Efficient Bilateral Trade with Interdependent Values — the Use of Two-Stage Mechanisms

Takashi Kunimoto and Cuiling Zhang

Singapore Management University

September 7, 2019

Introduction

- We study bilateral trade problem with interdependent values.
- ▶ Each agent receives different information about the value of the good, denoted by type $\theta_i \in \Theta_i$ which is a compact subset of \mathbb{R}_+ .
- Types are independently distributed between agents.
- ▶ Each agent's valuation $\tilde{u}_i(\theta_i, \theta_{-i})$ depends on both θ_i and θ_{-i} .

Two-stage mechanisms proposed by Mezzetti (2004)

First stage

- Each agent observes his type and sends a message to the designer;
- The trading probability is implemented.

Second stage

- Each agent observes his utility from consuming the good and sends another message;
- The monetary transfers are finalized.

The Generalized Two-stage Groves mechanism

Mezzetti (2004) introduces the generalized two-stage Groves mechanism and shows that it always satisfies

- ► Bayesian incentive compatibility (BIC): Truthtelling in both stages constitutes an equilibrium strategy of a perfect Bayesian equilibrium;
- decision efficiency (EFF);
- ex post budget balance (BB).

Research Question

- ▶ Does the generalized two-stage Groves mechanism satisfy interim individual rationality (IIR) as well?
- ► If no, is there a different two-stage mechanism satisfying BIC, IIR, EFF and BB?

Preview of Our Results

- ► Under one-sided asymmetric information structure, the generalized two-stage Groves mechanism always satisfies IIR.
- ▶ Under two-sided asymmetric information structure,
 - we show by an example that it never satisfies IIR;
 - we propose the two-stage monotone mechanisms which satisfy IIR in a positive number of cases within the same example;
 - we characterize the existence of two-stage monotone mechanisms satisfying BIC, IIR, EFF and BB.

The Model

▶ Preferences of each agent $U_i: Q \times \Theta \times \mathbb{R} \to \mathbb{R}$ depend upon trading probability q, the type profile θ and his monetary transfer p_i :

$$U_1(q, \theta, p_1) = u_1(q, \theta) + p_1 = (1 - q)\tilde{u}_1(\theta) + p_1;$$

$$U_2(q, \theta, p_2) = u_2(q, \theta) + p_2 = q\tilde{u}_2(\theta) + p_2,$$

where $u_i(q, \theta)$ is agent *i*'s allocation payoff and $\tilde{u}_i(\theta)$ is his valuation.

▶ We assume that for any $\theta \in \Theta$, each agent i observes $u_i(q, \theta)$ after the outcome decision q is implemented, but before final transfers p are made.

The Model

Agents' outside option utilities are

$$U_1^O(heta_1) = \int_{\Theta_2} ilde{u}_1(heta_1, heta_2) dF_2(heta_2)$$
 for all $heta_1 \in \Theta_1$

and

$$U_2^O(\theta_2) = 0$$
 for all $\theta_2 \in \Theta_2$.

The Generalized Revelation Principle

Two-stage mechanism	Generalized revelation
(M^1,M^2,δ,τ)	mechanism (Θ,Π,x,t)
Decision rule $\delta: M^1 \to [0,1];$	Decision rule $x:\Theta\to [0,1];$
Transfer rule $\tau: M^1 \times M^2 \to \mathbb{R}^2$.	Transfer rule $t: \Theta \times \Pi \to \mathbb{R}^2$.
Agent i's strategy $r_i = (r_i^1, r_i^2)$	Decision rule: $x(\theta) = \delta(r^1(\theta));$
where $r_i^1: \Theta_i \to M_i^1$ and	Transfer rule:
$r_i^2: Q \times \Theta_i \times \Pi_i \to M_i^2.$	$t_i(\theta, u) = \tau_i(r^1(\theta), r^2(\delta(\theta), \theta, u)).$

Any PBE outcome of a two-stage mechanism can be implemented as a PBE outcome of a generalized revelation mechanism in which trutelling in both stages constitutes an equilibrium strategy.

The Generalized Two-stage Groves Mechanism (Θ, Π, x^*, t^G)

For each agent i, each type report $(\theta_i^r, \theta_{-i}^r) \in \Theta_i \times \Theta_{-i}$ and each payoff report $(u_i^r, u_{-i}^r) \in \Pi_i \times \Pi_{-i}$,

$$t_{i}^{G}(\theta_{i}^{r},\theta_{-i}^{r};u_{i}^{r},u_{-i}^{r})=u_{-i}^{r}-h_{i}(\theta_{i}^{r},\theta_{-i}^{r})$$

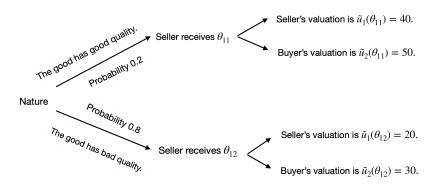
where

$$h_{i}(\theta_{i}^{r}, \theta_{-i}^{r}) = \frac{1}{2} \left[\sum_{j=1}^{2} u_{j} \left(x^{*}(\theta^{r}), \theta^{r} \right) - \mathbb{E}_{-i} \left(\sum_{j=1}^{2} u_{j} \left(x^{*}(\theta_{i}^{r}, \theta_{-i}), \theta_{i}^{r}, \theta_{-i} \right) \right) + \mathbb{E}_{-(i+1)} \left(\sum_{j=1}^{2} u_{j} \left(x^{*}(\theta_{i+1}^{r}, \theta_{-(i+1)}), \theta_{i+1}^{r}, \theta_{-(i+1)} \right) \right) \right]$$

with \mathbb{E}_{-i} being the expectation operator over θ_{-i} and $\mathbb{E}_{-3} = \mathbb{E}_{-1}$.

