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Introduction

Fix a decision problem. Which outcome can be induced if we
design an information structure?

Kamenica and Gentzkow (2011) introduce the basic model of
information design (Bayesian persuasion).

I The information designer commits himself to a
signal-generating mechanism at no cost.

I Nature draws a state. A signal is generated.

I The agent observes the signal, and makes a decision.

This paper extends Kamenica-Gentzkow to multiple agents.
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Two New Issues

A large class of signal-generating mechanisms: public vs private
disclosure.

I With private signals, agents have beliefs and higher order
beliefs about states.

Multiple equilibria in the induced game, leading to two different
objective functions:

sup
signal-generating mechanism

(
max or min

BNE

)
“info designer’s payoff”.

I Sup-max: the information designer maximizes his objective at
the best equilibrium. → Bayesian correlated equilibrium.

I Sup-min: the information designer maximizes his objective at
the worst equilibrium. → our paper.
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Overview of Our Results

We focus on general games with binary actions and strategic
complementarity.

We define SI as the set of smallest-BNE implementable
outcomes.

We characterize SI by sequential obedience, a strengthening of
standard obedience condition.

Sequential obedience can be simplied to coalitional obedience
in state-wise potential games.

We use SI to solve the sup-min information design problem.
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Literature

Kamenica and Gentzkow (2011). A single agent.

Mathevet, Perego, and Taneva (2019). Analyzed a sup-min
information design problem in an example with two players, two
actions, two states, and symmetric payoffs.

Bergemann and Morris (2016). Characterized partially
implementable outcomes (the sup-max information design
problem) by obedience, an incomplete-information analogue of
Aumann (1987).
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Literature

The information design problem can be interpreted as robustness
to information structures a la Kajii and Morris (1997).

I Kajii-Morris focus on near-complete information, whereas we
consider general incomplete information.

I Some techniques in Kajii-Morris’ so called “critical path
theorem” turn out to be useful for us.
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A Single-Agent Example

Consider a single-agent information design problem.

I 2
N 0

θ = G with prob 10%

I −2
N 0

θ = B with prob 90%

The information designer maximizes the probability of I .
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Full vs No Disclosure

I 2
N 0

θ = G with prob 10%

I −2
N 0

θ = B with prob 90%

No information disclosure. The expected payoffs are given by

I −1.6
N 0

→ The agent plays I with probability 0%.

Full information disclosure.
→ The agent plays I with probability 10%.
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Partial Disclosure

I 2
N 0

θ = G with prob 10%

I −2
N 0

θ = B with prob 90%

Partial information disclosure. The information designer
commits himself to the following signal-generating mechanism.

I If θ = G realizes, then signal g is sent to the agent.

I If θ = B realizes, then signal g is sent to the agent with
probability 10%/90%− ε; signal b is sent with the remaining
probability.

Conditional on receiving signal g , the agent strictly prefers I .

I ε′

N 0

→ The agent plays I with probability arbitrarily close to 20%.
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A Two-Agent Example

Now we extend to two agents, an asymmetric variant of
Mathevet, Perego, and Taneva (2019).

I N
I 3, 4 1, 0
N 0, 2 0, 0

θ = G with prob 10%

I N
I −2,−1 −4, 0
N 0,−3 0, 0

θ = B with prob 90%

The information designer maximizes the probability of (I , I ) in the
worst equilibrium.
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Public Disclosure: Dominance

I N
I 3, 4 1, 0
N 0, 2 0, 0

θ = G with prob 10%

I N
I −2,−1 −4, 0
N 0,−3 0, 0

θ = B with prob 90%

Public disclosure.
I If θ = G realizes, then signal g is sent to the both agents.
I If θ = B realizes, then signal g is sent to the both agents with

probability 2.5%/90%− ε; signal b is sent with the remaining
probability.

Conditional on g , I is the dominant action for both agents.

I N
I 2 + ε′, 3 + ε′ ε′, 0
N 0, 1 + ε′ 0, 0

→ The agents play (I , I ) with probability close to 12.5%.
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Public Disclosure: Iterative Dominance

Public disclosure.

I If θ = G realizes, then signal g is sent to the both agents.

I If θ = B realizes, then signal g is sent to the both agents with
probability 6.6%/90%; signal b is sent with the remaining
probability.

Conditional on g , (I , I ) is iteratively dominant.

