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Abstract

We model unobserved preference heterogeneity in demand systems via random Barten

scales in utility functions. These Barten scales appear as random coefficients multiplying

prices in demand functions. Consumer demands are nonlinear in prices and may have un-

known functional structure. We therefore prove identification of Generalized Random Co-

efficients models, defined as nonlinear or additive nonparametric regressions where each

regressor is multiplied by an unobserved random coefficient having an unknown distribu-

tion. Using Canadian data, we estimate energy demand functions with and without random

coefficient Barten scales. We find that not accounting for this unobserved preference het-

erogeneity substantially biases estimated consumer-surplus costs of an energy tax.
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1 Introduction

For discretely demanded goods, unobserved preference heterogeneity is typically modeled us-

ing random coefficients, as in Berry, Levinsohn, and Pakes (BLP 1995). Allowing for substan-

tial unobserved random preference heterogeneity, as BLP does, has proven to be necessary for

realistic evaluations of the impacts of price changes on demand. In this paper we propose an

analogous way to introduce unobserved preference heterogeneity in continuous demand sys-

tems.
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The application we consider is energy demand by consumers. Energy is consumed in con-

tinuous quantities and displays substantial nonlinearities in income and price effects. Therefore,

energy cannot be appropriately modeled using discrete demand methods like BLP, and instead

requires the methodology of continuous demand systems.

We demonstrate the importance of accounting for random coefficient type unobserved pref-

erence heterogeneity in energy demand. In particular, we show that failure to do so results in

a dramatic underestimate of the variance of impacts of energy price changes across consumers.

Accounting for this variation is crucial for correctly assessing the true costs to society of energy

policies such as a carbon tax. We show that measures of social welfare that ignore this unob-

served preference heterogeneity yield substantially biased estimates of the full costs to society

of an energy tax on consumers, by failing to fully account for the tax’s distributional impacts.

One of the most commonly used methods for incorporating observable sources of preference

heterogeneity (such as the impacts of age or family size) in continuous demand systems is

via Barten (1964) scales. Barten scales deflate the prices faced by consumers, and so have a

structure that is analogous to random coefficients on prices, in that they multiply each price

in the demand system. This suggests that a natural way to introduce unobserved preference

heterogeneity into continuous demand systems is to allow random variation in the Barten scales

via random coefficients on prices.

However, randomly varying Barten scales introduces a substantial econometric difficulty

because, unlike discrete demand models such as multinomial logit, realistic continuous demand

models are highly nonlinear in prices, due to constraints such as homogeneity and Slutsky

symmetry. We therefore require a general type of random coefficients that can be identified

and estimated in nonlinear, or even nonparametrically specified, demand functions. We define

"generalized random coefficients" to be random coefficients applied to variables in a general

nonlinear or nonparametric model, in contrast to ordinary random coefficients that are applied

in linear index models.

In this paper we first provide some identification theorems, showing that the joint distrib-

ution of random coefficients can be nonparametrically identified in nonlinear, and in additive

nonparametric, regression models.

We then apply these results to identification of random Barten scales in demand systems.

This application includes proving a new theorem that nonparametrically characterizes the pref-

erences associated with demand functions having a certain additive structure. This result is

relevant because it allows us to exploit the regularity conditions required for nonparametric

identification of generalized random Barten coefficients in additive models.

Based on these identification theorems, we estimate energy demand functions for a set of

Canadian consumers. To illustrate the importance of allowing for unobserved heterogeneity

in Barten scales, we evaluate the (partial equilibrium) impacts of a hypothetical tax on energy

goods, like a carbon tax. Among other results, we find that allowing for unobserved preference

heterogeneity has a large impact on the estimated distribution of the relative costs (consumer

surplus impacts) of the tax. For example, we find that this distribution across consumers has a

standard deviation that is six times larger in our model than it is in a model that does not allow

for such unobserved preference heterogeneity.

Consider first our proposed generalization of random coefficients models. Suppose an ob-

served variable Y depends on a vector of observed regressors X = (X1, ..., XK ), and on a set
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of unobserved errors U0,U1, ...,UK that are (possibly after conditioning on other covariates Z )

independent of X . We propose a generalized random coefficients model given by

Y = G (X1U1, ..., XK UK ) or Y = G (X1U1, ..., XK UK )+U0 (1)

for some function G. We focus mainly on results for the special case of equation (1) where G

takes the additive model form

Y =
∑K

k=1
Gk (XkUk)+U0 (2)

and the functions G1, ...,GK are unknown.

In these models the vector U = (U1, ...,UK ) represents unobserved heterogeneity in the

dependence of Y on X , while U0, if present, represents measurement error or other independent

variation Y . We provide conditions under which the distribution of the vector U is nonparamet-

rically identified (If present, U0 is assumed independent of these other errors and has a marginal

distribution that will also be nonparametrically identified.

In our empirical application, Y will be a measure of energy demanded by a consumer, G

will be a Marshallian demand function, each Xk will be the price of a good k divided by a

consumer’s total expenditures, and each Uk (other than U0) will be a Barten scale. All previous

empirical implementations of Barten scales have exactly these forms, but with every Uk other

than U0 specified as deterministic functions of observable characteristics that affect preferences,

such as age or family size. In contrast, we allow the Barten scales to be random, and show their

joint distribution can be nonparametrically identified, under low level regularity conditions.

One of our identification theorems shows that if G is known, then under mild conditions

the joint distribution of the elements of U is nonparametrically identified. We also provide a

theorem giving conditions under which, in equation (2), each functions Gk can be nonpara-

metrically identified (unlike our othert identification result, this theorem employs an argument

analogous to identification at infinity). Combining both theorems then allows us to simultane-

ously nonparametrically identify the joint distribution of U and nonparametrically identify each

Gk function. Combining both theorems also provides some overidentification that we show can

be exploited to generalize the model a bit (relaxing the additivity assumption by adding some

interaction terms), and to some extent also relaxes our dependence on identification at infinity

type arguments.

