃)δ′(λ̃(q̃))]Y (0, q̃) = U ≤ uCE(0) = [δ(1)− δ′(1)]Y (0, 0)

Hence, λ̃(q̃) < 1. Now suppose q̃ = q
CE

= 0. From Corollary 1, U(0) < uCE(0) =

[δ(1)− δ′(1)]Y (0, 0), and hence λ̃(q̃) < 1.

I now turn to the case δ′(1)Y (0, 0) < V in which p
CE

= q
CE

> 0. Proposition 2 states

that q̃ > q
CE

> 0. The boundary conditions at the bottom are given by

δ′(λ̃(q̃))Y (p̃, q̃) = ṽ(p̃) ≥ V = U = [δ(λ̃(q̃))− λ̃(q̃)δ′(λ̃(q̃))]Y (p̃, q̃)

As the matching function is symmetric, δ(λ) − λδ′(λ) < (=)δ′(λ) if and only if λ < (=)1.

It follows that λ̃(q̃) ≤ 1. Furthermore, λ̃(q̃) = 1 if and only if ṽ(p̃) = V .

41



A.5 Proof of Lemma 1

EK show that the boundary value problem for the constrained efficient allocation admits

a solution.25 Fix a solution (p
CE
, q
CE
, rCE , λCE , vCE , uCE), I first show that it satisfies

(12), and use the inequality to establish uniqueness of the solution. Define

Û(p, q) = max
λ≥0
{δ(λ)Y (p, q)− λvCE(p)}.

The unique maximizer, denoted by Λ̂(p, q), satisfies δ′(Λ̂(p, q))Y (p, q) = vCE(p). By com-

paring with (6), we deduce that Λ̂(p, q) > (<)λCE(κCE(p)) if q > (<)κCE(p).

I first consider p ≥ p
CE
. By envelope theorem and (11),

∂

∂p
Û(p, q) = δ(Λ̂(p, q))

∂

∂p
Y (p, q)− Λ̂(p, q)

∂

∂p
vCE(p)

= δ(Λ̂(p, q))
∂

∂p
Y (p, q)− Λ̂(p, q)η(λCE(κCE(p)))

∂

∂p
Y (p, κCE(p))

= Λ̂(p, q)vCE(p)

[
η(Λ̂(p, q))

δ′(Λ̂(p, q))

∂ lnY (p, q)

∂p
− η(λCE(κCE(p)))

δ′(λCE(κCE(p)))

∂ lnY (p, κCE(p))

∂p

]
Under Assumption (Y) and (M), ∂

∂p Û(p, q) > (<)0 if q > (<)κCE(p).

For p < p
CE
, vCE(p) = V = vCE(p

CE
), so

Û(p, q) < maxλ≥0{δ(λ)Y (p
CE
, q)− λvCE(p

CE
)} = Û(p

CE
, q).

Putting together, for any q ≥ q
CE

and any p 6= rCE(q),

uCE(q) = Û(rCE(q), q) > max
λ≥0
{δ(λ)Y (p, q)− λvCE(p)}

For q < q
CE
, (10) requires that for any p,

uCE(q) = U = uCE(q
CE

) ≥ max
λ≥0
{δ(λ)Y (p, q

CE
)−λvCE(p)} > max

λ≥0
{δ(λ)Y (p, q)−λvCE(p)}.

We have established the inequality (12).

25Although EK assume the values of outside options to be zero, their proof is readily extended to the
case with positive outside options.
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Fix any (K,L). The aggregate surplus is given by∫
supp(L)

η(
dLqs
dK

)Y (p, q)dL+ [F (1)− Lp(1)]V + [G(1)−Kq(1)]U

≤
∫

supp(L)

dK

dLqs
uCE(q) + vCE(p)dL+ [F (1)− Lp(1)]V + [G(1)−Kq(1)]U

≤
∫
uCE(q)dG(q) +

∫
vCE(p)dF (p) =

∫ 1

q
δ(λCE(q))Y (rCE(q), q)dG(q) + F (p)V +G(q)U

The first inequality is due to (12) and the second one is due to (9) and (10). Equality

holds if and only if (K,L) features PAM with (p
CE
, q
CE
, κCE) and

dLqs
dK = λCE(q) almost

everywhere in supp(K).

A.6 Proof of Proposition 4

Proposition 5 implies that in any equilibrium, workers’ equilibrium payoff is given by vCE

and the allocation features PAM (rCE , λCE , pCE , qCE). Suppose, to the contrary, that there

are active markets (q, s) for almost every q in some interval [q, q]. We allow the possibility

that some owners of these types post prices. As in Section 3, the local deviations to other

markets (q, s) must be unprofitable. The conditions (6)-(8) continue to hold. For these

active markets, Λ(q, s) satisfies

vCE(rCE(q)) = δ′(Λ(q, s))Y (rCE(q), q); and

dvCE(rCE(q))

dp
= δ′(Λ(q, s))

∂Y (rCE(q), q)

dp
.

Proposition 5 states that vCE and (rCE , λCE) also satisfy (6) and (11). The former requires

Λ(q, s) = λCE(q). The latter implies that workers’ IC condition (8) cannot be met!

