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Abstract

I show that in the original two-stage Hotelling model with linear

transportation cost, the transportation-e¢ cient locations pair (1=4, 3=4)

is the only symmetric locations pair that is induced by a self-enforcing

agreement between the two �rms.

Keywords: Hotelling, self-enforcing agreements, extensive-form ra-

tionalizability.

1 Introduction

The solution of the original formulation of the Hotelling problem has been

a long-standing issue in economics. Hotelling (1929) predicted that the two

�rms, in the attempt to acquire a competitive advantage before the pricing

stage, would converge to the middle of the spectrum � the so-called principle

of minimum di¤erentiation. Many decades later, d�Aspremont et al. (1979)

found a mistake in Hotelling�s argument. Hotelling did not consider that, if the

�rms get too close to the middle, they have the incentive to undercut a su¢ -

ciently high price of the competitor, so to conquer the whole market. Because
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of this tendency, there is no subgame perfect equilibrium in pure strategies. To

obtain one, D�Aspremont et al. make a radical modi�cation to the model: they

impose a quadratic instead of linear transportation cost. This makes serving

far-away customers increasingly expensive in terms of size of the undercut.

With this, they obtain a unique equilibrium in every subgame and a unique

subgame perfect equilibrium for the whole game, where the �rms stay at the

opposite extremes of the spectrum � the so-called principle of maximum dif-

ferentiation. Economides (1986) has observed that this extreme result is really

an artifact of the convexity of the transportation cost: the �rms will move a

bit closer to the middle when the convexity is reduced. However, Economides�

analysis is constrained by the focus on subgame perfect equilibrium in pure

strategies, which soon ceases to exist as convexity diminishes. Osborne and

Pitchik (1987) go back to linear transportation cost and look for a subgame

perfect equilibrium with numerical methods. They argue that a subgame per-

fect equilibrium exists, where the �rms pick locations at which there is no pure

pricing equilibrium.1 Less con�dently, they also speculate that the subgame

perfect equilibrium is unique.

I propose an alternative solution concept that yields a simple and natural

solution with a clear interpretation. I look for (possibly incomplete) self-

enforcing agreements between the two �rms, in the sense of Catonini (2019b).

It turns out that the only symmetric locations pair that is induced by a self-

enforcing agreement is (1=4; 3=4), followed by the unique pure pricing equi-

librium of the subgame. Note that (1=4; 3=4) is the transportation-e¢ cient

locations pair. This solution needs not be strictly interpreted as explicit col-

lusion: it is likely to emerge also between �rms that do not engage in pre-play

communication, but realize the risk of a price war that relocating towards the

middle entails.

The notion of self-enforceability of Catonini (2019b) is based on forward

induction reasoning. Given a possibly incomplete agreement among players,

1This locations pair is approximately (0:27; 0:73), very close to the (1=4; 3=4) solution
proposed here, but qualitatively very di¤erent: after (1=4; 3=4) there is a unique, pure pricing
equilibrium.
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each player tentatively believes that the opponents are rational and believe in

the agreement; that the opponents believe that everyone else is rational and

believes in the agreement; and so on. But at some history, common belief in

rationality and in the agreement may be impossible, because, say, a player has

made a move that is not rational under belief in the agreement. In this case,

the opponents will keep the belief that our player is rational, and drop the

belief that our player believes in the agreement. On the one hand, this relaxes

the coordination requirements on o¤-path beliefs; on the other hand, strategic

reasoning restricts them. For these reasons, self-enforcing agreements depart

from subgame perfect equilibria.

The outcomes that can be achieved with a self-enforcing agreement are

characterized by Self-Enforcing Sets (Catonini 2019b), which will be used for

the analysis. SES�s re�ne extensive form-rationalizability2 by assuming (par-

tial) coordination among players. Extensive-form-rationalizability does not

restrict by itself the set of possible location pairs. SES�s generically re�ne also

Extensive-Form Best Response Sets (Battigalli and Friedenberg 2012). EF-

BRS�s are based on the hypothesis that, in the situation depicted above, the

opponents drop the belief that our player is rational.3 This drastically reduces

the re�nement power: EFBRS�s only rule out locations pairs where the �rms

are very close to (1=2; 1=2).

The intuition for why (1=4; 3=4) is the unique symmetric solution is the

following. At locations pairs (a1; a2) with a1 � 1=4 and a2 � 3=4, there is

a unique pure pricing equilibrium, which is also the only rationalizable price

pair. Given the location of the competitor, the closer a �rm is to the middle,

the higher its equilibrium pro�t. Therefore, if the �rms were to agree on a

locations pair (a1; 1 � a1) with a1 < 1=4, each �rm could pro�tably relocate

towards the middle. At locations pairs (a1; a2) 6= (1=4; 3=4) with a1 � 1=4 and
2See Pearce (1984), Battigalli (1997), Battigalli and Siniscalchi (2002) for di¤erent for-

mulations of extensive-form rationalizability.
3EFRBS�s capture the behavioral implications of Strong-�-Rationalizability (Battigalli

2003, Battigalli and Siniscalchi 2003) across all �rst-order belief restrictions. Strong-�-
Rationalizability introduces belief restrictions in the algorithm of extensive-form rationaliz-
ability, but by doing so, it does not re�ne extensive-form rationalizability.
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a2 � 3=4 there is no pure pricing equilibrium, and the rationalizable prices

include undercuts. Therefore, if the �rms were to agree on a locations pair

(a1; 1 � a1) with a1 2 (1=4; 1=2), they would also have to agree on a set of
prices closed under rational behavior (Basu and Weibull, 1991) that entails

the possibility of undercuts.4 Then, each �rm would rather �give in� and

move outwards, to a location where undercutting is no more rationalizable for

the competitor. At (1=4; 3=4), �rms have no reason to undercut each other on

path, while a deviation towards the middle entails this risk. In particular, the

largest SES that induces locations (1=4; 3=4) threatens to �x any price that the

deviator has no incentive to undercut (a weaker condition than undercutting

some rationalizable price of the deviator). An agreement that induces the

locations pair (1=4; 3=4) can also be coarser than a SES: for instance, �rms

can just agree to keep the region (1=4; 3=4) as a bu¤er zone that no �rm should

enter, leaving to strategic reasoning the convergence to (1=4; 3=4).

The paper is organized as follows. Section 2 introduces the notation and

well-known facts about best replies and equilibria of the pricing stage, and the

notion of Self-Enforcing Set. Section 3 shows the existence of a SES where

the �rms locate at (1=4; 3=4). Section 4 shows the non-existence of SES�s

where the �rms pick any other symmetric locations pair. The well-known

discountinuity of the pro�t function entails that some conjectures over prices

have no best reply. However, this is not the fundamental reason for the absence

of a subgame perfect equilibrium in pure strategies, nor it a¤ects the picture

of SES�s. Therefore, some arguments in Sections 3 and 4 are provided for a

discretized version of the model where every conjecture has a best reply. The

technical complications that arise with a continuum of prices are tackled in

the Appendix. The Appendix also contains a partial characterization of the

EFBRS�s of the model.

4Firms do not agree on a price distribution. After all, they would lack the strict incentive
to implement it, against the spirit of self-enforceability. In this context, alternate classical
justi�cations of mixed equilibrium seem hardly plausible as well.
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2 Preliminaries

2.1 Model

Two �rms, i = 1; 2, sell the same good at locations a1 and a2 of a continuum

of buyers of measure 1.5 There is no cost of production. Every buyer buys

one unit from one of the two �rms, except when both prices are �prohibitively

high�� the precise upper bound is immaterial for the analysis. The payo¤

of buyer j 2 [0; 1] when she buys from �rm i is �pi � jj � aij, where pi is the
price �xed by �rm i. Suppose that a buyer chooses at random one of the two

�rms when indi¤erent. The two �rms �rst choose simultaneously a1 and a2,

and then, after observing (a1; a2), �x prices simultaneously.

2.2 Pricing stage

Best replies Fix (a1; a2). If a1 = a2, there is Bertrand competition and

the unique equilibrium and rationalizable price pair is (0; 0). Else, suppose

without loss of generality that a1 < a2. Then, �rm 1 faces demand

D1(p1; p2) =

8>>>>>><>>>>>>:

0 if p1 � p2 > a2 � a1
a1
2

if p1 � p2 = a2 � a1
a1+a2
2
+ p2�p1

2
if a1 � a2 < p1 � p2 < a2 � a1

a2 +
1�a2
2

if p2 � p1 = a2 � a1
1 if p2 � p1 > a2 � a1

:

Fix p2. Suppose that p1 is such that a1 � a2 < p1 � p2 < a2 � a1. Then, the
pro�t of �rm 1 is

�1(p1; p2) = p1

�
a1 + a2
2

+
p2 � p1
2

�
: (1)

5This parametrization of the model corresponds to the one of Osborne and Pitchik (1987),
i.e., to the choice of c = 1 and l = 1 in d�Aspremont et al. (1979). Note: in those two papers
the position of �rm 2 is identi�ed by the distance b = 1� a2 from buyer j = 1.
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The �rst-order condition yields

pF1 (p2) =
a1 + a2
2

+
p2
2
: (2)

For pF1 (p2) to be the best reply to p2, two conditions must be veri�ed. First,

that pF1 (p2)� p2 < a2 � a1, otherwise �rm 1 obtains no demand.6 This yields

p2 > 3a1 � a2 =: p2:

Second, �rm 1 should not make a higher pro�t by taking the whole market

with a price slightly below p2 � (a2 � a1). The supremum of �rm 1�s pro�t

with p1 < p2 � (a2 � a1) is p2 � (a2 � a1). Hence, we must have

�1(p
F
1 (p2); p2) � p2 � (a2 � a1);

which yields

p2 � 4� a2 � a1 � 4
p
1� a2 =: p2: (3)

This also implies pF1 (p2) � p2 > a1 � a2 (or pF1 (p2) � p2 = a1 � a2, but then
a2 = 1, thus pF1 (p2) brings demand 1).

7 So, when p2 < p2 � p2, pF1 (p2) is the
best reply to p2, and substituting (2) into (1), the optimal pro�t reads

�1(p
F
1 (p2); p2) =

1

2

�
pF1 (p2)

�2
. (4)

When p2 > p2, �rm 1 prefers to �x p1 slightly below p2 � (a2 � a1) with
respect to pF1 (p2) (or to a price slightly below p2+(a2�a1)). When p2 �p2 � p2,
�rm 1 prefers to �x p1 slightly below p2 + (a2 � a1) with respect to pF1 (p2) or
to a price slightly below p2 � (a2 � a1). When p2 � p2 <p2, there is p02 < p2
such that �rm 1 prefers to �x p1 slightly below p2 � (a2 � a1) if p2 > p02, and
slightly below p2 + (a2 � a1) if p2 < p02 � see Appendix A.1 for details.

The analogous conditions for �rm 2 given p1 can be obtained by substitut-

6Or a1=2 in case of equality, however pF1 (p2) still does worse than some p1 < p2+(a2�a1).
7To see this, rewrite (3) as p2 � 3a2 � a1 + 4(1� a2)� 4

p
1� a2; then, p2 < 3a2 � a1 if

a2 < 1, which is equivalent to pF1 (p2)� p2 > a1 � a2.
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ing a1 with 1� a2 and a2 with 1� a1. So we have

pF2 (p1) : = 1� a1 + a2
2

+
p1
2
;

p
1
: = 2� 3a2 + a1;

p1 : = 2 + a1 + a2 � 4
p
a1:

Note that, if a1 + a2 � 1, p1 � p2 and p1 �p2.

