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Introduction

Fix a decision problem. Which outcome can be induced if we
design an information structure?

Kamenica and Gentzkow (2011) introduce the basic model of
information design (Bayesian persuasion).

» The information designer commits himself to a
signal-generating mechanism at no cost.

> Nature draws a state. A signal is generated.

> The agent observes the signal, and makes a decision.

This paper extends Kamenica-Gentzkow to multiple agents.



Two New Issues

A large class of signal-generating mechanisms: public vs private
disclosure.
» With private signals, agents have beliefs and higher order
beliefs about states.

Multiple equilibria in the induced game, leading to two different
objective functions:

in | “info desi ’ ff".
sup <maxBoNrEm|n> info designer’s payo

signal-generating mechanism

» Sup-max: the information designer maximizes his objective at
the best equilibrium. — Bayesian correlated equilibrium.

» Sup-min: the information designer maximizes his objective at
the worst equilibrium. — our paper.



Overview of Our Results

We focus on general games with binary actions and strategic
complementarity.

We define S/ as the set of smallest-BNE implementable
outcomes.

We characterize S/ by sequential obedience, a strengthening of
standard obedience condition.

Sequential obedience can be simplied to coalitional obedience
in state-wise potential games.

We use S/ to solve the sup-min information design problem.



Literature

Kamenica and Gentzkow (2011). A single agent.

Mathevet, Perego, and Taneva (2019). Analyzed a sup-min
information design problem in an example with two players, two
actions, two states, and symmetric payoffs.

Bergemann and Morris (2016). Characterized partially
implementable outcomes (the sup-max information design
problem) by obedience, an incomplete-information analogue of
Aumann (1987).



Literature

The information design problem can be interpreted as robustness
to information structures a la Kajii and Morris (1997).
» Kajii-Morris focus on near-complete information, whereas we
consider general incomplete information.

» Some techniques in Kajii-Morris' so called “critical path
theorem” turn out to be useful for us.



A Single-Agent Example

Consider a single-agent information design problem.

/ 2 / -2
N 0 N 0
6 = G with prob 10% 6 = B with prob 90%

The information designer maximizes the probability of /.



Full vs No Disclosure

/ 2 / -2
N 0 N 0
0 = G with prob 10% 6 = B with prob 90%

No information disclosure. The expected payoffs are given by

I | -1.6
N 0

— The agent plays / with probability 0%.

Full information disclosure.
— The agent plays / with probability 10%.



Partial Disclosure

/ 2 / -2
N 0 N 0
6 = G with prob 10% 6 = B with prob 90%

Partial information disclosure. The information designer
commits himself to the following signal-generating mechanism.

» If & = G realizes, then signal g is sent to the agent.

» If & = B realizes, then signal g is sent to the agent with
probability 10%/90% — ¢; signal b is sent with the remaining

probability.
Conditional on receiving signal g, the agent strictly prefers /.
I |
N1|O

— The agent plays / with probability arbitrarily close to 20%.



A Two-Agent Example

Now we extend to two agents, an asymmetric variant of
Mathevet, Perego, and Taneva (2019).

/ N / N
l]3,4 1.0 I | —-2,-1| —4,0
N |02 0,0 N 0,-3 0,0
6 = G with prob 10% 6 = B with prob 90%

The information designer maximizes the probability of (/,/) in the
worst equilibrium.



Public Disclosure: Dominance

/ N / N
1 [3,4] 10 | [—2,-1] —4,0
N |02 0,0 N 0,-3 0,0
6 = G with prob 10% 6 = B with prob 90%

Public disclosure.
» If 6 = G realizes, then signal g is sent to the both agents.

» If 8 = B realizes, then signal g is sent to the both agents with
probability 2.5%/90% — ¢; signal b is sent with the remaining
probability.

Conditional on g, I is the dominant action for both agents.

/ N
I |24+&,34+&|€,0
N[ 01+e |00

— The agents play (/, /) with probability close to 12.5%.



Public Disclosure: Iterative Dominance

Public disclosure.
> If & = G realizes, then signal g is sent to the both agents.

» If & = B realizes, then signal g is sent to the both agents with
probability 6.6%/90%; signal b is sent with the remaining
probability.

Conditional on g, (/,1) is iteratively dominant.

/ N
I | 1+&,24+€6 | -1+€,0
N 0,¢ 0,0

— The agents play (/, /) with probability 16.6%.



Private Noise: Risk Dominance

Public disclosure.
» If & = G realizes, then signal g is sent to the both agents.

» If & = B realizes, then signal g is sent to the both agents with
probability 10%/90%; signal b is sent with the remaining
probability.

Conditional on g, (/,1) is (weakly) risk-dominant.

/ N
1 [05,15] —15,0
N [0,-05]| 0,0

By adding private noise a la email /global games, we can induce
(1,1) as a unique equilibrium outcome.

— The agents play (/, /) with probability close to 20%.



Two issues remains.
» Can we achieve more than 20%7 If not, how can we show

that?
» Can we generalize (weak) risk dominance in games with more

than two players?