One-sided asymmetric information

Example in Myerson's textbook (1991, page 489):



Note that it is always efficient to trade, i.e., $x^*(\theta_{11}) = x^*(\theta_{12}) = 1$.

Single-stage mechanisms fails.

Myerson (1991) verifies that in this example, no single-stage direct mechanism (x^*, t) satisfies BIC, IIR, EFF and BB.

$$IC_{\theta_{11} \to \theta_{12}} : 40 (1 - x^*(\theta_{11})) + t_1(\theta_{11}) \ge 40 (1 - x^*(\theta_{12})) + t_1(\theta_{12});$$

 $IC_{\theta_{12} \to \theta_{11}} : 20 (1 - x^*(\theta_{12})) + t_1(\theta_{12}) \ge 20 (1 - x^*(\theta_{11})) + t_1(\theta_{11}).$

Since $x^*(\theta_{11}) = x^*(\theta_{12}) = 1$, then BIC implies $t_1(\theta_{11}) = t_1(\theta_{12})$.

$$IR_{\theta_{11}}: 40(1-x^*(\theta_{11}))+t_1(\theta_{11}) \geq 40 \Rightarrow t_1(\theta_{11}) \geq 40;$$

 $IR_{\theta_{12}}: 20(1-x^*(\theta_{12}))+t_1(\theta_{12}) \geq 20 \Rightarrow t_1(\theta_{11}) \geq 20.$

Then, seller' IIR constraints imply $t_1(\theta_{11}) \geq 40$.

$$IR_{\bar{\theta}_2}: \quad 0.2 \left(50 x^*(\theta_{11}) + t_2(\theta_{11})\right) + 0.8 \left(30 x^*(\theta_{12}) + t_2(\theta_{12})\right) \geq 0.$$

Finally, BB requires $t_2(\theta_{11}) = -t_1(\theta_{11})$ and $t_2(\theta_{12}) = -t_1(\theta_{12})$; then, buyer's IIR implies $t_1(\theta_{11}) \leq 34$, a contradiction.

Claim 1

In Example 1, the generalized two-stage Groves mechanism (Θ, Π, x^*, t^G) satisfies BIC, IIR, EFF and BB simultaneously.

Proof: For each $\theta_1^r \in \Theta_1$ and each $(u_1^r, u_2^r) \in \Pi_1 \times \Pi_2$,

$$t_{1}^{G}(\theta_{1}^{r}; u_{1}^{r}, u_{2}^{r})$$

$$= u_{2}^{r} - \frac{1}{2} \left[\sum_{j=1}^{2} u_{j} (x^{*}(\theta_{1}^{r}), \theta_{1}^{r}) - \mathbb{E}_{2} \left(\sum_{j=1}^{2} u_{j} (x^{*}(\theta_{1}^{r}), \theta_{1}^{r}) \right) + \mathbb{E}_{1} \left(\sum_{j=1}^{2} u_{j} (x^{*}(\theta_{1}), \theta_{1}) \right) \right]$$

$$= u_{2}^{r} - \frac{1}{2} \mathbb{E}_{1} \left(\tilde{u}_{2}(\theta_{1}) \right) \left(\because \forall \theta_{1}, x^{*}(\theta_{1}) = 1 \right)$$

$$= u_{2}^{r} - 17$$

and

$$\begin{aligned} & t_2^G(\theta_1^r; u_1^r, u_2^r) \\ &= u_1^r - \frac{1}{2} \left[\sum_{j=1}^2 u_j \left(x^*(\theta_1^r), \theta_1^r \right) - \mathbb{E}_1 \left(\sum_{j=1}^2 u_j \left(x^*(\theta_1), \theta_1 \right) \right) + \mathbb{E}_2 \left(\sum_{j=1}^2 u_j \left(x^*(\theta_1^r), \theta_1^r \right) \right) \right] \\ &= u_1^r - \tilde{u}_2(\theta_1^r) + \frac{1}{2} \mathbb{E}_{-2} \left(\tilde{u}_2(\theta_1) \right) \ \left(\because \forall \theta_1, x^*(\theta_1) = 1 \right) \\ &= u_1^r - \tilde{u}_2(\theta_1^r) + 17. \end{aligned}$$

Note that t_1^G is independent of u_1^r , and t_2^G is independent of u_2^r .