Pure equilibrium The only candidate pure equilibrium is (p�1; p
�
2) =�

pF1 (p
�
2); p

F
2 (p

�
1)
�
; that is

(p�1; p
�
2) =

�
2 + a1 + a2

3
;
4� a1 � a2

3

�
:

Any other price pair cannot be an equilibrium: when pF1 (p2) is not a best reply

to p2, there is no best reply to p2. Also in a �ne discretization of the model, if

the best reply to p2 is slightly below p2 � (a2 � a1) or p2 + (a2 � a1) (instead
of being close to pF1 (p2)), p2 is not a best reply to it.

So, we have to check at which locations pairs p�1 best replies to p
�
2 and vice

versa. Conditions p�2 >p2 and p
�
1 >p1 yield

a1 <
2

5
+
1

5
a2; (5)

a2 >
2

5
+
1

5
a1: (6)

Conditions p�2 � p2 and p�1 � p1 yield

a1 � 4� a2 � 6
p
1� a2; (7)

a2 � 6
p
a1 � 2� a1: (8)

Inequalities (7) and (8) are always satis�ed for a1 � 1=4 and a2 � 3=4. Also,
they are satis�ed for a1 2 (1=4;ba1] and a2 � 6

p
a1 � 2 � a1 � 3=4, whereba1 ' 0:30 is the solution of 1 = 6pa1�2�a1, and symmetric pairs. At all these

locations, inequalities (5) and (6) are satis�ed, so (p�1; p
�
2) is an equilibrium.
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2.3 Extensive-form rationalizability, Self-Enforcing Sets

A plan of actions (or reduced strategy) is a function si : f;g [ [0; 1]! [0;1),
where s;i := si(;) 2 [0; 1] is the prescribed location and si(a�i) for a�i 2 [0; 1]
is the price prescribed for the subgame with locations (s;i ; a�i). Let Si denote

the set of all plans of actions, which I will call just �plans� for brevity. Let

Si(ai) denote the set of all si 2 Si with s;i = ai. For any S�i � S�i, let �(S�i)
denote the set of Borel probability measures � over S�i such that �(B) = 1

for some Borel subset B � S�i. Let �H(S�i) be the set of all arrays of beliefs

�i = (�i(�jh))h2f;g[[0;1]2 of �rm i over S�i such that for each a = (ai; a�i) 2
[0; 1]2, �i(�ja) 2 �(S�i(a�i)) satis�es the chain rule of probability; that is, for
each Borel subset S�i of S�i(a�i), �i(S�ija) � �i(S�i(a�i)j;) = �i(S�ij;).8 For
any S�i � S�i, let �H(S�i) denote the set of all �i 2 �H(S�i) that strongly

believe S�i, i.e., such that �i(S�ij;) = 1 and �i(S�i \S�i(a�i)ja) = 1 for each
a = (ai; a�i) 2 [0; 1]2 with S�i \ S�i(a�i) 6= ;.9 Finally, let �i(�i) be set of all
sequential best replies to �i; that is, the (possibly empty) set of all si 2 Si such
that (i) si maximizes expected pro�t given �i(�j;), and (ii) for each a�i 2 [0; 1],
si(a�i) maximizes expected pro�t given the distribution over �rm �i�s prices
induced by �i(�js;i ; a�i).

Now, let S0i := Si, and de�ne S
n
i inductively as

Sni :=
�
si 2 Sn�1i : 9�i 2 �H(Sn�1�i ); si 2 �i(�i)

	
:

Finally, let S1i := \nSni be the set of extensive-form rationalizable plans of

�rm i. In Appendix A I will show that all locations pairs are compatible with

extensive-form rationalizability.

8In a �nite setting, such an array of beliefs is called Conditional Probability System. In
an in�nite setting, there is no consensus on how to strengthen the chain rule to condition
on probability zero events. However, all the arguments in the paper will depend only on
arrays of belief �i such that �i(S�i(a�i)j;) = 1 for some a�i 2 [0; 1], so no strengthening of
the chain rule would have any impact on the analysis.

9I am implicitly assuming that S�i is a Borel set; if this is not the case, interpret
�i(S�ij;) = 1 as �i(Bj;) = 1 for a Borel subset B of S�i (and analogously for �i(S�i \
S�i(a�i)ja) = 1): this avoids proving formally that the strongly believed sets are Borel.
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Now, �x a locations pair a 2 [0; 1]2. For each i = 1; 2, let P 0i (a) := [0;1).
For each n > 0, let P ni (a) be the set of prices that best reply to a Borel

probability measure over P n�1�i (a). Finally, let P
1
i (a) := \n>0P ni (a). So, P ni (a)

are the prices of �rm i that survive n steps of rationalizability in the subgame

with locations pair a, and P1i (a) are the rationalizable prices. Observe by

induction that for each a = (ai; a�i), if Sni \ Si(ai) 6= ; for each i = 1; 2, then

fpi : 9si 2 Sni \ Si(ai); si(a�i) = pig � P ni (a)

for each i = 1; 2. Then, if Sni \ Si(ai) 6= ; for each i = 1; 2 and all n > 0,

fpi : 9si 2 S1i \ Si(ai); si(a�i) = pig � P1i (a)

for each i = 1; 2. So, the extensive-form rationalizable pairs of plans prescribe

only rationalizable price pairs of the subgames they reach.

In games with two players or two stages, a Self-Enforcing Set is a subset

of extensive-form rationalizable plans Ses = Ses1 � Ses2 � S1 that satis�es two

conditions: Realization-Strictness and Self-Justi�ability.10 The two conditions

are translated here for the present context. For a pair of plans (s1; s2), let

�(s1; s2) denote the induced path. For each i = 1; 2:

Realization-strictness: for each �i 2 �H(Ses�i), �(�i(�i)� Ses�i) � �(Ses);
Self-Justi�ability: for each si 2 Sesi , si 2 �i(�i) for some �i 2 �H(Ses�i).

11

Realization-strictness means that players have no incentive to leave the

paths induced by the SES when they believe in it. Self-Justi�ability means

that every plan in the SES can be justi�ed under belief in the SES. The fact

that all plans are extensive-form rationalizable implies that when believing

in the SES is no more possible, players still ascribe to the opponents the

highest level of strategic sophistication that it is compatible with the observed

behavior.
10In games with more than two players or stages, a third condition is required: see Catonini

(2019b).
11The original notion of Self-Justi�ability of Catonini (2019b) requires �i to strongly

believe also S1�i, but this can be shown to be super�uous in 2-players games.
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3 Solution

From now on, when not clear from the context, I will denote with p�i (a) and

pi(a) the values of p
�
i and pi in the subgame with locations a 2 [0; 1]

2.

3.1 Existence

In this section, I show that there exists a SES that prescribes locations (a1; a2) =

(1=4; 3=4), and the pure pricing equilibrium (p�i )i=1;2 = (1; 1) thereafter. For

each i = 1; 2, let Szi be the set of plans si 2 Si(ai) with si(a�i) = 1. Let:

Ses1 : =

(
s1 2 S11 \ Sz1

����� 8a02 2 (1=4; 3=4) [ (3=4; 1] ; s1(a02) < p1(1=4; a02)8a02 2 [0; 1=4) ; s1(a02) � 3=4� a02

)
,

Ses2 : =

(
s2 2 S12 \ Sz2

����� 8a01 2 [0; 1=4) [ (1=4; 3=4) ; s2(a01) < p2(a01; 3=4)8a01 2 (3=4; 1] ; s2(a01) � a01 � 1=4

)
:

As anticipated in the introduction, each Sesi prescribes prices that a competitor

who relocates towards the middle would not have the incentive to undercut

(i.e., below pi).

I will show that each Sesi is non-empty; now, I show that Ses = Ses1 � Ses2
satis�es Realization-strictness and Self-Justi�ability, focusing without loss of

generality on �rm 1. For each a01 < 3=4, at (a
0
1; 3=4), the pro�t of �rm 1 against

any p2 < p2 is strictly lower than the supremum of the pro�t against p2:

p2 �
�
3

4
� a01

�
=
1

2
,

For each a01 2 (3=4; 1], at (a01; 3=4), the pro�t of �rm 1 against p2 � a01 � 1=4
is strictly lower than

a01 �
1

4
�
�
a01 �

3

4

�
=
1

2
.

The equilibrium pro�t at (1=4; 3=4) is exactly 1=2. Therefore, for every �1 2
�H(Ses2 ) and s1 2 �1(�1), s;1 = 1=4 and s1(3=4) = 1, establishing Realization-
strictness. Moreover, for every s1 2 Ses1 � S11 , there is �

0
1 with s1 2 �1(�01);
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then, we have s1 2 �1(�1) for any �1 2 �H(Ses2 ) with �1(�j1=4; a02) = �01(�j1=4; a02)
for each a02 6= 3=4, establishing Self-Justi�ability.

Now I show that Ses 6= ; in a �ne discretization of the model. To save on
notation, instead of formally introducing a discretized model, I am going to

use the original description of the model with the understanding that only rich

but �nite subsets of prices (and locations) are available. The proof for the con-

tinuous model, deferred to Appendix A, follows a di¤erent strategy, which also

shows that all locations are compatible with extensive-form rationalizability.

In a discrete model, S1 = Sm for some m. So, suppose by induction that

Ses1;n : =

(
s1 2 Sn1 \ Sz1

����� 8a02 2 (1=4; 3=4) [ (3=4; 1] ; s1(a02) < p1(1=4; a02)8a02 2 [0; 1=4) ; s1(a02) � 3=4� a02

)
6= ;,

Ses2;n : =

(
s2 2 Sn2 \ Sz2

����� 8a01 2 [0; 1=4) [ (1=4; 3=4) ; s2(a01) < p2(a01; 3=4)8a01 2 (3=4; 1] ; s2(a01) � a01 � 1=4

)
6= ;.

Without loss of generality, focus on �rm 1. By the arguments used for Realization-

strictness, for each �1 2 �H(Ses2;n)\�H(Sn2 ), we have �1(�1) � Sz1 \Sn+11 6= ;.
Thus, for each a02 6= 3=4, we can de�ne

p
a02
1 := min

�
p1
��9s1 2 Sz1 \ Sn+11 ; s1(a

0
2) = p1

	
and �x �a

0
2
1 2 �H(Sn2 ) such that s

0
1(a

0
2) = p

a02
1 for some s01 2 �1(�

a02
1 ). Fix

�1 2 �H(Ses2;n) \ �H(Sn2 ) and s1 2 �1(�1) � Sz1 \ Sn+11 such that, for each

a02 6= 3=4, �1(�j1=4; a02) = �
a02
1 (�j1=4; a02) and s1(a02) = p

a02
1 (�1 exists because

Sn2 6= ; by the induction hypothesis and because �1(S2(a02)j;) = 0). Suppose
by contradiction that Ses1;n+1 = ;, so s1 62 Ses1;n+1. So, there is a02 6= 3=4 such

that s1(a02) > 3=4� a02 if a02 < 1=4, s1(a02) � p1(1=4; a02) if a02 > 1=4. Then, for
every �2 2 �(Sn+11 ) with �2(s1j;) = 1, by the comparisons of pro�ts, there is
s2 2 �2(�2) \ S2(a02) � Sn+22 for some a02 6= 3=4. Suppose for simplicity that
p1(1=4; a

0
2) is not available in the discretization, thus s1(a

0
2) 6= p1(1=4; a

0
2).

12

Then, the best reply s2(1=4) to s1(a02) is below s1(a
0
2)�ja02 � 1=4j, and in turn

12This is only to reduce the number of passages that lead to contradiction.
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the best reply to s2(1=4) is below s1(a02). Hence, �x �
0
1 2 �H(Ses2;n) \�H(Sn2 )

with �01(s2j1=4; a02) = 1; there is s01 2 �1(�01) � Sz1 \ Sn+11 such that s01(a
0
2) <

s1(a
0
2) = p

a02
1 , contradicting the de�nition of p

a02
1 .