I N
I 1 + ε′, 2 + ε′ −1 + ε′, 0
N 0, ε′ 0, 0

→ The agents play (I , I ) with probability 16.6%.
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Private Noise: Risk Dominance

Public disclosure.

I If θ = G realizes, then signal g is sent to the both agents.

I If θ = B realizes, then signal g is sent to the both agents with
probability 10%/90%; signal b is sent with the remaining
probability.

Conditional on g , (I , I ) is (weakly) risk-dominant.

I N
I 0.5, 1.5 −1.5, 0
N 0,−0.5 0, 0

By adding private noise à la email/global games, we can induce
(I , I ) as a unique equilibrium outcome.

→ The agents play (I , I ) with probability close to 20%.
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Two issues remains.

I Can we achieve more than 20%? If not, how can we show
that?

I Can we generalize (weak) risk dominance in games with more
than two players?
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General Framework

I = {1, . . . , |I |}: the set of players.

Θ: a finite set of states.

µ ∈ ∆(Θ): a common prior.

I Without loss of generality, we assume µ(θ) > 0 for any θ.

Ai = {0, 1}: the binary-action set for player i .

I A = {0, 1}I .

ui : A×Θ → R: player i ’s payoff, supermodular.
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Information Structures

Ti : a countable set of signals for player i .

I T =
∏

i∈I Ti .

P ∈ ∆(T ×Θ): a common prior.

I Without loss of generality, we assume P({ti} × T−i ) > 0 for
any ti .

I Consistency: P(T × {θ}) = µ(θ) for any θ ∈ Θ.

Given (T ,P), the notion of Bayesian Nash equilibrium σ = (σi )i∈I ,
σi : Ti → ∆(Ai ), is defined as usual.

Let σP ∈ ∆(A×Θ) denote the induced outcome distribution:

σP(a, θ) =
∑
t

P(t, θ)
∏
i∈I

σi (ti )(ai ).
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Partial Implementability

Let PI be the set of partially implementable outcomes:

PI = {ν ∈ ∆(A×Θ) | ν = σP with some BNE σ

of some (T ,P) consistent with µ}.

Bergemann and Morris (2016) characterize PI by Bayes
correlated equilibrium, i.e.,

I Consistency: ν(A× {θ}) = µ(θ) for any θ ∈ Θ.

I Obedience:∑
a−i∈A−i ,θ∈Θ

ν(ai , a−i , θ)(ui (ai , a−i , θ)− ui (a
′
i , a−i , θ)) ≥ 0

for any i ∈ I and ai , a
′
i ∈ Ai .
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Smallest-BNE Implementability

Let SI be the set of smallest-BNE implementable outcomes:

SI = {ν ∈ ∆(A×Θ) | ν = σP with the smallest BNE σ

of some (T ,P) consistent with µ}.

Note that for each (T ,P), by the supermodularity of u,

I the smallest BNE exists in pure strategies;1

I the smallest BNE is the limit of iterative applications of best
responses to constant 0 strategies;

I the limit is order independent, as long as best responses are
applied to each player infinitely many times.

1We define partial order σ ≥ σ′ if σi (ti )(1) ≥ σ′
i (ti )(1) for any i ∈ I and

ti ∈ Ti .



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Ordering of Players

Let Γ be the set of all finite sequences of distinct players.

I For example, if I = {1, 2, 3}, then

Γ = {∅, 1, 2, 3, 12, 13, 21, 23, 31, 32, 123, 132, 213, 231, 312, 321}.

I For γ ∈ Γ, ā(γ) denotes the action profile where player i plays
action 1 iff player i appears in γ;

I Each νΓ ∈ ∆(Γ×Θ) induces ν ∈ ∆(A×Θ) by forgetting the
ordering, i.e., ν(a, θ) = νΓ(ā

−1(a)× {θ}).

Let Γi = {γ ∈ Γ | player i appears in γ}.
I For γ ∈ Γi , a−i (γ) denotes the action profile of player i ’s

opponents where player j plays action 1 iff player j appears in
γ before player i .
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A Characterization of Smallest-BNE Implementability
We characterize smallest-BNE implementability by the following
properties:

I Consistency: ν(A× {θ}) = µ(θ) for any θ ∈ Θ.

I 0-obedience:∑
a−i∈A−i ,θ∈Θ

ν(0, a−i , θ)(ui (0, a−i , θ)− ui (1, a−i , θ)) ≥ 0

for any i ∈ I .