Proof (Cont'd): Suppose seller reports θ_1^r instead of his true type θ_1 and each agent reports the true allocation payoff. Then seller receives the following utility:

$$u_{1}(x^{*}(\theta_{1}^{r}), \theta_{1}) + t_{1}^{G}(\theta_{1}^{r}; u_{1}(x^{*}(\theta_{1}^{r}), \theta_{1}), u_{2}(x^{*}(\theta_{1}^{r}), \theta_{1}))$$

$$= u_{1}(x^{*}(\theta_{1}^{r}), \theta_{1}) + u_{2}(x^{*}(\theta_{1}^{r}), \theta_{1}) - 17 (:: u_{2}^{r} = u_{2}(x^{*}(\theta_{1}^{r}), \theta_{1}))$$

$$= 0 + \tilde{u}_{2}(\theta_{1}) - 17 (:: \forall \theta_{1}, x^{*}(\theta_{1}) = 1),$$

which is independent of his first-stage report θ_1^r . So, seller has no incentive to deviate and together truthtelling in both stages constitutes a PBE; hence, BIC is satisfied.

Proof (Cont'd): BB is satisfied on equilibrium path because for each $\theta_1 \in \Theta_1$,

$$t_1^G(\theta_1; u_1, u_2) + t_2^G(\theta_1; u_1, u_2)$$

$$= (u_2(x^*(\theta_1), \theta_1) - 17) + (u_1(x^*(\theta_1), \theta_1) - \tilde{u}_2(\theta_1) + 17)$$

$$= (\tilde{u}_2(\theta_1) - 17) + (0 - \tilde{u}_2(\theta_1) + 17) \ (\because \forall \theta_1, x^*(\theta_1) = 1)$$

$$= 0,$$

where $u_1 = u_1(x^*(\theta_1), \theta_1)$ and $u_2 = u_2(x^*(\theta_1), \theta_1)$.

Proof (Cont'd): Agents' interim expected utility from participating in the generalized two-stage Groves mechanism are

$$U_1^G(\theta_{11}) = u_1(x^*(\theta_{11}), \theta_{11}) + t_1^G(\theta_{11}; u_1, u_2) = \tilde{u}_2(\theta_{11}) - 17 = 33;$$

$$U_1^G(\theta_{12}) = u_1(x^*(\theta_{12}), \theta_{12}) + t_1^G(\theta_{12}; u_1, u_2) = \tilde{u}_2(\theta_{12}) - 17 = 13;$$

and

$$U_{2}^{G}(\bar{\theta}_{2}) = \mathbb{E}_{1} \left[u_{2}(x^{*}(\theta_{1}), \theta_{1}) + t_{2}^{G}(\theta_{1}; u_{1}, u_{2}) \right]$$

$$= \mathbb{E}_{1} \left[u_{2}(x^{*}(\theta_{1}), \theta_{1}) + u_{1}(x^{*}(\theta_{1}), \theta_{1}) - \tilde{u}_{2}(\theta_{1}) + 17 \right]$$

$$= \mathbb{E}_{1} \left[\tilde{u}_{2}(\theta_{1}) + 0 - \tilde{u}_{2}(\theta_{1}) + 17 \right] \ (\because \forall \theta_{1}, x^{*}(\theta_{1}) = 1)$$

$$= 17.$$

Hence,

$$U_1^G(\theta_{11}) < U_1^O(\theta_{11}) = \tilde{u}_1(\theta_{11}) = 40;$$

 $U_1^G(\theta_{12}) < U_1^O(\theta_{12}) = \tilde{u}_1(\theta_{12}) = 20;$
 $U_2^G > U_2^O = 0.$

Proof (Cont'd): Then, a lump-sum transfer *I* must be imposed from buyer to seller so that everyone is better off after participation, i.e.,

$$U_{1}^{G}(\theta_{11}) + l \ge U_{1}^{O}(\theta_{11}) \Rightarrow 33 + l \ge 40;$$

$$U_{1}^{G}(\theta_{12}) + l \ge U_{1}^{O}(\theta_{12}) \Rightarrow 13 + l \ge 20;$$

$$U_{2}^{G} - l \ge U_{2}^{O} \Rightarrow 17 - l \ge 0,$$

hence, $7 \le l \le 17$. In conclusion, the generalized two-stage Groves mechanism satisfies BIC, IIR, EFF and BB.

Theorem 1

When only the seller has a non-trivial set of types and the buyer has only one type, the generalized two-stage Groves mechanism (Θ,Π,x^*,t^G) always satisfies BIC, IIR, EFF and BB.

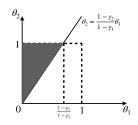
Two-sided asymmetric information

Example 2

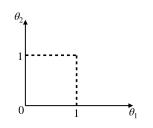
- ▶ Both agents' types are uniformly distributed on the unit interval [0, 1];
- $\tilde{u}_1(\theta_1, \theta_2) = \theta_1 + \gamma_1 \theta_2$ and $\tilde{u}_2(\theta_1, \theta_2) = \theta_2 + \gamma_2 \theta_1$ where $\gamma_1, \gamma_2 > 0$.