General Framework

I ={1,...,]l]}: the set of players.
©: a finite set of states.

p € A(©): a common prior.
» Without loss of generality, we assume p(6) > 0 for any 6.

A; = {0, 1}: the binary-action set for player i.
» A={0,1}.

ui: Ax © — R: player i's payoff, supermodular.



Information Structures

T;: a countable set of signals for player /.

P e A(T x ©): a common prior.

» Without loss of generality, we assume P({t;} x T_;) > 0 for
any t;.
» Consistency: P(T x {0}) = () for any 6 € ©.

Given (T, P), the notion of Bayesian Nash equilibrium o = (0});e/,
oi: Ti — A(A)), is defined as usual.

Let op € A(A x ©) denote the induced outcome distribution:

op(a,0) = P(t,0) ][ oi(t)(ai)-

iel



Partial Implementability

Let P/ be the set of partially implementable outcomes:

Pl ={v € A(Ax ©) | v =o0p with some BNE ¢
of some (T, P) consistent with p}.

Bergemann and Morris (2016) characterize Pl by Bayes
correlated equilibrium, i.e.,

» Consistency: (A x {0}) = (@) for any 6 € ©.
» Obedience:

Z v(aj,a—i,0)(ui(aj, a—;,0) — ui(aj,a—;,0)) > 0
a_;€EA_;0€0

forany i € I and aj, a; € A;.



Smallest-BNE Implementability

Let S/ be the set of smallest-BNE implementable outcomes:

SI ={v € A(Ax ©) | v =op with the smallest BNE o
of some (T, P) consistent with p}.

Note that for each (T, P), by the supermodularity of v,
» the smallest BNE exists in pure strategies;!

> the smallest BNE is the limit of iterative applications of best
responses to constant O strategies;

> the limit is order independent, as long as best responses are
applied to each player infinitely many times.

'We define partial order o > o’ if o;(t;)(1) > o'(t;)(1) for any i € I and
tie T;.



Ordering of Players

Let ' be the set of all finite sequences of distinct players.
» For example, if I ={1,2,3}, then

r=4{0,1,2,3,12,13,21,23,31,32,123,132,213,231,312,321}.

» For v €T, () denotes the action profile where player i plays
action 1 iff player i appears in 7;

» Each vr € A(I x ©) induces v € A(A x ©) by forgetting the
ordering, i.e., v(a,0) = vr(371(a) x {6}).

Let I'; = {~v € I | player i appears in v}.
» For v €T}, a_ij(7) denotes the action profile of player i’s
opponents where player j plays action 1 iff player j appears in
~ before player i.



A Characterization of Smallest-BNE Implementability

We characterize smallest-BNE implementability by the following
properties:

» Consistency: v(A x {0}) = () for any 6 € ©.
» 0-obedience:

> w(0,a-;,0)(ui(0,2-1,0) — ui(1,a-;,0)) > 0
a_jeA_;,0€0

for any i € I.

» Sequential obedience: there exists v € A(I' x ©) that
induces v and satisfies

> vr(v,0)(ui(1,a-i(v), 0) — ui(0,a-i(7),0)) > 0
'7€r,',9€e
for any i € | such that vr([; x ©) > 0.

» Recall that a_;(7) denotes the action profile where player j
plays action 1 iff player j appears in v before player i.



Sequential Obedience

Sequential obedience captures the iterative procedure at the
outcome level.

Sequential obedience is a strengthening of 1-obedience, as

> v(1, a2, 0)(ui(1, 2, 0) — (0,2, 0))

a_;,0
= Zw 7, 0)(ui(1,3-i(7),0) — ui(0,3-i(7), 0))
> Zw 7, 0)(ui(1,a-i(7),0) — ui(0,a-i(7), 0))

>o,

where 3_;(7) is the action profile of player i's opponents where

player j plays action 1 iff player j appears in 7 (regardless of his
relative position to player 7).



The Main Result

Theorem 1la. Every v € S/ satisfies consistency, 0-obedience, and
sequential obedience.

We say that © is rich if there exists 6 € © such that
ui(1,0_;,0) > u;(0,0) for any i € I.

Theorem 1b. If © is rich, then every v that satisfies consistency,
0-obedience, and sequential obedience is in the closure of SI.

Thus smallest-BNE implementability is essentially characterized by
consistency, 0-obedience, and sequential obedience.

» By definition, we have SI C PI.

» Accordingly, we strengthen 1-obedience to sequential
obedience.

» Similarly, we can characterize full implementability
(outcomes that can be induced by the unique BNE) by
consistency and “two way" sequential obedience.



The Proof of Theorem 1a

Fix any type space (T, P) consistent with .

Apply best responses iteratively to constant O strategies. For each
type t; € T;, if type t; changes from action O to action 1 in the
n-th step, we denote by n;(t;) = n; if he never changes, then we
denote by n;(t;) = oo.

Define

Vr(’Y?e) = Z P(tv 9),

t: (n;(t;)) is ordered according to

v(a,0) = vr(3 Y(a) x {6}).

It is easy to show that v satisfies consistency and 0-obedience.