A �nal comment. The proof of Ses 6= ; relies only on beliefs where each
�rm i gives probability 1 to plans in Sz�i. This means that the threats that

sustain the SES are compatible also with a special kind of forward induction

reasoning where deviations are always interpreted as attempts to get a higher

payo¤ than under the agreed-upon path (as opposed to disbelief in the agreed-

upon path). Formally, the SES exists also under �epistemic priority to the

path�� a condition introduced by Catonini (2019b) that re�nes SES�s. In

the equilibrium literature, instances of this kind of forward induction reasoning

are captured by strategic stability (Kohlberg and Mertens, 1986) and related

re�nement � see the Intuitive Criterion (Cho and Kreps, 1987) as (arguably)

the most transparent example.

3.2 Uniqueness

The goal of this section is to show that there is no symmetric SES that pre-

scribes a locations pair di¤erent than (1=4; 3=4). When clear from the context,

I will denote with P ni the set P
n
i (a) of prices of �rm i that survive n steps of

rationalizability in the subgame with locations a (see Section 2.3).

Note preliminarly two facts. First, a SES Ses1 � Ses2 � S1(a1) � S2(a2),
at (a1; a2), must prescribe all and only the prices that best reply to some

conjecture over the prices prescribed to the competitor; that is, a set of prices

closed under rational behavior (Basu and Weibull 1991). This is obvious from

Realization-strictness and Self-Justi�ability.

Second, at each locations pair (a1; a2) with a1 < 1=2 < a2, for each i = 1; 2,

no price above p�i is rationalizable. Note preliminarly that, by a1 < 1=2 < a2,

jp�1 � p�2j =
2

3
ja2 � (1� a1)j < a2 � a1: (9)

12



Since demand vanishes for su¢ ciently high prices, each P 1i is bounded. So,

for each n > 0 and i = 1; 2, let pS;ni := supP ni . First, note that no pi >

p0i := max
n
pS;n�i � (a2 � a1); pFi (p

S;n
�i )
o
is a best reply to a conjecture over P n�i:

against any p�i 2 [0; pS;n�i ], �rm i�s pro�t is zero or strictly decreasing above p0i.
Thus, pS;n+1i � p0i. If p

S;n
�i � p��i, pFi (p

S;n
�i ) � p�i , and by (9), p

S;n
�i �(a2�a1) < p�i .

Hence, p�i � p0i � pS;n+1i . If pS;ni > p�i for every i = 1; 2, proceed as follows.

Write pS;ni = p�i + xi; then,

pF1 (p
S;n
2 ) = pF1 (p

�
2 + x2) =

a1 + a2
2

+
4� a1 � a2

6
+
1

2
x2 =

=
2 + a1 + a2

3
+
1

2
x2 = p

�
1 +

1

2
x2;

pF2 (p
S;n
1 ) = p�2 +

1

2
x1.

Each pS;n+1i � p�i is bounded above by p0i � p�i , thus by the maximum between

pFi (p
S;n
�i )� p�i = x�i=2 and p

S;n
�i � (a2� a1)� p�i = x�i� (a2� a1)�

�
p�i � p��i

�
.

Hence, max
n
pS;n+11 � p�1; p

S;n+1
2 � p�2

o
is bounded above by

max fmax fx1; x2g =2;max fx1; x2g � (a2 � a1) + jp�1 � p�2jg :

Since jp�1 � p�2j � (a2 � a1) is negative by (9) and does not depend on x1 and
x2, every pi > p�i is eventually eliminated.

3.2.1 Farther from the center

Let a1 < 1=4 and a2 = 1� a1, and suppose by contradiction that there exists
a SES Ses1 � Ses2 � S1(a1) � S2(a2). I will show that for each a01 2 [0; 1=4),
(p�1; p

�
2) is the only rationalizable price pair at (a

0
1; a2), hence the only price set

closed under rational behavior. Thus, for every (s1; s2) 2 Ses1 � Ses2 , s1(a2) =
s2(a1) = 1. I will also show that then, for all n � 0 and a01 2 (a1; 1=4),

Sn1 \ S1(a01) 6= ;, thus Sn \ (S1(a01)� S2(a2)) 6= ;. As observed in Section 2.3,
this implies that for each s2 2 S12 \ S2(a2) � Ses2 , s2(a

0
1) is a rationalizable

price. Thus, s2(a01) = p
�
2(a

0
1; a2). Hence, the pro�t of �rm 1 at (a01; a2) against

13



s2 is
1

2
(p�1(a

0
1; a2))

2
=
1

2

�
2 + a01 + a2

3

�2
>
1

2
. (10)

Therefore, for every �1 2 �H(Ses2 ), we have �1(�1) \ S1(a1) = ;, violating
Realization-Strictness.

Now I show that, for each a01 2 (a1; 1=4), Sn1 \ S1(a01) 6= ; for all n. Fix
s2 2 Ses2 and de�ne s02 2 S2(a2) as s02(a01) = p�2(a01; a2) and s02(a001) = s2(a001) for
each a001 6= a01. Suppose by way of induction that s

0
2 2 Sn2 , and that there is

s1 2 S1(a01) \ Sn1 with s1(a2) = p�1(a01; a2).
By Self-Justi�ability, there is �2 2 �H(Ses1 ) such that s2 2 �2(�2); by s2 2

S12 , there is e�2 2 �H(Sn1 ) such that s2 2 �2(e�2). Since �2(S11 \S1(a1)j;) = 1,
I can construct �02 2 �H(Sn1 ) such that �

0
2(�j;) = �2(�j;), �02(s1ja01; a2) = 1,

and �02(�ja001; a2) = e�2(�ja001; a2) for all a001 62 fa1; a01g. Thus, s02 2 �2(�02) � Sn+12 .

Fix �1 2 �H(Ses2 ) with �1(s2j;) = 1, and �01 2 �H(Sn2 ) with �
0
1(s

0
2j;) = 1.

By Realization-strictness, �1(�1) � S1(a1). But then, since s2 and s02 prescribe
di¤erent prices only at (a01; a2), we have �1(�

0
1) � S1(a1) \ S1(a01). So, since

�rm 1�s pro�t against s02 is higher at (a
0
1; a2) than at (a1; a2) by (10), for any

s01 2 �1(�01) � Sn+11 , s01 2 S1(a01) (and s01(a2) = p�1(a01; a2)).

Finally, I prove that, at every (a1; a2) with a1 < 1=4 and a2 > 3=4, the pure

equilibrium is also the only rationalizable price pair.13 I have already shown

that, for each i = 1; 2, no price above p�i is rationalizable. Now I show that no

price below p�i is rationalizable. For each n > 0 and i = 1; 2, let p
I;n
i := inf P ni .

First, I show that, for each i = 1; 2, there exists " > 0 such that, for everyep � max fp�1; p�2g�(a2�a1), each pi 2 [ep; ep+ "] is dominated over [ep;1), by 2pi.
Then, in a �nite number of steps m, we obtain pI;mi > max fp�1; p�2g� (a2�a1).
13This is the reason why (1=4; 3=4) can be induced by a coarser agreement than the SES of

Section 3.1: the �rms can simply agree to keep the interval (1=4; 3=4) as a bu¤er zone, and
threaten to �x a su¢ ciently low price if the competitor violates it. With strategic reasoning,
each �rm, say �rm 1, would progressively realize that unilaterally relocating from 0 towards
1=4 guarantees a higher price, other than higher demand. The self-enforceability of such
agreement must be veri�ed with a re�nement of extensive-form rationalizability with �rst-
order-belief restrictions, called Selective Rationalizability, introduced by Catonini (2019a).
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Without loss of generality, focus on �rm 1. Note that

2ep � ep+max fp�1; p�2g � (a2 � a1) = ep+ 1 + ja1 + a2 � 1j3
� (a2 � a1) < ep+ (a2 � a1);(11)

2ep � 2max fp�1; p�2g � 2(a2 � a1) = 2 +
2 ja1 + a2 � 1j

3
� 2(a2 � a1) < a1 + a2; (12)

where the strict inequalities are equalities for (a1; a2) = (1=4; 3=4), thus sat-

is�ed for a1 < 1=4 and a2 > 3=4. Fix �rst p2 2 [ep; ep+ (a2 � a1)). Then, the
pro�ts of �rm 1 with p1 = ep and p1 = 2ep are, respectively �1(ep; p2) and, by
(11), �1(2ep; p2). We have
�1(ep; p2)� �1(2ep; p2) = ep�a1 + a2

2
+
p2 � ep
2

�
� 2ep�a1 + a2

2
+
p2 � 2ep
2

�
=

1

2
ep (3ep� p2 � a1 � a2) � 1

2
ep (2ep� a1 � a2) < 0

where the strict inequality is due to (12). Now let p2 2 [ep+ (a2 � a1);1).
The pro�t of �rm 1 with p1 = ep is at most ep. The pro�t with p1 = 2ep is
minimal at p2 = ep+ (a2 � a1) and reads

�1(2ep; p2) = 2ep�a1 + a2
2

+
ep+ (a2 � a1)� 2ep

2

�
=

= ep (2a2 � ep) � ep (2a2 �max fp�1; p�2g+ (a2 � a1)) =
= ep�3a2 � a1 � 1� ja1 + a2 � 1j

3

�
> ep,

where the strict inequality is an equality when (a1; a2) = (1=4; 3=4), thus

satis�ed for a1 < 1=4 and a2 > 3=4. Fix " > 0 such that, for ep = max fp�1; p�2g�
(a2 � a1), we preserve:

1. 2(ep+ ") < ep+ (a2 � a1);
2. for each p2 2 [ep; ep+ (a2 � a1)),
�1(ep+ "; p2)� �1(2(ep+ "); p2) = 1

2
(ep+ ") (3(ep+ ")� p2 � a1 � a2) < 0;
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3. for each p2 2 [ep+ (a2 � a1);1),
ep+ "� �1(2(ep+ "); p2) = (ep+ ") (1� (a1 + a2 + p2 � 2(ep+ "))) < 0:

Note that all three inequalities hold also for ep < max fp�1; p�2g � (a2 � a1):
the �rst is obvious, and if the left-hand sides of the second and third are

negative for a given ep, so they are for a lower one. Hence, we found the value
of " we were looking for.

So, there is m such that, for each i = 1; 2, since no p�i > p��i is rationaliz-

able, pI;mi > pS;m�i �(a2�a1). For each p�i 2 [p
I;m
�i ; p

S;m
�i ], �i(�; p�i) increases over

[pI;mi ; pFi (p�i)),
14 where pFi (p

I;m
�i ) � pFi (p�i) � p�i+(a2�a1) (we have p�i < 0).

Hence, pFi (p
I;m
�i ) dominates each pi 2 [p

I;m
i ; pFi (p

I;m
�i )) over [p

I;m
�i ; p

S;m
�i ]. Thus,

for each i = 1; 2, pI;m+1i � pFi (p
I;m
�i ). Then, it is easy to see by induction that

each pi < p�i is eliminated at some step.

3.2.2 Closer to the center

Let a1 2 (1=4; 1=2) and a2 = 1� a1, and suppose by contradiction that there
exists a SES Ses1 � Ses2 � S1(a1)� S2(a2). For each i = 1; 2, let P esi be the set

of prices prescribed by Sesi at (a1; a2). I am going to �nd a deviation a01 < a1
such that �rm 1�s pro�t at (a1; a2) against some p2 2 P es2 is strictly lower than

at (a01; a2) against any rationalizable price of �rm 2. So, there is s2 2 Ses2 such
that �rm 1�s pro�t against s2(a1) at (a1; a2) is strictly lower than against any

p2 2 P12 at (a01; a2). With this, I show that, for all n > 0, S
n
1 \ S1(a01) 6= ;,

thus Sn \ (S1(a01)� S2(a2)) 6= ;. As observed in Section 2.3, this implies that
s2(a

0
1) is rationalizable. Then, �xing �1 2 �H(Ses2 ) with �1(s2j;) = 1, we have

�1(�1) \ S1(a1) = ;, contradicting Realization-strictness.