Two-sided asymmetric information

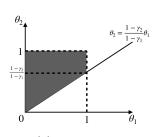
Example 2 (Cont'd)



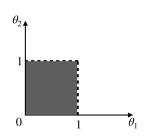
Case (i): $0 < \gamma_2 \le \gamma_1 < 1$



Case (iii): $0 < \gamma_2 \le 1 \le \gamma_1$



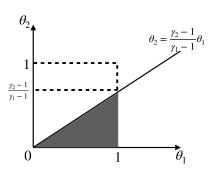
Case (ii): $0<\gamma_1<\gamma_2<1$



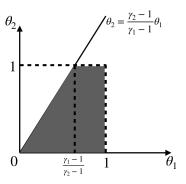
Case (iv): $0 < \gamma_1 < 1 < \gamma_2$

Two-sided asymmetric information

Example 2 (Cont'd)



Case (v): when $1 < \gamma_2 \le \gamma_1$



Case (vi): when $1 < \gamma_1 < \gamma_2$

The generalized two-stage Groves mechanism fails.

Claim 2

In Example 2, the generalized two-stage Groves mechanism (Θ, Π, x^*, t^G) violates IIR in all cases.

Remark

In Example 2, the economy as a whole is worse off after participation; hence, it is impossible to make everyone better off through welfare redistribution.

Two-stage monotone mechanisms

Definition 2

A two-stage mechanism (Θ, Π, x^*, t) is *monotone* if the following properties are satisfied:

- 1. $t_2(\theta_1^r, \theta_2^r; u_1^r, u_2^r) \le 0$ for all (θ_1^r, θ_2^r) and (u_1^r, u_2^r) ;
- 2. if $x^*(\theta_1^r, \theta_2^r) = 1$, then $|t_2(\theta_1^r, \theta_2^r; u_1^r, u_2^r)| \le \tilde{u}_2(\theta_1^r, \theta_2^r)$.
- 3. if $\hat{\theta}_2^r > \theta_2^r$ and $x(\theta_1^r, \hat{\theta}_2^r) = x(\theta_1^r, \theta_2^r) = 1$, then $|t_2(\theta_1^r, \hat{\theta}_2^r; u_1^r, u_2^r)| > |t_2(\theta_1^r, \theta_2^r; u_1^r, u_2^r)|$.

Two-stage monotone mechanisms

Claim 3

In Example 2, the generalized two-stage Groves mechanism (Θ, Π, x^*, t^G) is not monotone.

Remark

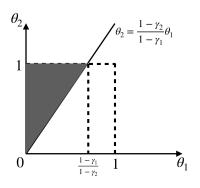
In the generalized two-stage Groves mechanism, either buyer receives subsidies or buyer's payment is not strictly increasing in buyer's type report.

Claim 4

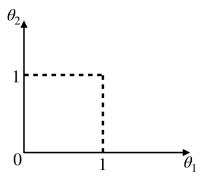
In Example 2, there exists a two-stage monotone mechanism satisfying BIC, IIR, EFF and BB in the following two cases: (i) $0<\gamma_2\leq\gamma_1<1$; (iii) $0<\gamma_2\leq1\leq\gamma_1$; in all the other cases, two-stage monotone mechanisms violate BIC.

Two stage monotone mechanisms succeed in Case (i) and (iii).

Recall



Case (i): $0 < \gamma_2 \le \gamma_1 < 1$



Case (iii): $0 < \gamma_2 \le 1 \le \gamma_1$

Proof: Case (i): $0 < \gamma_2 \le \gamma_1 < 1$ Consider the following mechanism (Θ, Π, x^*, t^S) :

$$t_1^{\mathcal{S}}(\theta_1^r,\theta_2^r;u_1^r,u_2^r) = \begin{cases} u_2^r & \text{if } x^*(\theta_1^r,\theta_2^r) = 1 \text{ and } u_2^r = u_2(x^*(\theta_1^r,\theta_2^r),\theta_1,\theta_2) \\ -\psi & \text{if } x^*(\theta_1^r,\theta_2^r) = 1 \text{ and } u_2^r \neq u_2(x^*(\theta_1^r,\theta_2^r),\theta_1,\theta_2) \\ 0 & \text{if } x^*(\theta_1^r,\theta_2^r) = 0 \end{cases}$$

and

$$t_2^{\mathcal{S}}(\theta_1^r,\theta_2^r;u_1^r,u_2^r) = \begin{cases} -u_2(x^*(\theta_1^r,\theta_2^r),\theta_1^r,\theta_2^r) & \text{if } x^*(\theta_1^r,\theta_2^r) = 1 \\ 0 & \text{if } x^*(\theta_1^r,\theta_2^r) = 0 \text{ and } u_1^r = u_1(x^*(\theta_1^r,\theta_2^r),\theta_1,\theta_2) \\ -\psi & \text{if } x^*(\theta_1^r,\theta_2^r) = 0 \text{ and } u_1^r \neq u_1(x^*(\theta_1^r,\theta_2^r),\theta_1,\theta_2) \end{cases}$$

where $\psi > 0$. It is monotone. If each agent reports the truth in both stages, then

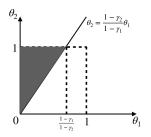
1. if
$$x^*(\theta_1, \theta_2) = 0$$
, $t_1^S(\theta_1, \theta_2; u_1, u_2) = t_2^S(\theta_1, \theta_2; u_1, u_2) = 0$;

2. if
$$x^*(\theta_1, \theta_2) = 1$$
, $t_1^{\mathcal{S}}(\theta_1, \theta_2; u_1, u_2) = -t_2^{\mathcal{S}}(\theta_1, \theta_2; u_1, u_2) = u_2(x^*(\theta_1, \theta_2); \theta_1, \theta_2) = \tilde{u}_2(\theta_1, \theta_2)$.