I Sequential obedience: there exists νΓ ∈ ∆(Γ×Θ) that
induces ν and satisfies∑

γ∈Γi ,θ∈Θ
νΓ(γ, θ)(ui (1, a−i (γ), θ)− ui (0, a−i (γ), θ)) > 0

for any i ∈ I such that νΓ(Γi ×Θ) > 0.
I Recall that a−i (γ) denotes the action profile where player j

plays action 1 iff player j appears in γ before player i .
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Sequential Obedience

Sequential obedience captures the iterative procedure at the
outcome level.

Sequential obedience is a strengthening of 1-obedience, as∑
a−i ,θ

ν(1, a−i , θ)(ui (1, a−i , θ)− ui (0, a−i , θ))

=
∑
γ,θ

νΓ(γ, θ)(ui (1, ā−i (γ), θ)− ui (0, ā−i (γ), θ))

≥
∑
γ,θ

νΓ(γ, θ)(ui (1, a−i (γ), θ)− ui (0, a−i (γ), θ))

> 0,

where ā−i (γ) is the action profile of player i ’s opponents where
player j plays action 1 iff player j appears in γ (regardless of his
relative position to player i).
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The Main Result
Theorem 1a. Every ν ∈ SI satisfies consistency, 0-obedience, and
sequential obedience.

We say that Θ is rich if there exists θ̄ ∈ Θ such that
ui (1, 0−i , θ̄) > ui (0, θ̄) for any i ∈ I .

Theorem 1b. If Θ is rich, then every ν that satisfies consistency,
0-obedience, and sequential obedience is in the closure of SI .

Thus smallest-BNE implementability is essentially characterized by
consistency, 0-obedience, and sequential obedience.

I By definition, we have SI ⊂ PI .

I Accordingly, we strengthen 1-obedience to sequential
obedience.

I Similarly, we can characterize full implementability
(outcomes that can be induced by the unique BNE) by
consistency and “two way” sequential obedience.
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The Proof of Theorem 1a

Fix any type space (T ,P) consistent with µ.

Apply best responses iteratively to constant 0 strategies. For each
type ti ∈ Ti , if type ti changes from action 0 to action 1 in the
n-th step, we denote by ni (ti ) = n; if he never changes, then we
denote by ni (ti ) = ∞.

Define

νΓ(γ, θ) =
∑

t : (ni (ti )) is ordered according to γ

P(t, θ),

ν(a, θ) = νΓ(ā
−1(a)× {θ}).

It is easy to show that ν satisfies consistency and 0-obedience.
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To show sequential obedience, note that for each ti ∈ Ti with
ni (ti ) < ∞, we have∑

t−i ,θ

P(t, θ)(ui (1, a−i (t), θ)− ui (0, a−i (t), θ)) > 0,

where a−i (t) is the action profile of player i ’s opponents where
player j plays action 1 iff nj(tj) < ni (ti ).

By adding up the inequality over all such ti , we have∑
γ∈Γi ,θ

νΓ(γ, θ)(ui (1, a−i (γ), θ)− ui (0, a−i (γ), θ))

=
∑

ti : ni (ti )<∞

∑
t−i ,θ

P(t, θ)(ui (1, a−i (t), θ)− ui (0, a−i (t), θ))

> 0

for any i ∈ I such that νΓ(Γi ×Θ) > 0.
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A Sketch of the Proof of Theorem 1b

We construct an information structure as follows.

I With probability 1− ε, we draw γ according to νΓ, and inform
each player i of

ti =

{
m + ranking of i in γ if γ ∈ Γi ,

∞ otherwise,

where m is drawn from the geometric distribution on
N = {0, 1, 2, . . .} with pmf η(1− η)m.

I With the remaining probability ε, we inform each player of
I ti = ∞ if θ ̸= θ̄;
I ti = τ if θ = θ̄, where τ is drawn uniformly from

{1, . . . , |I | − 1}.

Mimicking the arguments in the email/global game literature, we
can show that each player of type ti < ∞ plays action 1 in any
equilibrium.
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State-wise Potential Games

Sequential obedience is a system of linear inequalities involving
super-exponentially many variables (≈ 2.7× |I |!× |Θ|). Can we
reduce the size of linear inequalities?