A.7 Equilibrium definition with ordered sets of securities

I provide the definitions for the setting that two ordered sets of securities of T1(y;x1) and

T2(y;x2) are feasible. Extension to the settings where only one or more than two ordered

sets of securities are feasible is straightforward.

There are continuums of markets indexed by (q, xi) ∈ [0, 1]× [xi, xi], i = 1, 2. Ki(q, xi)

is the measure of assets in the markets (q′, x′i) ≤ (q, xi). Li(p, q, xi) is the measure of

workers of type p′ ≤ p in the markets (q′, x′i) ≤ (q, xi). As before, I denote a marginal
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distribution with the corresponding variables as subscripts. Liqs is required to be absolutely

continuous w.r.t. Ki.

Definition. (K1,K2, L1, L2) is feasible if K1
q +K2

q ≤ G and L1
p + L2

p ≤ F .

We define Λ(q, xi;K
i, Li) and F (p|q, xi;Ki, Li) in each market as before. For the market

(q, xi), a worker’s expected payoff is

η(Λ(q, xi;K
i, Li))[Y (p, q)− Ti(p, q, xi)], (A.9)

while an asset owner receives

δ(Λ(q, xi;K
i, Li))Ti(p, q, xi). (A.10)

The maximal payoffs V (p;K1,K2, L1, L2) and U(q;K1,K2, L1, L2) are defined in the same

manner.

Definition. An equilibrium is a pair of feasible distributions (K1,K2, L1, L2) satisfying:

• Asset owners’ optimality:

(i) (q, xi) ∈ supp(Ki) only if xi maximizes asset owner’s expected payoff (A.10);

(ii) d
dq [K1

q (q) +K2
q (q)] = g(q) if U(q;K1,K2, L1, L2) > U .

• Workers’ optimality:

(i) (p, q, xi) ∈ supp(Li) only if (q, xi) maximizes worker’s expected payoff (A.9);

(ii) d
dq [L1

p(p) + L2
p(p)] = f(p) if V (p;K1,K2, L1, L2) > V .

A.8 Proof of Proposition 5

Suppose T1(y;x1) is steeper than T2(y;x2). I am comparing the sets of equilibrium payoffs

and allocations when only T2(y;x2) is feasible and when both T1(y;x1) and T2(y;x2) are

feasible. The proof consists of two parts.

Fix any equilibrium (K2, L2) in the setting where only T2(y;x2) is feasible. In the setting

where both T1(y;x1) and T2(y;x2) are feasible, there is a corresponding equilibrium with

the same set of active markets and same allocation.

To construct a corresponding equilibrium, simply set K1(1, x1) = L1(1, 1, x1) = 0 and keep

K2 and L2 unchanged. The set of active markets and the equilibrium payoffs remain the

same.
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It suffices to show that an asset owner cannot profit from deviating to some inactive

market (q, x1). Fix a market (q̂, x̂1). F (p|q̂, x̂1) is degenerate at some type p̂. We can

find x̂2 satisfying T2(p̂, q̂, x̂2) = T1(p̂, q̂, x̂1). By construction, Λ(q̂, x̂2) ≥ Λ(q̂, x̂1) and

supp(F (p|q̂, x̂2)) contains no types below p. Hence, the deviation is not profitable.

U(q̂) ≥ δ(Λ(q̂, x̂2))
∫
T2(p, q̂, x̂2)dF (p|q̂, x̂2) ≥ δ(Λ(q̂, x̂1))T1(p̂, q̂, x̂1).

Suppose two ordered set of securities T1(y;x1) and T2(y;x2) are both feasible. If (K̂1, K̂2, L̂1, L̂2)

is an equilibrium in which some contracts in T1(y;x1) are posted, there is another equilib-

rium (K1,K2, L1, L2) in which only contracts in T2(y;x2) are posted and features the same

equilibrium payoffs and allocation.

The main text contains the argument. Here I formally construct (K1,K2, L1, L2) using

(K̂1, K̂2, L̂1, L̂2). For any (q, x1) in supp(K̂1), Lemma 2 states that F (.|q, x1) is degenerate

at some type p and T2(p, q, x2) = T1(p, q, x1) for some term x2. We then construct two

injective mappings ρ : supp(K̂1) → [0, 1] and Φ : supp(L̂1) → [0, 1]2 × [x2, x2]. ρ(q, x1)

is the type of workers in the market (q, x1). Φ maps (p, q, x1) into (p, q, x2) satisfying

T2(Φ(p, q, x1)) = T1(p, q, x1). Define

Ľ2(p, q, x2) =

∫
supp(L̂1)

1(Φ(p′, q′, x′1) ≤ (p, q, x2))dL̂1(p′, q′, x′1)

Ǩ2(q, x2) =

∫
supp(K̂1)

1(Φ(ρ(q′, x′1), q′, x′1) ≤ (ρ(q′, x′1), q, x2))dK̂1(q′, x′1)

We simply set K1(1, x1) = L1(1, 1, x1) = 0. Define

K2(q, x2) = Ǩ2(q, x2) + K̂2(q, x2)

L2(p, q, x2) = Ľ2(p, q, x2) + L̂2(p, q, x2)

By construction, the equilibrium payoffs and the allocation remain the same.
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