I start from showing that Sn1 \ S1(a01) 6= ; for all n > 0. Let P1 � P2 �
P11 � P12 be a best response set of prices at (a01; a2) � see Appendix A.1 for

14I am not assuming that pFi (p
I;m
�i ) > p

I;m
i , thus that [pI;mi ; pFi (p

I;m
�i )) is non-empty. If it

was for one �rm, it would not be for the other, because for pI;m�i < p
�
�i, p

F
�i(p

F
i (p

I;m
�i )) > p

I;m
�i .

Hence, the inductive eliminations never stop.
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its existence in the continuous model. Let bS2 be the set of all s2 2 S2(a2)
such that s2(a01) 2 P2 and s2(a001) = s2(a

00
1) for each a

00
1 6= a01. Fix n � 0 and

suppose by way of induction that bS2 � Sn2 , and that for each p1 2 P1, there is
s1 2 S1(a01) \ Sn1 such that s1(a2) = p1.
By Self-Justi�ability, there is �2 2 �H(Ses1 ) such that s2 2 �2(�2); by

s2 2 S12 , there is e�2 2 �H(Sn1 ) such that s2 2 �2(e�2). By �2(S11 \S1(a1)j;) = 1
and the induction hypothesis, for each s2 2 bS2 I can construct �02 2 �H(Sn1 )

with �02(�j;) = �2(�j;) such that �02(�ja01; a2) justi�es s2(a01) and �02(�ja001; a2) =e�2(�ja001; a2) for all a001 62 fa1; a01g. Thus, s2 2 �2(�02) � Sn+12 .

Fix p1 2 P1. Fix �1 2 �H(Ses2 ) with �1(s2j;) = 1, and �01 2 �H(Sn2 ) \
�H(bS2) such that �01(�ja01; a2) induces a distribution over prices that justi�es
p1 (�01 exists by the induction hypothesis). By Realization-strictness, �1(�1) �
S1(a1). But then, since �1 (�j;) and �01 (�j;) induce di¤erent distributions over
prices only at (a01; a2), we have �1(�

0
1) � S1(a1)\S1(a01). Hence, by �01(bS2j;) =

1, �1(�
0
1) � S1(a01), and there is s1 2 �1(�01) � Sn+11 with s1(a2) = p1.

For most values of a1, we can pick a01 = 0. Since a
0
1 = 0 facilitates exposi-

tion, I will adopt it whenever it works, and use an alternative a01 otherwise.

1. Let a1 ' 0:34 be the value of a1 such that, at (a1; a2), p2 = p2�(a2�a1).
Thus, at (a1; a2) with a1 2 (1=4; a1), p2 � (a2 � a1) >p2.

2. Let a1 ' 0:38 be the value of a1 such that, at (a1; a2), p2 = p2. Hence,
p2 � (a2 � a1) �p2 < p2 if a1 2 [a1; a1), p2 �p2 if a1 2 [a1; 1=2).

3. Let a01 ' 0:42 be the value of a1 such that, at (0; a2) = (0; 1 � a1),
p1 = p2 � a2. Thus, at (0; a2), p2 � a2 >p1 if a1 2 (1=4; a

0
1), p2 � a2 �p1

if a1 2 [a
0
1; 1=2).

4. Let a01 ' 0:37 be the value of a1 such that pF1 (p2) at (a1; a2) is equal to
pF1 (p

F
2 (p2 � a2)) at (0; a2).

Let ea01 ' 0:15 be the value of ea1 such that, at (ea1; a2) = (ea1; 1� a1), p1 =
p2�(a2�ea1) (ea01 solves (13)). Thus, at (ea01; a2) = (ea01; 1�a1), p2�(a2�ea01) >p1
if a1 < a1, p2 � (a2 � ea01) �p1 if a1 � a1.
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I will let pU denote an upper bound for inf P es2 , and �1 an upper bound

of �rm 1�s pro�t against pU . I will let pL denote a lower bound for inf P12
at (a01; a2), and �

0
1 �rm 1�s optimal pro�t against pL. I will determine and

compare the following values:

a1 (1=4; a1) [a1; a
0
1) [a01; a1) [a1; a

0
1] (a

0
1; 1=2)

pU p2 � (a2 � a1) p2 p2 p2 p2

�1
�
pF1 (p

U)
�2
=2

�
pF1 (p

U)
�2
=2

�
pF1 (p

U)
�2
=2 p2 � (a2 � a1) p2 � (a2 � a1)

a01 0 0 ea01 ea01 0

pL pF2 (p2 � a2) pF2 (p2 � a2) pF2 (p2 � (a2 � a01)) p2 p2

�01
�
pF1 (p

L)
�2
=2

�
pF1 (p

L)
�2
=2

�
pF1 (p

L)
�2
=2

�
pF1 (p2)

�2
=2

�
pF1 (p2)

�2
=2

Pro�ts First, suppose that a1 2 [a1; 1=2). At (a1; a2), by a1 � a1, p2 �p2,
thus �rm 1�s pro�t against pU = p2 is strictly below �1 = p2 � (a2 � a1) =
(pF1 (p2))

2=2. At (a01; a2), p2 < 0, therefore �rm 1�s pro�t against pL = p2 is

exactly �01 = (p
F
1 (p2))

2=2. I will show later that there is p2 2 P es2 with p2 � pU .
Since pF1 (p2) is independent of �rm 1�s location, �rm 1�s pro�t against p2 at

(a1; a2) is strictly lower than against any p02 2 P12 at (a01; a2), as desired.

Second, suppose that a1 2 (1=4; a1). At (a1; a2), since pU < p2, �1 =�
pF1 (p

U)
�2
=2 is an upper bound of �rm 1�s pro�t against pU .15 At (a01; a2), we

have p2 � (a2 � a01) >p1, by a1 < a
0
1 and a

0
1 = 0 for a1 2 (1=4; a01), by a1 < a1

and a01 = ea01 for a1 2 [a01; a1). Then, pL = pF2 (p2 � (a2 � a01)) < p2. Moreover,
since �rm 2 is closer to the center, p2 <p1 and pL > p2 � (a2 � a01). Hence,
p2 < p

L < p2. Thus, �
0
1 =

�
pF1 (p

L)
�2
=2 is �rm 1�s optimal pro�t against pL.

Now I want to show that �01 > �1; then, there is " > 0 such that for any

p2 2
�
0; pU + "

�
(thus for some p2 2 P es2 ), �rm 1�s pro�t against p2 at (a1; a2)

is smaller than against any p02 2 P12 at (a01; a2), as desired.

For a1 2 (1=4; a1), at (a1; a2), we have

pF1 (p
U) =

1

2
+
1

2
(4� 2a2 � 4

p
1� a2) =: p01,

15It is actually the maximum for a1 2 (1=4; a1) and the supremum for [a1; a1).
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and at (a01; a2) = (0; 1� a1) we have

pF1 (p
L) =

1

2
a2 +

1

2

�
1� 1

2
a2 +

1

2

�
4� 2a2 � 4

p
1� a2

��
=: p001.

We obtain �01 > �1 because

p001 > p
0
1 ,

3

4
a2 +

p
1� a2 > 1, 4

p
a1 � 1� 3a1 > 0, a1 2

�
1

9
; 1

�
:

At (a01; 1� a01), we have pF1 (p2) = 2a01; at (0; 1� a01),

pF1 (p
F
2 (p2 � a2)) =

5

4
+
1

4
a01 �

p
a01:

So, by de�nition of a01,

2a01 =
5

4
+
1

4
a01 �

p
a01: (13)

For a1 2 [a1; a01), with a1 in place of a01, the left-hand side of (13) is pF1 (pU) at
(a1; a2) and it is increasing, while the right-hand side is pF1 (p

L) at (0; a2) and

it is decreasing. Thus, pF1 (p
U) at (a1; a2) is lower than pF1 (p

L) at (0; a2). So,

�01 > �1.

By de�nition of a1, at (a1; 1� a1) we have p2 =p2, hence pF1 (p2) = 2a1. By
de�nition of ea01, at (ea01; 1� a1) we have p2 = pF2 (p2 � (a2 � ea01)), thus

pF1 (p2) = p
F
1 (p

F
2 (p2 � (a2 � ea01))) = 5

4
+
1

4
a1 +

1

4
ea01 �pa1. (14)

Since pF1 (p2) is independent of �rm 1�s location,16 we obtain

2a1 =
5

4
+
1

4
a1 +

1

4
ea01 �pa1. (15)

For a1 2 [a01; a1), with a1 in place of a1, the left-hand side of (15) is pF1 (pU) at
16Indeed, equation 14 is false if ea01 is substituted with another location of �rm 1.
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(a1; a2) and it is increasing, while the right-hand side is pF1 (p
L) at (ea01; a2) and

it is decreasing. Hence, �01 > �1.

Determination of pU Recall that P es1 � P es2 must be closed under ra-

tional behavior. By symmetry, P es1 = P es2 =: P , and let pI := inf P .17 Let

p := p1 = p2, p :=p1 =p2, and p
F (�) := pF1 (�) = pF2 (�).

First I show that there is p 2 P with p � p. Suppose not. Then, when

a �rm �xes some p 2 P close to pI , the competitor has a best reply close to

pI � (a2 � a1) < pI in any �ne discretization of the model, a contradiction.

The argument for the continuous model is presented in Appendix B.

Now, I show that if a1 2 [a1; a1), pI � p. Suppose not. Then, p <

pI � p. So, when a �rm �xes p 2 P with p � p equal to or just above pI , the
competitor�s best reply is pF (p) > pF (p) � p,18 with pF (p) < p+(a2�a1). But
then, the �rst �rm has a best reply to pF (p) just below pF (p)�(a2�a1) < pI in
any �ne discretization of the model, a contradiction. In the continuous model,

take conjectures �pF (p)+(1��)p for small ��s, so to generate a neighbourhood
of best replies above pF (p) > p. A uniform distribution over a su¢ ciently small

neighbourhood has best reply pF (p)� (a2 � a1) (see Appendix A.1).
Finally, I show that if a1 2 (1=4; a1), pI � p � (a2 � a1). Suppose not.

Then, p < p � (a2 � a1) < pI � p. If pF (pI) > p, the same argument for the
a1 2 [a1; a1) case applies. Else, iteratively apply pF (�) until reaching p0 2 P
and p00 = pF (p0) 2 P such that p00 � p < pF (p00). Fix p000 2 (p; pF (p00))

such that p000 � (a2 � a1) < pI . Fix a distribution � over fp0; p00g with mean
(pF )�1(p000).19 In a �ne discretization of the model, the best reply to � is either

below p00 � (a2 � a1) � p� (a2 � a1) < pI , a contradiction, or it is p000, but the
best reply to p000 is below pI , a contradiction as well. In the continuous model,

the perturbation argument used for the a1 2 [a1; a1) case applies.

17Symmetry is not crucial but it is maintaned to simplify the argument.
18pF (p) � p is due to pF (p) = p+ (a2 � a1) and p � p� (a2 � a1) by a1 2

�
a1; a1

�
.

19Here symmetry is used to claim that the same �rm can �x p0 or p00. A more complex
argument does away with symmetry.
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Determination of pL First, I show that for each a1 2 (1=4; 1=2), at

(a01; a2) = (0; 1 � a1) there is no p2 2 P 52 below min
�
p2; p

F
2 (p2 � a2)

	
. Thus,

for a1 2 (1=4; a01), at (a01; a2) = (0; 1 � a1) there is no p2 2 P 52 below pL =
pF2 (p2�a2) (by a1 < a

0
1, p2�a2 >p1); for a1 2 (a

0
1; 1=4), at (a

0
1; a2) = (0; 1�a1)

there is no p2 2 P 52 below pL = p2 (by a1 > a
0
1, p2�a2 <p1). Note preliminarly

that p2 < 0, thus pF1 (p2) < p2+ (a2� a1) for every p2, and that by a1 = 0 �rm
2 has no incentive to undercut.