Proof (Cont'd):

- Since t_1^S is independent of u_1^r and t_2^S is independent of u_2^r , each agent has no incentive to deviate in the second stage.
- We assume that buyer always reports the truth in the first stage and show that seller has no incentive to deviate in the first stage. Recall

Case (i):
$$0 < \gamma_2 \le \gamma_1 < 1$$



► There are two cases: (a) $\theta_1 < (1 - \gamma_1)/(1 - \gamma_2)$; (b) $\theta_1 \ge (1 - \gamma_1)/(1 - \gamma_2)$.

Proof (Cont'd): (a) If seller's true type is $\theta_1 < (1 - \gamma_1)/(1 - \gamma_2)$:

his expected utility under truthtelling is

$$\int_0^{\frac{1-\gamma_2}{1-\gamma_1}\theta_1} \left(\tilde{u}_1(\theta_1,\theta_2) + 0 \right) d\theta_2 + \int_{\frac{1-\gamma_2}{1-\gamma_1}\theta_1}^1 \left(0 + \tilde{u}_2(\theta_1,\theta_2) \right) d\theta_2.$$

▶ If he deviates to $0 < \theta_1^r < (1 - \gamma_1)/(1 - \gamma_2)$, his expected utility becomes

$$\int_0^{\frac{1-\gamma_2}{1-\gamma_1}\theta_1^r} \left(\tilde{u}_1(\theta_1,\theta_2)+0\right)d\theta_2+\int_{\frac{1-\gamma_2}{1-\gamma_1}\theta_1^r}^1 (0-\psi)d\theta_2.$$

because if trade occurs, buyer's second-stage report becomes $u_2^r = u_2^r(x^*(\theta_1^r, \theta_2), \theta_1, \theta_2) = \tilde{u}_2(\theta_1, \theta_2) \neq \tilde{u}_2(\theta_1^r, \theta_2)$

Since $\psi > 0$, seller's highest expected utility after deviation is $\int_0^1 \tilde{u}_1(\theta_1, \theta_2) d\theta_2$. However, it is still lower than truthtelling.

Proof (Cont'd): (a) If seller's true type is $\theta_1 < (1 - \gamma_1)/(1 - \gamma_2)$:

• if seller deviates to $\theta_1^r > (1 - \gamma_1)/(1 - \gamma_2)$, trade never occurs and seller's expected utility becomes

$$\int_0^1 \left(\tilde{u}_1(\theta_1,\theta_2) + 0 \right) d\theta_2,$$

which is lower than truthtelling.

In conclusion, seller has no incentive to deviate when his true type is $\theta_1 < (1 - \gamma_1)/(1 - \gamma_2)$.

Proof (Cont'd): (b) If seller's true type is $\theta_1 > (1 - \gamma_1)/(1 - \gamma_2)$,

▶ his expected utility under truthtelling is

$$\int_0^1 \left(\tilde{u}_1(\theta_1,\theta_2) + 0 \right) d\theta_2.$$

- if he deviates to $(1-\gamma_1)/(1-\gamma_2) < \theta_1^r < 1$, trade never occur and seller obtains the same expected utility.
- if he deviates to $0 < \theta_1^r < (1 \gamma_1)/(1 \gamma_2)$, his expected utility becomes

$$\int_0^{\frac{1-\gamma_2}{1-\gamma_1}\theta_1^r} (\tilde{u}_1(\theta_1,\theta_2)+0) d\theta_2 + \int_{\frac{1-\gamma_2}{1-\gamma_1}\theta_1^r}^1 (0-\psi) d\theta_2,$$

because if trade occurs, buyer's second-stage report becomes $u_2^r = u_2^r(x^*(\theta_1^r, \theta_2), \theta_1, \theta_2) = \tilde{u}_2(\theta_1, \theta_2) \neq \tilde{u}_2(\theta_1^r, \theta_2)$. Since $\psi > 0$, it is always lower than truthtelling.

In conclusion, seller has no incentive to deviate.