Suppose that for each θ, u(·, θ) admits a potential
Φ(·, θ) : A → R:

ui (1, a−i , θ)− ui (0, a−i , θ) = Φ(1, a−i , θ)− Φ(0, a−i , θ)

for any i ∈ I and a−i ∈ A−i .
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Coalitional Obedience

For ν ∈ ∆(A×Θ) and a ∈ A, define

Φν(a) =
∑
a′,θ

ν(a′, θ)Φ(a ∧ a′, θ).

Coalitional Obedience: Φν(1) > Φν(a) for any a ̸= 1 such that
ν({a} ×Θ) > 0.

Theorem 2. In a state-wise potential game, sequential obedience
is equivalent to coalitional obedience.

The number of variables is reduced to exponential, 2|I | × |Θ|.
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Revisit to the Two-Agent Example

I N
I 3, 4 1, 0
N 0, 2 0, 0

θ = G with prob 10%

I N
I −2,−1 −4, 0
N 0,−3 0, 0

θ = B with prob 90%

Note that

sup
(T ,P)

max
σ : BNE

“probability of (I , I )” = sup
ν∈PI

ν({(I , I )} ×Θ),

sup
(T ,P)

min
σ : BNE

“probability of (I , I )” = sup
ν∈SI

ν({(I , I )} ×Θ).
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Without loss of generality, we focus on ν ∈ ∆(A×Θ) in the form
of:

I N
I x 0
N 0 0.1− x

θ = G

I N
I y 0
N 0 0.9− y

θ = B

.

Let νΓ ∈ ∆(Γ×Θ) be given by

νΓ(12,G ) = x12, νΓ(21,G ) = x21 = x − x12,

νΓ(12,B) = y12, νΓ(21,B) = y21 = y − y12.
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I N
I 3, 4 1, 0

[x ]
N 0, 2 0, 0

[0.1− x ]

I N
I −2,−1 −4, 0

[y ]
N 0,−3 0, 0

[0.9− y ]

0-obedience:

(0.1− x)× 1 + (0.9− y)× (−4) ≤ 0,

(0.1− x)× 2 + (0.9− y)× (−3) ≤ 0.

1-obedience:

x × 3 + y × (−2) ≥ 0,

x × 4 + y × (−1) ≥ 0.
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Together with non-negativity constraints (0 ≤ x ≤ 0.1 and
0 ≤ y ≤ 0.9), we have

ν ∈ PI ⇔ 0 ≤ x ≤ 0.1 and 0 ≤ y ≤ 1.5x .

Therefore,
sup
ν∈PI

(x + y) = 0.25.
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I N
I 3, 4 1, 0

� [x12]
N 0, 2 0, 0

�[x21]

I N
I −2,−1 −4, 0

� [y12]
N 0,−3 0, 0

�[y21]

Sequential obedience: if x > 0 or y > 0, then

x12 × 1 + x21 × 3 + y12 × (−4) + y21 × (−2) > 0,

x12 × 4 + x21 × 2 + y12 × (−1) + y21 × (−3) > 0.

Adding them up (together with x12 + x21 = x and y12 + y21 = y),
we have

5x − 5y > 0.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

In fact, it is easy to show that

ν ∈ clSI ⇔ 0 ≤ x ≤ 0.1 and 0 ≤ y ≤ x .

Therefore,
sup
ν∈SI

(x + y) = 0.2.
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Conclusion

In binary-action supermodular games, we characterized
smallest-BNE implementability by consistency, 0-obedience, and
sequential obedience.

I Sequential obedience captures the iteration procedure at the
outcome level.

I Sequential obedience may be difficult to compute, but can
be simplified to coalitional obedience in state-wise potential
games.

We used SI to solve the sup-min information design problem.
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“All or Nothing”

Assume that u is additively separable:

ui (a, θ) =

{
θ + h(m)− ci if ai = 1,

0 if ai = 0

with m =
∑

i ai and hence

Φ(a, θ) = mθ +
m∑

k=1

h(k)−
∑
i

aici .

Assume also that the information designer’s objective is
independent of θ and convex in m.

Theorem 3. In the above game, we can assume wlog ν(a, θ) = 0
for any a ̸= 0, 1 if and only if “h(·) increases fast” and “c1, . . . , c|I |
are not so asymmetric”.

I The number of variables is further reduced to linear, |Θ|.