1. Every p2 < 1=2 is dominated by any p02 2 (p2; 1=2): for each p1 � 0,

�rm 2�s pro�t is strictly increasing over
�
0;min

�
pF2 (p1); p1 + a2

	�
, and

min
�
pF2 (0); a2

	
> 1=2.

2. Every p1 < min f1=4; p2 � a2g is dominated by p01 := pF1 (p1 + a2) over

[1=2;1). First, p01 is the unique best reply to p2 = p1 + a2 < p2, and

for p2 > p1 + a2 �rm 1�s pro�t with p01 weakly increases, while with p1
it remains p1. Second, for p2 2 [1=2; p1 + a2), p01 = a2 + p1=2 is closer

than p1 to pF1 (p2) = (a2 + p2) =2 > a2=2 + p1; so, since �1(�; p2) is a
parabola, �1(p01; p2) > �1(p1; p2) (and �1(p

0
1; p2) is �rm 1�s pro�t under

(p01; p2) because p2 � a2 < p01 < p2 + a2).

If min f1=4; p2 � a2g = p2 � a2, move to point 5; else, continue as follows.

3. Every p2 < 3=4 is dominated by any p02 2 (p2; 3=4) over [1=4;1): for each
p1 � 1=4, �rm 2�s pro�t is strictly increasing over

�
0;min

�
pF2 (p1); p1 + a2

	�
,

and min
�
pF2 (1=4); a2 + 1=4

	
> 3=4.

4. Every p1 < p2�a2 < 1=2 is dominated by p01 := pF1 (p1+a2) over [3=4;1):
p01 is the unique best reply to p2 = p1 + a2 < p2, and for p2 > p1 + a2

�rm 1�s pro�t with p01 weakly increases, while with p1 it remains p1; for

p2 2 [3=4; p1 + a2), p01 = a2 + p1=2 < p2 + a2 is closer than p1 to

pF1 (p2) =
a2 + p2
2

>
a2
2
+
3

4
p1 =

p1 + p
0
1

2
:

21



5. Every p2 < min
�
p2; p

F
2 (p2 � a2)

	
=: p is dominated by any p02 2 (p1; p)

over [p2 � a2;1): for each p1 � p2�a2, �rm 2�s pro�t is strictly increas-
ing over [0; p).

Second, I show that for a1 2 [a01; a
0
1] and a

0
1 = ea01, at (a01; a2) = (ea01; 1� a1),

there is no p2 2 P12 below pL = min
�
p2; p

F
2 (p2 � (a2 � a01))

	
. Again, p2 < 0,

but �rm 2 can now have the incentive to undercut.

1. Every p2 < 0:34 is dominated by p02 = 5p2=4 < a2 � a01: for p1 2
[0; p2 + (a2 � a01)), by pF2 (p1) � pF2 (0) > p02 �rm 2�s pro�t is strictly

increasing over [0; p02]; for p1 � p2 + (a2 � a01), �rm 2�s demand under p02
is higher than 4=5,20 thus the pro�t is higher than p2.

2. Every p1 < p2 � (a2 � a01) < 0:31 is dominated over [0:34;1) by p01 :=
pF1 (p1+(a2�a01)): p01 is the unique best reply to p2 = p1+(a2�a01) < p2,
and for p2 > p1+(a2�a01) �rm 1�s pro�t with p01 weakly increases, while
with p1 it remains p1; for p2 2 [0:34; p1 + (a2 � a01)), p01 = a2 + p1=2 <

p2+(a2�a01) is closer than p1 to pF1 (p2) = (a01+a2+p2)=2 > a2=2+3p1=4.

Now, since no p1 > p�1 is rationalizable, for each p
0
1 > p�1 there is m > 0

such that there is no p1 2 Pm�11 above p01. Let p01 = 0:93 > p�1; I show

that each p2 < pL is dominated over [p2 � (a2 � a01); p01], so that p2 62 Pm2 .

Each p2 2
�
p01 � (a2 � a01); pL

�
is dominated by any p02 2 (p1; p

L), because

for each p1 2 [p2 � (a2 � a01); p01] �rm 2�s pro�t is strictly increasing over�
p2; p

L
�
. Each p2 2 [0; p01 � (a2 � a01)] is dominated by p02 := 4p2=3: for

each p1 2 [p2 � (a2 � a01); p2 + (a2 � a01)), �rm 2�s pro�t is strictly increas-

ing over [p2; p02) by p
0
2 < 0:67 < min

�
p1 + (a2 � a01); pF2 (p1)

	
;21 for each p1 2

[p2 + (a2 � a01); p01], �rm 2�s demand under p02 is higher than 3=4.
22.

20The di¤erence between p02 and p2 is at most 0:085, so the loss in demand is at most
a01 + 0:0425 < 0:2.
21The �rst inequality comes from p2 � p01 � (a2 � a01) < 0:93 � 0:43 (we have a

0
1 < 0:42

and a01 < 0:15). The second inequality comes from 0:67 < p2 � p1+(a2�a01) (p2 is minimal
for a1 = a

0
1) and p

F
2 (p2 � (a2 � a01)) = 1� (a01 + a2)=2 + (p2 � (a2 � a01))=2 > 1� 0:4 + 0:12

(p2 � (1� a1) + a01 is minimal for a1 = a
0
1).

22The di¤erence between p02 and p2 is less than 0:67=4 < 0:17, so the loss in demand is
less than a01 + 0:09 < 0:25.
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Appendix

Appendix A

A.1 Best response sets of prices

Existence at each (a1; a2) I am going to show that at every locations

pair (a1; a2) there is a best response set of prices P1�P2, with certain charac-
teristics.

If a1 = a2, let P1 � P2 = f(0; 0)g. If (a1; a2) is such that (p�1; p�2) is an
equilibrium, let P1 � P2 = f(p�1; p�2)g. Otherwise, suppose without loss of

generality that a1 < a2 and a1 + a2 � 1; for a1 > a2 or a1 + a2 < 1, best

response sets can be obtained by symmetry (see the next section for examples).

The absence of pure equilibrium, a1 < a2, and a1 + a2 � 1 imply a1 > 1=4.

For each i = 1; 2, let p0i be the solution of

pi � (a2 � a1) = xi � (pi + (a2 � a1)) ; (16)

where x1 = (1 � a2) and x2 = a1. If pi =pi, pi solves (16), so pi = p0i; else,

p0i < pi. By a1 � 1� a2, we have p02 � p01, p2 � p1, p2 �p1.
We have p1 >p1 if and only if a1 < a

2
2. So, let

bp1 =

(
p01 if a1 � a22
p1 if a1 < a22

pH2 =

( bp1 + (a2 � a1) if a1 � a22
pF2 (bp1) if a1 < a22

pL2 = bp1 � (a2 � a1)
pL1 =

(
pF1 (p

L
2 ) if pH2 � p2

p2 � (a2 � a1) if pH2 > p2
:

Given a2, let a1 be the value of a1 such that pL2 =p2. So, p
L
2 <p2 if a1 > a1

and pL2 >p2 if a1 < a1. We have a1 < a22 because, for a1 � a22, p
L
2 < p01 �

p1 �p1 �p2.
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I am going to show that there exists a best response set P1�P2 such that,
for some "; � > 0,

P1 � [bp1; bp1 + ") ; (17)

P2 �
�
pL2 ; p

L
2 + "

�
[
�
pH2 ; p

H
2 + �

�
; (18)

and if a1 < a1
P1 �

�
pL1 ; p

L
1 + "

�
; (19)

and if furthermore pH2 > p2

P2 � [p2; p2 + ") :

First I show that, for any " > 0, each p2 2
�
pL2 ; p

L
2 + "

�
is the (unique)

best reply to the uniform distribution � over [p1; p1 + �] � (bp1; bp1 + ") with
p1 = p2 + (a2 � a1) and any � 2 (0; pL2 + "� p2) such that

p2 >
�
1� 


�
a1

�
(p2 + 
) ; 8
 2 (0; �]; (20)

and

p2 >
1

2

�
pF2 (p1 + �)

�2
if p1 > p1, (21)

p2 > (1� a2) (p1 + � + (a2 � a1)) else. (22)

A small enough � clearly satis�es (20), and also (21) and (22) because they

are satis�ed for � = 0, by p1 > bp1. The right-hand side of (21) or (22) is an
upper bound for �rm 2�s pro�t with p02 � p2+ � against p1+ �, thus also under
�. The right-hand side of (20) is an upper bound with each p02 2 (p2; p2 + �].
The left-hand side is the expected pro�t with p2. Hence, p2 is the (unique)

best reply to �.

Now I show that, for some � > 0, each p2 2
�
pH2 ; p

H
2 + �

�
is the (unique)

best reply to a conjecture over [bp1; bp1 + ").
Suppose �rst that a1 < a22, thus bp1 = p1 >p1. Then, pH2 is the unique best

24



reply to p1. Fix any � 2 (0; 1). Fix � 2 (0; ") such that

bp1 � (a2 � a1) > (1� �a1) (bp1 + � � (a2 � a1)) ; (23)

pF2 (bp1 + �) < bp1 + (a2 � a1): (24)

A small enough � clearly satis�es (23), and also (24) because bp1 >p1. I show
that each p2 2 (pH2 ; pF2 (�bp1+ (1� �)(bp1+ �))) is the (unique) best reply to the
probability measure � over fbp1; bp1 + �g � [bp1; bp1 + ") with mean (pF2 )�1(p2).
Note that (pF2 )

�1(p2) = �bp1 + (1 � �) (bp1 + �) for some � 2 (�; 1), and let
�(bp1) = � and �(bp1+ �) = 1��. Since � < �, the right-hand side of (23) is an
upper bound of �rm 2�s expected pro�t under � with p02 2 (bp1� (a2�a1); bp1+
��(a2�a1)], hence bp1�(a2�a1) is an upper bound with p02 � bp1+��(a2�a1).
Moreover, by bp1 = p1 we have

bp1 � (a2 � a1) = (pF2 (bp1))2=2 < p22=2.
Finally, by (24), p2 < bp1+(a2�a1), and with any p02 2 (bp1+ �� (a2�a1); bp1+
(a2 � a1)), by linearity of �2(p02; p1) in p1, �rm 2�s expected pro�t under � is

�2(p
0
2; (p

F
2 )
�1(p2)). Thus, p2 is the (unique) best reply to �.

Suppose now that a21 � a2, thus bp1 = p01. I show that, for some � 2 (0; "=2),
each p2 2

�
pH2 ; p

H
2 + �

�
is the (unique) best reply to the uniform distribution

over [p1; p1 + �] � [bp1; bp1 + ") with p1 = p2 � (a2 � a1) and any � 2 (0; "=2)
such that,

p2

�
1� a2 +

�

4

�
>

�
1� 


�

��
1� a2 +

� � 

4

�
(p2 + 
) 8
 2 (0; �];(25)

p2

�
1� a2 +

�

4

�
>

�
1� 


�
a1

�
(p1 + 
 � (a2 � a1)) 8
 2 [0; �]; (26)

pF2 (p1 + �=2) > p2: (27)

With p2 = pH2 , thus p1 = bp1, a small enough � clearly satis�es (25), and also
(26) and (27): by bp1 = p01, (1� a2) (bp1 + (a2 � a1)) = bp1 � (a2 � a1), and bybp1 � p1 �p1, pF2 (bp1) � bp1+ (a2� a1). Then, for a su¢ ciently small �, they all
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remain satis�ed. The right-hand side of (25) is �rm 2�s expected pro�t under

� with each p02 2 (p2; p2 + �]; the right-hand side of (26) is an upper bound
with each p02 2 [p1 � (a2 � a1); p1 + � � (a2 � a1)); the left-hand side is the
expected pro�t with p2. By (27), �rm 2�s expected pro�t is increasing over

(p1 + � � (a2 � a1); p2]. Hence, p2 is the (unique) best reply to �.