Proof (Cont'd):

- We assume that seller always reports the truth in the first stage and show that buyer has no incentive to deviate in the first stage.
- ▶ If buyer reports his true type θ_2 , his expected utility is

$$\int_0^{\frac{1-\gamma_1}{1-\gamma_2}\theta_2} \left(\tilde{u}_2(\theta_1,\theta_2) - \tilde{u}_2(\theta_1,\theta_2) \right) d\theta_1 + \int_{\frac{1-\gamma_1}{1-\gamma_2}\theta_2}^1 (0+0) d\theta_1 = 0.$$

▶ If buyer deviates to $\theta_2^r \neq \theta_2$, his expected utility becomes

$$\begin{split} &\int_{0}^{\frac{1-\gamma_{1}}{1-\gamma_{2}}\theta_{2}^{r}}(\tilde{u}_{2}(\theta_{1},\theta_{2})-\tilde{u}_{2}(\theta_{1},\theta_{2}^{r}))\,d\theta_{1}+\int_{\frac{1-\gamma_{1}}{1-\gamma_{2}}\theta_{2}^{r}}^{1}(0-\psi)d\theta_{1}\\ &=\int_{0}^{\frac{1-\gamma_{1}}{1-\gamma_{2}}\theta_{2}^{r}}(\theta_{2}-\theta_{2}^{r})d\theta_{1}+\int_{\frac{1-\gamma_{1}}{1-\gamma_{2}}\theta_{2}^{r}}^{1}(0-\psi)d\theta_{1}, \end{split}$$

because if no trade occurs, seller's second-stage report becomes $u_1^r = u_1(x^*(\theta_1, \theta_2^r), \theta_1, \theta_2) = \tilde{u}_1(\theta_1, \theta_2) \neq \tilde{u}_1(\theta_1, \theta_2^r)$.

▶ Recall that if buyer deviates to $\theta_2^r \neq \theta_2$, his expected utility becomes

$$\int_0^{\frac{1-\gamma_1}{1-\gamma_2}\theta_2^r}(\theta_2-\theta_2^r)d\theta_1+\int_{\frac{1-\gamma_1}{1-\gamma_2}\theta_2^r}^1(0-\psi)d\theta_1.$$

- ▶ Buyer will not deviate to $\theta_2^r = \theta_2^{max} = 1$, because his expected utility becomes negative which is worse than truthtelling.
- \blacktriangleright To stop buyer from deviating, the penalty ψ must be large enough, that is, for any $0 \le \theta_2 \le 1$ and $0 \le \theta_2^r < 1$,

$$\begin{array}{lcl} 0 & \geq & \int_{0}^{\frac{1-\gamma_{1}}{1-\gamma_{2}}\theta_{2}^{r}}(\theta_{2}-\theta_{2}^{r})d\theta_{1}+\int_{\frac{1-\gamma_{1}}{1-\gamma_{2}}\theta_{2}^{r}}^{1}(0-\psi)d\theta_{1} \\ \\ \Rightarrow \psi & \geq & \frac{(1-\gamma_{1})(\theta_{2}-\theta_{2}^{r})\theta_{2}^{r}}{(1-\gamma_{2})-(1-\gamma_{1})\theta_{2}^{r}}. \end{array}$$

It suffices to set

$$\psi \geq \frac{1-\gamma_1}{\gamma_1-\gamma_2}.$$

- BB is satisfied because on equilibrium path,
 - if $x^*(\theta_1, \theta_1) = 0$, then $t_1^S(\theta_1, \theta_2; u_1, u_2) = t_2^S(\theta_1, \theta_2; u_1, u_2) = 0$;
 - if $x^*(\theta_1, \theta_2) = 1$, then $t_1^S(\theta_1, \theta_2; u_1, u_2) = -t_2^S(\theta_1, \theta_2; u_1, u_2) = u_2(x^*(\theta_1, \theta_2); \theta_1, \theta_2) = \tilde{u}_2(\theta_1, \theta_2)$.
- ▶ Seller obtains a higher expected utility after participation than the outside option because for all $\theta_1 \in \Theta_1$,

$$\int_{0}^{\frac{1-\gamma_{2}}{1-\gamma_{1}}\theta_{1}} (\tilde{u}_{1}(\theta_{1},\theta_{2})+0) d\theta_{2} + \int_{\frac{1-\gamma_{2}}{1-\gamma_{1}}\theta_{1}}^{1} (0+\tilde{u}_{2}(\theta_{1},\theta_{2})) d\theta_{2}$$

$$> \int_{0}^{1} \tilde{u}_{1}(\theta_{1},\theta_{2}) d\theta_{2}$$

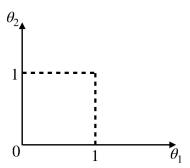
$$= U_{1}^{O}(\theta_{1}).$$

- ▶ Buyer is indifferent between participation and outside option because his expected utility after participation is zero.
- ► Therefore, IIR is also satisfied.

Case (iii):
$$0 < \gamma_2 \le 1 \le \gamma_1$$

- We use the same mechanism (Θ, Π, x^*, t^S) as in Case (i).
- Recall

Case (iii):
$$0 < \gamma_2 \le 1 \le \gamma_1$$



Since t_1^S is independent of u_1^r and t_2^S is independent of u_2^r , each agent has no incentive to deviate in the second stage.

Two-stage monotone mechanisms succeed in Case (iii).