To show sequential obedience, note that for each t; € T; with
ni(t;) < oo, we have

> P(t,0)(ui(1,a-i(t),0) — u;(0,a_i(t),0)) > 0,
t_;,0

where a_;(t) is the action profile of player i's opponents where
player j plays action 1 iff nj(t;) < ni(t;).

By adding up the inequality over all such t;, we have

~ver;,0

> vy 0)(ui(l,a-i(7),8) — ui(0,a-i(),6))

> > Pt 0)(ui1, a-i(t),0) — ui(0,a-i(t),0))

ti: ni(tj)<oo t_;,0
>0

for any i € | such that vr(I'; x ©) > 0.



A Sketch of the Proof of Theorem 1b

We construct an information structure as follows.

> With probability 1 — ¢, we draw - according to v, and inform
each player i of

. m + ranking of i in v if vy €T,
B e otherwise,

where m is drawn from the geometric distribution on
N={0,1,2,...} with pmf n(1 —n)™.
» With the remaining probability £, we inform each player of
> t,-:ooif97£_9;
» t; =71 if @ =6, where 7 is drawn uniformly from

{1,..., 1| -1}

Mimicking the arguments in the email /global game literature, we
can show that each player of type t; < oo plays action 1 in any
equilibrium.



State-wise Potential Games

Sequential obedience is a system of linear inequalities involving
super-exponentially many variables (= 2.7 x |/|! x |©]). Can we
reduce the size of linear inequalities?

Suppose that for each 6, u(-,6) admits a potential
e, 0): A= R:

U,'(l, a_j, 9) — U,'(O, a_j, 9) = q)(l, a_j, 9) — (D(O7 a_j, 9)

forany i€ landa_; € A_;.



Coalitional Obedience

Forv e A(Ax ©) and a € A, define

o,(a) =) v(a,0)d(and,b).

a0

Coalitional Obedience: ¢,(1) > ®,(a) for any a # 1 such that
v({a} x ©) > 0.

Theorem 2. In a state-wise potential game, sequential obedience
is equivalent to coalitional obedience.

The number of variables is reduced to exponential, 2/l x |Q].



Revisit to the Two-Agent Example

/ N / N
I (3,4 1,0 | [=2,-1] —4,0
N |0,2 0,0 N| 0,-3 0,0
6 = G with prob 10% 6 = B with prob 90%

Note that
sup max_“probability of (/,1)" = sup v({(/,1)} x ©),
(T,p)o: BNE vePl

sup min_“probability of (/,1)" = sup v({(/,1)} x ©).
(T,p)c: BNE vesl



Without loss of generality, we focus on v € A(A x ©) in the form
of:

/ N / N
I | x 0 I |y 0
N[0]|01—x N[0[09—y|
0=G =B

Let vr € A(I' x ©) be given by

vr(12, G) = x12, vr(21, G) = xp1 = x — x12,
vr(12, B) = y12, vr(21,B) = y21 = y — y12-



/ N / N
1 [3,4] 1,0 I [—2,-1] —40
[ bl
N[0,2] 0,0 N[0, -3 0.0
[0.1 —x] [0.9 —y]

0-obedience:

(0.1 —x) x1+(0.9—y) x(—4) <0,
(0.1 -x)x24+(0.9—y) x(=3)<0.

1-obedience:




Together with non-negativity constraints (0 < x < 0.1 and
0 <y <0.9), we have

vePl<0<x<0.land 0 <y <1.5x.
Therefore,

sup (x +y) = 0.25.
vePI



/ N / N

I [ 3.4 | 10 | [—2,—1] —4,0

9 [x12] 9 [y12]

N[ 0.2 | 00 N[ 0-3 ] 00
[x01] [yo1]

Sequential obedience: if x > 0 or y > 0, then

x12 X 14+ x01 X 34 y10 ><(—4)+)/21 X(—2)>0’
X12 X 4+ x01 X 2+ y10 X(—1)+y21 X(—3)>0.

Adding them up (together with x12 + x01 = x and y12 + y21 = y),
we have
5x — by > 0.



In fact, it is easy to show that
recdSl<0<x<0land0<y<x.
Therefore,

sup(x+y) =0.2.
vesl



Conclusion

In binary-action supermodular games, we characterized
smallest-BNE implementability by consistency, 0-obedience, and
sequential obedience.
» Sequential obedience captures the iteration procedure at the
outcome level.
» Sequential obedience may be difficult to compute, but can
be simplified to coalitional obedience in state-wise potential
games.

We used S/ to solve the sup-min information design problem.



“All or Nothing"
Assume that v is additively separable:

0+ h(m)—c¢ ifa =1,
@, 0) = {0 if 2 = 0

with m = )", a; and hence

®(a,0) = mb + i h(k) — Z aic;.

k=1

Assume also that the information designer’s objective is
independent of € and convex in m.

Theorem 3. In the above game, we can assume wlog v(a,0) =0
for any a # 0,1 if and only if “h(-) increases fast” and “cy,..., ¢y
are not so asymmetric”.

» The number of variables is further reduced to linear, |©].