If a1 � a1, it only remains to show that for some " > 0, each p1 2 [bp1; bp1 + ")
is the (unique) best reply to some conjecture over (pL2 ; p

L
2 + ") [ [pH2 ; pH2 + ").

Suppose �rst that a1 > a1, thus pL2 <p2. Since �rm 2 has no strict incentive

to undercut bp1, �rm 1, which is closer to the center, has no incentive to under-
cut any p2 < bp1. Fix " 2 (0; a2 � a1) such that pL2 + " <p2. I show that each
p1 2 [bp1; bp1 + ") is the (unique) best reply to the uniform distribution over

(p2; p2 + �) � (pL2 ; pL2 + ")23 with p2 = p1 � (a2 � a1) and � 2 (0; pL2 + " � p2)
such that

p1

�
a1 +

1

4
�

�
>

�
1� 


�

��
a1 +

1

4
(� � 
)

�
(p1 + 
) 8
 2 (0; �]; (28)

p1

�
a1 +

1

4
�

�
> p2 + � � (a2 � a1); (29)

A small enough � clearly satis�es (28), and also (29), by p2 <p2 and the strict

incentive of �rm 1 not to undercut. The right-hand side of (28) is �rm 1�s

expected pro�t under � with each p01 2 (p1; p1 + �]; the right-hand side of (29)
is an upper bound with p01 � p2 + � � (a2 � a1); the left-hand side is the
expected pro�t with p1. Firm 1�s demand is 0 with p01 > p1 + �. By p2 <p2,

�rm 1�s expected pro�t is increasing over (p2 + � � (a2 � a1); p1]. Thus, p1 is
the (unique) best reply to �.

Suppose now that a1 = a1. As in the a1 > a1 case, bp1 is the (unique) best
reply to a uniform distribution over (pL2 ; p

L
2 + �) for su¢ ciently small �. I show

that, for su¢ ciently small " > 0, each p1 2 (bp1; bp1 + ") is the (unique) best
reply to the probability measure � over

�
p2; p

H
2

	
with mean (pF1 )

�1(p1) for any

p2 2 (p1 � (a2 � a1);min
�
(pF1 )

�1(p1); p
L
2 + "

	
) 6= ;. The non-emptiness comes

23Usually uniform distributions are de�ned over compact intervals. The uniform over
[p2; p2 + �] is a valid conjecture because it gives probability 1 to (p2; p2 + �).
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from pF1 (p1� (a2� a1)) < p1: by a1 = a1, p2 = pL2 < p1� (a2� a1). Moreover,
pH2 < p1 + (a2 � a1). So, p1 is the (unique) best reply to � if no price below
pH2 � (a2�a1) does better. By pL2 < p1 � p2, (pF1 (pL2 ))2=2 > pL2 � (a2�a1), and
for su¢ ciently small ", the inequality is preserved with (pF1 )

�1(p1) in place of

pL2 . Since p
H
2 � (a2 � a1) < bp1 < p2, the expected pro�t under � is increasing

over (pL2 � (a2 � a1); pH2 � (a2 � a1)). Moreover, for su¢ ciently small ", �
assigns su¢ ciently small probability to pH2 , so that the drop in expected pro�t

at pH2 �(a2�a1) (which is bounded away from bp1) does not alter the optimality
of p1.

From now on, suppose that a1 < a1. Thus pL2 >p2, and by p
L
1 � pL2 and

p2 �p1, pL1 >p1 as well. Then, from now on, we are only going to consider

prices pi >pi. Recall that a1 < a1 implies a1 < a22, so bp1 = p1. There are two
cases to consider: pH2 � p2 and pH2 > p2.

Let us start from pH2 � p2 and recall that in this case pL1 = pF1 (pL2 ). Let

pH1 : = pF1 (p
H
2 );

p02 : = pH1 � (a2 � a1) > pL2 ;
p002 : = pF2 (p

L
1 ) < p

H
2 ;

We have

p02 = p
F
1 (p

H
2 )� (a2 � a1) > pF1 (p002)� (a2 � a1): (30)

I show that
�
pL1 ; p

H
1

�
�
��
pL2 ; p

0
2

�
[
�
p002; p

H
2

��
is a best response set.24 I have

already proven that:

i) each p2 2
�
pL2 ; p

0
2

�
is a best reply to a conjecture over

�
p1; p

H
1

�
;

Moreover, note that:

ii) each p2 2
�
p002; p

H
2

�
is the best reply to (pF2 )

�1(p2) 2
�
pL1 ; p1

�
;

iii) each p1 2
�
pL1 ; p

F
1 (p

0
2)
�
[
�
pF1 (p

00
2); p

H
1

�
is the best reply to (pF1 )

�1(p1) 2�
pL2 ; p

0
2

�
[
�
p002; p

H
2

�
(by pH2 � p2).

24It can be shown that p02 < p
00
2 , otherwise, points (i)-(iii) would su¢ ce.
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It remains to show that each p1 2
�
pF1 (p

0
2); p

F
1 (p

00
2)
�
is a best reply to a

conjecture over
�
pL2 ; p

0
2

�
[
�
p002; p

H
2

�
. First I show that any price p1 < p002�(a2�a1)

is dominated over fp02; p002g. We have

p02 = 1� 1
2
a2 +

3

2
a1 �

p
a1;

p002 =
1

4
a1 �

p
a1 +

3

2
� 1
4
a2:

Since p02 < p2, any p1 � p02�(a2�a1) gives to �rm 1 a lower payo¤ than pF1 (p02)
against p02, a fortiori against p

00
2. Since p

00
2 � p2, any p1 with p02�(a2�a1) < p1 �

p002�(a2�a1) gives to �rm 1 a lower payo¤ than pF1 (p002) against p002. I show that
the same holds against p02. By (30), the pro�t from p

F
1 (p

00
2) is �1(p

F
1 (p

00
2); p

0
2). By

a1+a2 � 1 and p02 < 1, pF1 (p02) > p02 > p002�(a2�a1) � p1; thus, the pro�t from
p1 is bounded above by �1(p002�(a2�a1); p02), because �1(�; p02) is a parabola with
maximum at pF1 (p

0
2). But then, we have �1(p

F
1 (p

00
2); p

0
2) > �1(p

00
2 � (a2� a1); p02)

if and only if

pF1 (p
00
2)� pF1 (p02) < pF1 (p

0
2)� p002 + (a2 � a1),

1

4
� 5
8
a1 +

1

8
a2 <

3

2
a2 � 1 +

1

2

p
a1 ,

11

8
a2 +

5

8
a1 +

1

2

p
a1 >

5

4

and the last inequality is true by a1 + a2 � 1 and a1 > 1=4.
Now, �x p1 2

�
pF1 (p

0
2); p

F
1 (p

00
2)
�
. Inequality (30) and the dominance relations

are preserved for some � > 0 and p02 � � > pL2 and p002 + � < pH2 in place of p02
and p002. Therefore, by linearity of �1(�; p2) in p2, p1 is the best reply to the
conjecture over fp02 � �; p002 + �g with mean (pF1 )�1(p1) 2 [p02; p002].

Finally, suppose that pH2 > p2. Recall that in this case, p
L
1 = p2� (a2�a1).
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Let

pH1 : = pF1 (p2)

p02 : = pH1 � (a2 � a1) < p2
p002 : = pF2 (p

L
1 ) < p2

p01 : = pH2 � (a2 � a1) < p1
p001 : = pF1 (p

L
2 ) < p1

I show that for each i = 1; 2, �i=1;2
��
pLi ; p

0
i

�
[
�
p00i ; p

H
i

��
is a best response

set.25 I have already proven that:

i) each pi 2
�
pLi ; p

0
i

�
is a best reply to a conjecture over

�
p�i; p

H
�i
�
.

Moreover, note that

ii) each pi 2
�
p00i ; p

F
i (p

0
�i)
�
[
�
pFi (p

00
�i); p

H
i

�
is the best reply to (pFi )

�1(pi) 2�
pL�i; p

0
�i)
�
[
�
p00�i; p�i

�
.

It remains to show that each pi 2
�
pFi (p

0
�i); p

F
i (p

00
�i)
�
is a best reply to a

conjecture over
�
p0�i � �; p00�i + �

	
for some � > 0. I am going to show that

each pi � p00�i � (a2 � a1) is dominated over
�
p0�i; p

00
�i
	
by pFi (p

00
�i). Then, the

proof follows the same lines as for the pH2 < p2 case.

The inequality pH2 > p2 reads

2� 2pa1 > 4� a2 � a1 � 4
p
1� a2;

which, given a1 > 1=4, requires a2 < 3=4. By a1 < a1, we have pL2 >p2, which

reads

2 + 2a1 � 4
p
a1 > 3a1 � a2;

and yields
p
a1 <

�4 +
p
16 + 8 + 4a2
2

;

25It can be shown that p02 < p
00
2 and p

0
1 < p

00
1 , otherwise, points (i)-(ii) would su¢ ce.
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which given a2 < 3=4 implies a1 < 0:36. By a1 < a22 and a1 > 1=4, we have

a2 > 1=2. To recap, we have a1+ a2 � 1, a1 2 (1=4; 0:36), and a2 2 (1=2; 3=4).
This also implies p1 � p2 < 1.
By p00�i < p�i, p

F
i (p

00
�i) < p

F
i (p�i) = p

H
i = p

0
�i + (a2 � a1). So, as before, it

remains to show that pFi (p
00
�i)�pFi (p0�i) < pFi (p0�i)�p00�i+(a2�a1) for i = 1; 2.

For i = 2, we have

x := pF2 (p
0
1) =

3

2
+
1

4
p1 �

1

4
a1 �

5

4
a2;

y := pF2 (p
00
1) = 1�

1

2
a2 +

1

4
p1;

z := p001 � (a2 � a1) =
1

2
p1 � a2 + 2a1;

y + z � 2x = 1

4
p1 + a2 +

5

2
a1 � 2 < 0,

where the desired inequality comes from a2 < 3=4, a1 < 0:36 and p1 < 1. For

i = 1, we have

x := pF1 (p
0
2) =

1

4
p2 +

5

4
a1 +

1

4
a2

y := pF1 (p
00
2) =

1

2
+
1

2
a1 +

1

4
p2

z := p002 � (a2 � a1) = 1 +
1

2
p2 � 2a2 + a1

y + z � 2x = 3

2
+
1

4
p2 � a1 �

5

2
a2 < 0,

where the desired inequality comes from a1 + a2 � 1, a2 > 1=2, and p2 < 1.