- We assume that buyer always reports truthfully in the first stage and show that seller has no incentive to deviate.
- ▶ If seller reports his true type θ_1 , his expected utility is

$$\int_0^1 \left(\tilde{u}_1(\theta_1, \theta_2) + 0 \right) d\theta_2.$$

- ▶ If he deviates, it is still efficient not to trade and his expected utility is the same.
- ▶ Hence, seller has no incentive to deviate.

Two-stage monotone mechanisms succeed in Case (iii).

- We assume that seller always reports truthfully in the first stage and show that buyer has no incentive to deviate.
- ▶ If buyer reports his true type θ_2 , his expected utility is zero because it is efficient not to trade and he pays nothing.
- ▶ If buyer deviates to $\theta_2^r \neq \theta_2$, buyer's expected utility becomes

$$\int_0^1 (0-\psi)d\theta_1 = -\psi < 0,$$

because trade never occurs and seller's second-stage report becomes $u_1^r = u_1(x^*(\theta_1, \theta_2^r), \theta_1, \theta_2) = \tilde{u}_1(\theta_1, \theta_2) \neq \tilde{u}_1(\theta_1, \theta_2^r)$.

► Hence, buyer has no incentive to deviate in the first stage and BIC is satisfied.

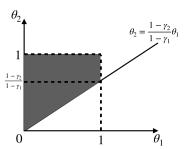
Two-stage monotone mechanisms succeed in Case (iii).

- BB is satisfied because no trade, no pay.
- ▶ IIR is satisfied because everyone's expected utility is the same as the outside option.

Two-stage monotone mechanisms violate BIC in Case (ii).

▶ We assume that seller always reports the true type in the first stage and both agents report their allocation payoffs truthfully in the second stage. Recall

Case (ii):
$$0 < \gamma_1 < \gamma_2 < 1$$



▶ If buyer's true type is $(1 - \gamma_2)/(1 - \gamma_2) \le \theta_2 \le 1$, buyer obtains the following expected utility under truthtelling:

$$U_2(\theta_2; \theta_2) = \int_0^1 \left(\tilde{u}_2(\theta_1, \theta_2) + t_2(\theta_1, \theta_2; u_1, u_2) \right) d\theta_1.$$

Two-stage monotone mechansims violate BIC in Case (ii).

▶ If he deviates to $(1 - \gamma_2)/(1 - \gamma_2) \le \theta_2^r < \theta_2$, his expected utility becomes the following:

$$U_2(\theta_2;\theta_2^r) = \int_0^1 \left(\tilde{u}_2(\theta_1,\theta_2) + t_2(\theta_1,\theta_2^r;u_1,u_2) \right) d\theta_1,$$

▶ By monotonicty,

$$|t_2(\theta_1, \theta_2; u_1, u_2)| > |t_2(\theta_1, \theta_2^r; u_1, u_2)|,$$

or equivalently,

$$t_2(\theta_1, \theta_2; u_1, u_2) < t_2(\theta_1, \theta_2^r; u_1, u_2) \le 0.$$

► Therefore,

$$U_{2}(\theta_{2}; \theta_{2}^{r}) = \int_{0}^{1} (\tilde{u}_{2}(\theta_{1}, \theta_{2}) + t_{2}(\theta_{1}, \theta_{2}^{r}; u_{1}, u_{2})) d\theta_{1}$$

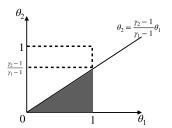
$$> \int_{0}^{1} (\tilde{u}_{2}(\theta_{1}, \theta_{2}) + t_{2}(\theta_{1}, \theta_{2}; u_{1}, u_{2})) d\theta_{1}$$

$$= U_{2}(\theta_{2}; \theta_{2}).$$

Two-stage monotone mechanisms violate BIC in Case (v).

▶ We assume that seller always reports the true type in the first stage and both agents report their allocation payoffs truthfully in the second stage. Recall

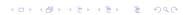
Case (v):
$$1 < \gamma_2 \le \gamma_1$$



▶ If buyer's true type is $(\gamma_2 - 1)/(\gamma_1 - 1) \le \theta_2 \le 1$, buyer obtains the following expected utility under truthtelling:

$$\int_0^1 (0+t_2(\theta_1,\theta_2;u_1,u_2)) d\theta_1 \leq 0,$$

by monotonicity.



Two-stage mechanisms violate BIC in Case (v).

▶ If buyer deviates to $\theta_2^r = 0$, it is always efficient to trade and buyer's expected utility becomes

$$\begin{split} & \int_0^1 \left(\tilde{u}_2(\theta_1, \theta_2) + t_2(\theta_1, \theta_2^r; u_1^r, u_2^r) \right) d\theta_1 \\ > & \int_0^1 \left(\tilde{u}_2(\theta_1, \theta_2^r) + t_2(\theta_1, \theta_2^r; u_1^r, u_2^r) \right) d\theta_1 \\ & (\because \theta_2 > \theta_2^r \text{ and } \tilde{u}_2 \text{ is a strictly increasing function.}) \\ \ge & \int_0^1 \left(\tilde{u}_2(\theta_1, \theta_2^r) - \tilde{u}_2(\theta_1, \theta_2^r) \right) d\theta_1 \\ & (\because x^*(\theta_1, \theta^r) = 1 \text{ implies } t_2(\theta_1, \theta_2^r; u_1^r, u_2^r) \ge -\tilde{u}_2(\theta_1, \theta_2^r) \\ = & 0; \end{split}$$

hence, buyer obtains a higher expected utility after deviation and BIC is violated.