A.2 Extensive-form rationalizability

Let A0 = f0:31; 0:32g and A00 = f0:68; 0:69g. Fix a2 2 A00; using the results of
Appendix A.1, I am going to �x a best response set for any value of a1. (Note

that by a2 � 0:69, (p�1; p�2) is never an equilibrium.)
If a1 > a2, �x a best response set P 1 � P 2 with P 2 � [bp2; bp2 + ") for some
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" > 0. By symmetry, it exists and we have

bp2 � p2 = 2 + a1 + a2 � 4pa2. (31)

If a1 = a2, let P 1 � P 2 = f0; 0g.
If a1 2 (0:32; a2), �x a best response set P 1� P 2 with P 2 �

�
pL2 ; p

L
2 + "

�
[�

pH2 ; p
H
2 + "

�
for some " > 0, and recall that

pH2 = p01 + (a2 � a1) =
(2� a2)(a2 � a1)

a2
+ (a2 � a1) = 2� 2

a1
a2
; (32)

pL2 = p01 � (a2 � a1) = pH2 � 2(a2 � a1) if a1 2 (a22; a2);
pH2 = pF2 (p1) = 2� 2

p
a1; (33)

pL2 = p1 � (a2 � a1) = 2 + 2a1 � 4
p
a1 if a1 2 (0:32; a22]:

If a1 2 (0; 0:32], �x a best response set P 1 � P 2 with P 1 �
�
pL1 ; p

L
1 + "

�
and

P 2 �
�
pL2 ; p

L
2 + "

�
[ [p2; p2 + ") for some " > 0, where, letting a01 < 0:30 be the

value of a1 such that pF1 (p2) = p1,
26

pL1 = p2 � (a2 � a1); (34)

pL2 = p1 � (a2 � a1) = 2 + 2a1 � 4
p
a1 if a1 2 (a01; 0:32]; (35)

pL2 = pF2 (p
L
1 ) = 3�

1

2
a1 �

3

2
a2 � 2

p
1� a2 if a1 2 [0; a01]: (36)

To see that that P 1 � P 2 exists, consider �rst a1 2 [1� a2; 0:32]. We have

pH2 = p
F
2 (p1) = 2� 2

p
a1 > 4� a2 � a1 � 4

p
1� a2 = p2:

Moreover, a1 > 0:32, because for a1 = 0:32, pL2 >p2. Then, existence follows

verbatim from the results of Appendix A.1. Consider now a1 2 [0; 1� a2). We
have p2 >p2, thus bp2 = p2, and p2 � (a2 � a1) >p1.27 Then, the existence of
P 1 � P 2 follows from the results of Appendix A.1 with the roles of the two

26For a1 = 0:30, we have pF1 (p2) = 2� 2
p
1� a2 > 2:30 + a2 � 4

p
0:30 = p1:

27The �rst condition is veri�ed by 1�a2 < (1� a1)2. The second is veri�ed at (1�a2; a2)
(see Section 3.2.2) and the left-hand side is independent of a1, while the right-hand side
decreases as a1 decreases.
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�rms inverted (case pH1 = pF1 (p2) > p1 for a1 > a01, case p
H
1 = pF1 (p2) � p1

else).

For a1 2 [1� a2; a2), we have pL2 < bp1 � p1 � p2. For a1 2 (a01; 1� a2), we
have pL2 = p1�(a2�a1) < p2. For a1 2 [0; a01], we have pL2 = pF2 (p2�(a1�a1)) <
p2. We conclude that p

L
2 < p2 for all a1 2 [0; a2).

Now, for each a1 � 1=2, I �x a �optimistic�distribution over P 2 and a best
reply of �rm 1.

Fix a1 2 [0; 0:32]. At (a1; a2), �x a uniform distribution �a1 over [p2 + �; p2 + � + 
] �
P 2 for su¢ ciently small �; 
 > 0 so that, letting pO1 := p2 + � � (a2 � a1), (i)
pO1 2 P 1, (ii) pO1 < p1, and (iii) pO1 best replies to �a1 (see Appendix A.1 for the
construction of �a1). Note that (ii) can be satis�ed because p2 � p1 < a2 � a1.
By (34), pO1 = p

L
1 + �.

Fix a1 2 (0:32; 1=2]. At (a1; a2), �x a uniform distribution �a1 over
�
pH2 ; p

H
2 + 


�
�

P 2 for su¢ ciently small 
 > 0 so that �rm 1 has a best reply pO1 .
28 Firm 1�s

expected pro�t under �a1 is bounded below by

a1 �
�
pH2 (a1; a2) + (a2 � a1)

�
>
1

2

�
a01 + a2
2

+
pL2 (a

0
1; a2)

2

�2
8a01 2 [0; a2) ;

(37)

where the right-hand side is an upper bound of �rm 1�s pro�t against pL2 < p2 at

(a01; a2). The inequality holds because it holds for a1 = 1=2 and a
0
1 = a

0
1 < 0:30,

which, respectively, minimize and maximize the two sides. By (32) and (33),

a1�
�
pH2 (a1; a2) + (a2 � a1)

�
=

(
2a1 � 2a1

p
a1 + a1a2 � a21 if a1 2 (0:32; a22]

2a1 � 2a
2
1

a2
+ a1a2 � a21 if a1 2 (a22; 1=2]

;

and note that �2a1
p
a1 � �2a21=a2 for a1 � a22, and 2a1 � 2a21=a2 + a1a2 � a21

is concave and lower for a1 = 1=2 than for a1 = 0:32. The right-hand side is

maximized by a01 = a
0
1 because, by (35) and (36),

pL2 (a
0
1; a2) + a

0
1 > p

L
2 (a

0
1; a2) + a

0
1; 8a01 2 [0; a2) ; a01 6= a01.

28The best reply can be pH2 � (a2 � a1), or pF1 (pH2 + �=2), or pH2 + (a2 � a1); which one is
immaterial for the analysis.
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Now, for any a01, I �x a low price in P 2. For each a
0
1 2 [0; a2), at (a01; a2), let

pD2 := p
L
2 + � for su¢ ciently small � > 0 so that (i) p

D
2 2 P 2, (ii) pD2 < p2, and

(iii) inequality (37) still holds with a1 = 1=2 and pD2 = p
L
2 (a

0
1; a2) + � in place

of pL2 (a
0
1; a2). Note that (ii) can be satis�ed because for a

0
1 � a01, pL2 = pF2 (pL1 )

and pL1 = p2 � (a2 � a1) >p1, and for a1 > a01, p
L
2 = p1 � (a2 � a1) and

p1 � p2 < a2 � a1. For each a01 2 (a2; 1], let pD2 = bp2 2 P 2. Let pD2 (a2; a2) = 0.
Now, I show that for each a1 2 [0; 1=2], �rm 1�s expected pro�t at (a1; a2)

under the optimistic distribution �a1 is higher than against the low price pD2 at

any (a01; a2) with a
0
1 < a2. (For a

0
1 > a2, this is easy to see.) If a1 2 (0:32; 1=2],

this is true by construction of each a01 2 [0; a2); else, �a1�s support is above p2,
�rm 1�s pro�t at (a01; a2) against p2 is independent of a

0
1, and p

D
2 < p2.

Then, choosing a1 and pO1 (a1; a2) is optimal given some distribution over

Sa1;a22 :=

(
s2 2 S2(a2)

����� s2(a1) 2 P2 (a1; a2)8a01 6= a1; s2(a01) = pD2 (a01; a2)

)
;

where P1(a1; a2)�P2(a1; a2) denotes the best response set P 1�P 2 at (a1; a2).
For each a1 2 A0 and a2 2 [1=2; 1], P 1 � P 2, pD1 , and pO2 can be de�ned

at (a1; a2) symmetrically. In particular, if a2 2 A00, by 1 � a2 � 0:32, pO2 is

constructed at (a1; a2) as pO2 = p
L
2 + � for su¢ ciently small �. At (a1; a2), p

D
2

has been constructed above as pL2 + � for su¢ ciently small �. But then, we can

obtain pO2 = p
D
2 by constructing them with the same �.

For each a1 2 A00 and a2 2 [0; 1=2], and for each a2 2 A0 and a1 2 [1=2; 1],
construct P 1 � P 2, pD1 , and pO2 in the same way by symmetry.
For any other (a1; a2) 2 [0; 1]2, let P1(a1; a2) � P2(a1; a2) be the best re-

sponse set constructed in Appendix A.1.

Now, for each i = 1; 2, consider the following sets of plans:

S�i =

8><>:si 2 Si
�������
�
s;i � 1=2

�
)
�
9a�i 2 A00; si(a�i) = pOi (s;i ; a�i)

��
s;i > 1=2

�
)
�
9a�i 2 A0; si(a�i) = pOi (s;i ; a�i)

�
8a0�i 6= a�i; si(a0�i) 2 Pi(s;i ; a0�i)

9>=>; :
For each a2 2 A00 and a1 2 [0; 1=2], observe that Sa1;a22 � S�2 , because for each
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s2 2 Sa1;a22 , there is a01 2 A0 such that s2(a01) = pD2 (a01; a2) = pO2 (a01; a2).29

I am going to show that for each si 2 S�i , there is �i 2 �H(S��i) such that

si 2 �i(�i). Since every locations pair is induced by some (s1; s2) 2 S�1 � S�2 ,
we have �i(S

�
�ija) = 1 for each a 2 [0; 1]2. Then, it is immediate to see by

induction that S�i � S1i for each i = 1; 2.

Without loss of generality, �x s1 2 S�1 with s;1 � 1=2. Fix a2 2 A00 such
that s1(a2) = pO1 (s

;
1; a2). By construction, s

;
1 and p

O
1 (s

;
1; a2) are optimal given

a distribution � over Ss
;
1;a2
2 � S�2 . For each a

0
2 6= a2 and p2 2 P2(s

;
1; a

0
2),

there is s02 2 S2(a02) with s02(s;1) = p2 and s02(a1) = pO2 (a1; a
0
2) for some a1 2

(A0 [ A00) n
�
s;1
	
, so that s2 2 S�2 . Then, there is �1 2 �H(S�2) with �1(�j;) = �

such that �1(�js;1; a02) justi�es s1(a02) 2 P1(s
;
1; a

0
2) for each a

0
2 6= a2, so that

s1 2 �1(�1).

To conclude, note that, for Ses1 �Ses2 de�ned in Section 3.1, S�i \Sesi 6= ; for
each i = 1; 2. This is because pO1 (1=4; a

0
2) < p1(1=4; a

0
2) for each a

0
2 2 A00; and

for each a02 62 A00, P1(1=4; a02) includes prices that can be prescribed by Ses1 .

Appendix B

I show that there is p 2 P with p � p. I will prove that pI � p; then, if pI < p,
the result follows, if pI = p, p 2 P for the following reason. Suppose p 62 P ;
thus, P contains a sequence � of prices that converges to p from above. But

then, P also contains a sequence �0 that converges to p+(a2�a1) from above,
and I will show that a conjecture over �0 justi�es p, a contradiction. To see why

� requires �0, suppose by contradiction that P\(p+(a2�a1); p+(a2�a1)+") =
; for some " > 0. Then, for any conjecture over P , the expected pro�t of the
29The importance of this fact is the following. Firm 1 may think �rm 2 locates at a2 2 A00

precisely in the hope that �rm 1 locates at a01 2 A0, and then �xes a price that best replies
to an optimistic conjecture, rather than being surprised by a01, and then �xing any price in
P2(a

0
1; a2). This could make it impossible to justify a1 62 A0 with a belief over S�2 , where

all the plans are justi�ed precisely under the belief that �rm 1 locates at some a01 2 A0.
But thanks to pD2 (a

0
1; a2) = p

O
2 (a

0
1; a2), �rm 1 can believe that �rm 2 will �x the low price

pD2 (a
0
1; a2) as a best reply to the optimistic conjecture, deterring a deviation from a1 to a01.
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respondant is strictly increasing over (p;min
�
pF (p); p+ "

	
), where pF (p) > p

by p < p� = 1, so the prices of � in this interval could not be justi�ed in P .

Now I prove that pI � p. Suppose that there exist p 2 P and " > 0 such
that p > p and [p; p+ ") � P . Then, for each p0 2 [p; p+ "), p0�(a2�a1) is the
best reply to a uniform distribution over [p0; p0 + �] for su¢ ciently small � (see

Appendix A.1 for details). But then, we have [p� (a2 � a1); p+ "� (a2 � a1)) �
P . Iterating if necessary, we �nd prices smaller or equal to p in P . Suppose

from now on that pI > p; I show that then such p and " exist, a contradiction.

Any price p > 4(a2 � a1) is dominated over [0; p] by any p0 2 (p=2; p �
2(a2� a1)): whenever p gives positive demand, it is at most 1=2, and p0 > p=2
gives demand 1. Then, p is also dominated over [0; p+ "] for some " > 0,

thus supP � 4(a2 � a1). Moreover, p > 2(a2 � a1), because, by a1 > 1=4,

3� 4pa1 > 2� 4a1) (recall a1 + a2 = 1). Hence, P � (2(a2 � a1); 4(a2 � a1)].
For each conjecture over prices �, let p� be the mean of �.

Consider p > p and a sequence of prices (pk)1k=0 that converges to p from

above. Construct a probability measure � by assigning probability (1=2)j to

each epj of a decreasing subsequence (epj)1j=1 of (pk)1k=0 such that
p� (a2 � a1) >

�epj � (a2 � a1)��Pj
l=1

1

2l
+ a2

P
l>j

1

2l

�
; 8j � 1; (38)

p� (a2 � a1) >
1

2

�
1

2
+
1

2
ep1�2 : (39)

Such subsequence exists: (39) is satis�ed by picking ep1 su¢ ciently close to p,
since it holds with p in place of ep1 by p > p; (38) is satis�ed by picking each
subsequent epj close enough to p as well. The right-hand side of inequality
(38) (resp., (39)) is an overestimation of the expected pro�t given by any

p0 2 (epj+1 � (a2 � a1); epj � (a2 � a1)] (resp., by any p0 > ep1 � (a2 � a1)) under
�, while the left-hand side is the pro�t given by p� (a2 � a1). Thus, the best
reply to � is p � (a2 � a1). Then, there is no sequence of prices in P that

converges to pI > p from above, otherwise pI � (a2� a1) 2 P , a contradiction.
But then, pI 2 P , and there is ep > pI such that P \ (pI ; ep) = ;.
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Price pI can be a best reply to a conjecture over P only if there is a

decreasing sequence of prices (pk)1k=0 that converges to p
I + (a2 � a1), oth-

erwise the respondant�s expected pro�t would be strictly incresasing over�
pI ;min

�
pF (pI); pI + "

	�
for some " > 0 (pF (pI) > pI because, since no price

above p� is rationalizable, pI < supP � p� = 1). So, �x a decreasing sequence
(pk)1k=0 in P that converges to p

I+(a2�a1) with p0 < ep+(a2�a1). Each price
pk is a best reply to a conjecture � over Pn

�
pI
	
. To see this, �x a conjecture

� 0 over P that justi�es pk, and note that pk is a worst reply to pI (it gives 0

demand), so it must be a best reply to � 0j
�
Pn
�
pI
	�
. Since pk is at less than

(a2 � a1) distance from any p0 2 Pn
�
pI
	
, by linearity of �i(pi; p�i) in p�i, �

must have mean (pF )�1(pk) for pk to be best a reply.

Suppose now that there exist p0 2 P and 
 > 0 such that p0 > infSupp�

and the expected pro�t under � with pk is higher by at least 
 than with any

price in a neighbourhood of p0� (a2�a1). Fix p00 < p0 such that �([p00; p0)) > 0
and

(p0 � (a2 � a1)) �((p00; p0)) < 
; (40)

Construct � 0 from � by moving from (p00; p0) to p0 the probability �((p00; p0)) if

�((p00; p0)) > 0, else by moving from p00 to p0 probability " := min f�(p00); 
g.
With respect to �, the new conjecture � 0 has higher mean, the expected pro�t

with any p < p00�(a2�a1) is unchanged, with any p 2 [p00 � (a2 � a1); p0 � (a2 � a1)]
has gone up less than 
 by (40), and with any p 2 (p0 � (a2 � a1); supP �
(a2� a1)) has gone up less than with pk > supP � (a2� a1): same increase in
expected demand but at a lower price. So, the best reply to � 0 is pF (p�

0
). The

exercise can be repeated by raising p00 or lowering " and the desired interval�
pk; pF (p�

0
)
�
� P obtains.

To complete the proof, it remains to show that, for some pk and the corre-

sponding �, such p0 exists. Suppose not. This means that each pk is justi�ed by

a conjecture �k such that, for each p0 2 P with p0 > infSupp�k, the expected
pro�t from prices below p0� (a2� a1) is not bounded away from the expected
pro�t (pk)2=2 given by pk. Note that (i) infSupp�k �

�
pk
�2
=2 + (a2 � a1),

otherwise prices slightly below infSupp�k � (a2 � a1) would bring under �k
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expected pro�t higher than (pk)2=2. On the other hand, we must have either

(ii) infSupp�k = infSupp�k+1, or (iii) infSupp�k �
�
pk+1

�2
=2+ (a2� a1), oth-

erwise all prices below some p0 2 P with p0 > infSupp�k+1 would bring under
�k+1 expected pro�t bounded away from

�
pk+1

�2
=2. If for every j � 0 there is

k � j such that (iii) holds, together with (i) we obtain a decreasing sequence
of prices in P converging to a point below pI + (a2 � a1) (each �k must give
probability to prices below pk to justify pk). As observed, such sequence can-

not exist, hence there is j � 0 that for each k � 0, infSupp�k = infSupp�k+1.
So, �x j < k < l such that pj, pk, and pl are justi�ed by conjectures �j, �k, �l

with

ep � pIS := inf Supp�j = inf Supp�k = inf Supp�l = inf Supp�l+1 < �pl�2 =2+(a2�a1)
and P \

�
pIS; pIS + "

�
= ; for some " > 0, otherwise some p0 would not satisfy

the requirement. Consider the convex combination � := ��j + (1� �)�l with
�p�

j
+ (1 � �)p�l = pvk = (pF )�1(pk). For each p0 2 P with p0 > pIS, prices

slightly below p0�(a2�a1) bring under � a strictly higher pro�t than pk, since
they bring expected pro�t not bounded away from the optimum under �j and

�l (p0 satis�es the requirement with �j and �l), while the expected pro�t of

pk under �j and �l is strictly below (pj)2 =2 and
�
pl
�2
=2. I am going to show

that then pk is not a best reply to vk, a contradiction. Conjectures � and �k

have the same mean, p�
k
, and the same in�mum of the support, pIS. For pk

to be a best reply to �k, we need that for no p0 > pIS prices slightly below

p0 � (a2 � a1) bring a strictly higher pro�t. But since �k and � have the same
mean, one cannot �rst-order stochastically dominate the other, so there must

be p0 2 P with p > pIS and �k([p0;1)) � �([p0;1)). The expected pro�t of
a price under a conjecture with a given mean is increasing in the probability

to take over the whole market. Therefore, the expected pro�t of some price

slightly below p0� (a2�a1) is still strictly higher than (pk)2=2 under �k. So, pk

cannot be a best reply to �k.
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3.3 Appendix C � Extensive-form best response sets

An Extensive-FormBest Response Set (Battigalli and Friedenberg, 2012; hence-

forth EFBRS) is a set of pairs of plans bS = bS1� bS2 that satis�es the following
condition: for each i = 1; 2 and si 2 bSi, there is �i 2 �H(bS�i) such that
si � �i(�i) � bSi.30 I am going to show that for each symmetric locations pair

(a1; a2) with a1 � a1 ' 0:38, there is an EFBRS bS = bS1� bS2 � S1(a1)�S2(a2).
An EFBRS can be constructed also for higher values of a1, but not all the way

up to 1=2; the construction is left to the reader.

Fix �rst a1 � 1=4. For each i = 1; 2, de�ne si as s;i = ai, si(a�i) = 1, and,
for each a0�i 6= a�i, si(a0�i) = min

���a0�i � ai�� ; pFi (0)	, where pFi (0) is meant at�
ai; a

0
�i
�
. Let bSi = fsig. We have fsig = �i(�i) for any �i 2 �H(bS�i) (thus

�i(s�ij;) = 1) such that for each a0�i 6= a�i, the price distribution induced

by �i(�jai; a0�i) justi�es only si(a0�i):31 against s�i, �rm 1�s pro�t at (a1; a2) is

1=2, while at each (a0i; a�i) with a
0
i 6= ai it is lower than 1=2. This is because,

if a01 < a2 < 1, an upper bound of �rm 1�s pro�t against p2 = a2 � a01 is32

�1(p
F
1 (p2); p2) =

1

2

�
a01 + a2
2

+
a2 � a01
2

�2
=
1

2
a22 <

1

2
; (41)

and if a2 = 1, s2(a01) = p
F
2 (0) < a2 � a01; if a01 > a2 and for �rm 2, symmetric

arguments apply.

Now, �x a1 2 (0:25; a1], where a1 ' 0:34 has been de�ned in Section

3.2.2 as the value of a01 such that, at (a
0
1; 1 � a01), p2 � (1 � 2a01) =p2. For

a1 < a22, in Appendix A.1 I construct a best response set of prices P1 � P2
where inf P1 > inf P2 = p1� (a2�a1) 62 P2, and where each price is the unique
best reply to some conjecture.33 By symmetry (a2 = 1 � a1), we also have a
30This is a strengthening of Self-Justi�ability, however the two conditions are generically

equivalent.
31If si(a0�i) =

��a0�i � ai��, it is the only best reply to a uniform distribution over [0; "] for
su¢ ciently small " (see Appendix A.1 for the construction of analogous uniform distribu-
tions).
32Obviously, �rm 1 cannot undercut p2 = a2 � a01, as the price would be negative.
33This can be seen by inspection of the proofs.
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symmetric best response set of prices P 01 � P 02. For each i = 1; 2, let

bSi := (si 2 Si(ai)
����� 9pi 2 Pi [ P 0i ; si(a�i) = pi
8a0�i 6= a�i; si(a0�i) = min

���a0�i � ai�� ; pFi (0)	
)
. (42)

By (41), at (a01; a2) with a
0
1 < a2, an upper bound of �rm 1�s pro�t against

p2 = a2 � a01 is a22=2; for a01 > a2, analogous argument applies.
At (a1; a2), by a1 � a1, p2 � p1 � (a2 � a1) = inf (P2 [ P 02) =: p2. Since

p2 62 P2 [ P 02, under any distribution over P2 [ P 02 �rm 1 can have a pro�t

higher than (recall a1 + a2 = 1)

�1(p
F
1 (p2); p2) =

1

2

�
2� 2pa1 �

1

2
(a2 � a1)

�2
(43)

So, we have �1(pF1 (p2); p2) > a
2
2=2 if and only if

2� 2pa1 �
1

2
(a2 � a1) > a2 ,

5

2
� 2
p
1� a2 � 2a2 > 0; (44)

where the last inequality is an equality for a2 = 3=4, so it is satis�ed for

a2 2 (1=2; 3=4).
Symmetric arguments apply to �rm 2. Hence, for each i = 1; 2 and �i 2

�H(bS�i), we have �i(�i) � Si(ai). Then, for each si 2 bSi, there is �i 2
�H(bS�i) such that �i(�ja1; a2) justi�es only si(a�i), and for each a0�i 6= a�i,

the price distribution induced by �i(�jai; a0�i) justi�es only si(a0�i).

Finally, �x a1 2 (a1; a1], where a1 ' 0:38 has been de�ned in Section

3.2.2 as the value of a01 such that, at (a
0
1; 1 � a01), p2 =p2. At (a1; a2), by

a1 2 (a1; a1], we have p2 �p2 > p1 � (a2 � a1). Let p02 :=p2 and p
0
1 :=

p02 + (a
0
2 � a01) > p1. Fix " 2 (0; p01 � p1) and let Pi := [p0i � "; p0i) for each

i = 1; 2: for su¢ ciently small �, each pi 2 Pi is the unique best reply to

the uniform distribution over
�
p0�i � (p0i � pi); p0�i � (p0i � pi) + �

�
� P�i (see

Appendix A.1 for the construction of such distributions). Thus, P1 � P2 is
a best response set, and let P 01 � P 02 be the symmetric one. By pF1 (p02) =
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p02 + (a2 � a1) and p02 > p1 � (a2 � a1) =: p2, for su¢ ciently small " we also
have a1 �(p02 � "+ (a2 � a1)) > �1(pF1 (p2); p2) > a22=2, where the last inequality
comes from (43) and (44). Then, bS1 � bS2 de�ned as in (42) is an EFBRS.
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