The general results in two-sided asymmetric information

Assumption 1

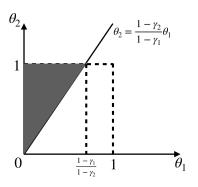
$$\int_{\Theta_1} x^*(\theta_1, \theta_2) dF_1(\theta_1) < 1 \text{ for all } \theta_2 < \theta_2^{\max}.$$

Theorem 3

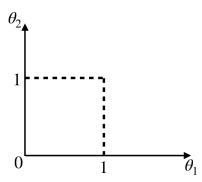
When both agents have non-trivial sets of types, there exists a two-stage monotone mechanism satisfying BIC, IIR, EFF and BB if and only if Assumption 1 is satisfied.

Assumption 1 is satisfied in Case (i) and (iii) in Example 2.

Recall that in Case (i) and (iii), there exists a two-stage monotone mechanism satisfying BIC, IIR, EFF and BB.

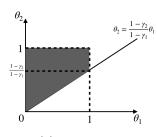


Case (i): $0 < \gamma_2 \le \gamma_1 < 1$

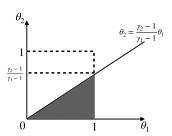


Case (iii): $0 < \gamma_2 \le 1 \le \gamma_1$

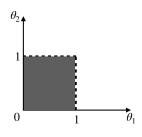
Assumption 1 is violated in the other cases in Example 2.



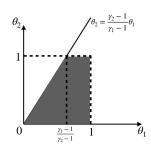
Case (ii): $0 < \gamma_1 < \gamma_2 < 1$



Case (v): when $1 < \gamma_2 \le \gamma_1$



Case (iv): $0 < \gamma_1 < 1 < \gamma_2$



Case (vi): when $1 < \gamma_1 < \gamma_2 > 0$

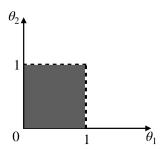
How restrictive is Assumption 1?

Consider linear valuation function $u_i(\theta_i, \theta_{-i}) = \theta_i + \gamma_i \theta_{-i}$ where $\gamma_i > 0$. Then

Numbers	Different cases	Is Assumption 1 satisfied?
1	$ \gamma_1 < 1, \gamma_2 < 1, \text{ and } \\ (1 - \gamma_2)/(1 - \gamma_1) \ge \theta_2^{max}/\theta_1^{max}$	✓
2	$ \gamma_1 < 1, \gamma_2 < 1, \text{ and } \\ (1 - \gamma_2)/(1 - \gamma_1) < \theta_2^{max}/\theta_1^{max}$	X
3	$\gamma_1 \geq 1$ and $\gamma_2 \leq 1$	✓
4	$\gamma_1 < 1$ and $\gamma_2 > 1$	X
5	$\gamma_1 > 1, \gamma_2 > 1,$ and $\theta_1^{min} = 0$	✓
6	$\gamma_1 > 1, \gamma_2 > 1, \theta_1^{min} > 0$ and $(\gamma_2 - 1)/(\gamma_1 - 1) < \theta_2^{min}/\theta_1^{min}$	✓
7	$\gamma_1 > 1, \gamma_2 > 1, \theta_1^{min} > 0$ and $(\gamma_2 - 1)/(\gamma_1 - 1) \ge \theta_2^{min}/\theta_1^{min}$	X

What if Assumption 1 is violated?

- Does there exist a two-stage non-monotone mechanism satisfying BIC, IIR, EFF and BB? Yes!
- ► Example: $\tilde{u}_1(\theta_1, \theta_2) = \theta_1 + 0.5\theta_2$ and $\tilde{u}_2(\theta_1, \theta_2) = \theta_2 + 3\theta_1$ for all $(\theta_1, \theta_2) \in [0, 1]^2$.
- Note that $\tilde{u}_2(\theta_1, \theta_2) \tilde{u}_1(\theta_1, \theta_2) = 0.5\theta_2 + 2\theta_1 \ge 0$ for all $(\theta_1, \theta_2) \in \Theta_1 \times \Theta_2$. Hence, Assumption 1 is violated.
- ▶ There exists a two-stage mechanism with the fixed-payment scheme $\bar{t}_1 = -\bar{t}_2 = 1.25$ satisfying BIC, IIR, EFF and BB.



Concluding Remarks

- Under one-sided asymmetric information structure, the generalized two-stage Groves mechanism always satisfies IIR.
- Under two-sided asymmetric information structure,
 - we show by an example that it never satisfies IIR;
 - we propose the two-stage monotone mechanisms which satisfy IIR in a positive number of cases within the same example;
 - we characterize the existence of two-stage monotone mechanisms satisfying BIC, IIR, EFF and BB.