Imposing the additivity of equation (2) directly on Marshallian demand functions yields

some implausible restrictions on preferences. However, we show that, when K = 2, these re-

strictions can be relaxed by suitably transforming Y . In particular, we prove a theorem showing

that when K = 2, if Y is defined as a logit transformed budget share, then demands will take

the additive form implied by equation (2) if and only if indirect utility has a correspondingly

additive form. This theorem also provides closed form expressions for the indirect utility func-

tion corresponding to nonparametrically specified demand functions that are additive in this

way. These closed form expressions greatly simplify our later consumer surplus and welfare

calculations.

We first provide a literature review bearing on the econometric identification of models

containing random coefficients and on the modeling of preference heterogeneity in continuous
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demand systems. We then present our main identification theorems, followed by our theo-

rem characterizing the nonparametric connection between preferences and logit transformed

demands. We next provide our empirical implementation of the random Barten scales model,

including consumer surplus calculations on the hypothetical impacts of large increase in the

price of, or taxes on, energy goods. We then conclude, and in an appendix we provide proofs,

and some extensions of our identification theorems.

2 Literature Review

We use generalized random coefficients to represent equivalence scales in consumer demand

models. There is a long history of using equivalence scales to empirically model observed

sources of preference heterogeneity. See, e.g., Engel (1895), Sydenstricker and King (1921),

Rothbarth (1943), Prais and Houthakker (1955), Barten (1964), Pollak and Wales (1981), Jor-

genson, Lau, and Stoker (1982), and Ray (1992), and see Lewbel (1997) for a survey. Engel

(1895) and Barten (1964) type equivalence scales take the form of multiplying total expendi-

tures or each price in a demand function by a preference heterogeneity parameter, as in equation

(1). It is therefore a natural extension of this literature to include unobserved preference hetero-

geneity in these equivalence scales.

We apply estimated demand functions and estimated Barten scale distributions to do welfare

analyses. In particular, we use a Barten scaled energy demand function to perform consumer

surplus calculations for an energy price change (as in Hausman 1981). Our consumer surplus

calculations can be interpreted as a variant of Hoderlein and Vanhems (2010, 2011), who in-

troduce unobserved preference heterogeneity into the Hausman model. The first of these two

papers introduced scalar preference heterogeneity into the model nonparametrically, while the

latter incorporated heterogeneity in the form of ordinary linear random coefficients. In contrast,

our model follows the prior consumer demand literature by including preference heterogeneity

in the form of Barten equivalence scales, differing from the prior demand literature in that our

Barten scales include unobserved heterogeneity (a smaller additional difference is the way we

also include an additive measurement error). We also apply our empirical results to estimate

Atkinson (1970) type social welfare functions, and thereby analyze the extent to which allowing

for unobserved preference heterogeneity affects estimated tradeoffs between mean impacts and

inequality impacts of a tax or price change in energy.

Other papers that introduce nonseparable unobserved preference heterogeneity in continu-

ous demand systems include Brown and Walker (1989), Lewbel (2001), Beckert (2006) Matzkin

(2007b), and Beckert and Blundell (2008). Lewbel and Pendakur (2009) propose a continuous

demand system model in which the standard separable errors equal utility parameters summa-

rizing preference heterogeneity, and do welfare calculations showing that accounting for this

unobserved heterogeneity has a substantial impact on the results. Lewbel and De Nadai (2011)

show how preference heterogeneity can be separately identified from measurement errors. A

related empirical model to ours is Comon and Calvet (2003), who use repeated cross sections

and deconvolution to identify a distribution of unobserved heterogeneity in income effects.

Nonparametric identification and estimation of ordinary random coefficients models is con-

sidered by Beran and Hall (1992), Beran, Feuerverger, and Hall (1996) and Hoderlein, Kleme-
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lae, and Mammen (2010). Recent generalizations include random coefficient linear index mod-

els in binary choice, e.g., Ichimura and Thompson (1998), Gautier and Kitamura (2010), and

semiparametric extensions of McFadden (1974) and Berry, Levinsohn, and Pakes (1995) type

models, e.g., Berry and Haile (2009).

Ordinary random coefficients are the special case of the additive model in equation (2)

in which each Gk is the identity function. Additive models are a common generalization of

linear models; see, Hastie and Tibshirani (1990), Linton (2000), and Wood (2006), and in the

particular applications of additivity to consumer demand systems include Gorman (1976) and

Blackorby, Primont, and Russell (1978).

This paper also contributes to the literature on estimation of models with nonseparable er-

rors, in particular where those errors arise from structural heterogeneity parameters such as

random utility parameters. Older examples of such models include Heckman and Singer (1984)

and Lewbel (2001). More recent work focusing on general identification and estimation results

include Chesher (2003), Altonji and Matzkin (2005), Hoderlein, and Mammen (2007), Matzkin

(2007a, 2008), and Imbens and Newey (2009).

Fox and Gandhi (2013) provide general conditions for identification of random utility para-

meters in multinomial choice problems, including linear index models with random coefficients,

and models analogous to Berry and Haile (2009) that exploit Lewbel (2000) type special re-

gressors. They note that the only general sufficient condition known for one of their identifying

assumptions is utility functions that are real analytic functions.

A related result to ours is Hoderlein, Nesheim, and Simoni (2011), who provide a high

level condition they call T -completeness that suffices for nonparametric identification of a vec-

tor of random parameters within a known function. They provide some examples where T -

completeness can be shown to hold, such as when error distributions are in the exponential

family, or are parameterizable by a single scalar. Our model when G is known is a special case

of their general setup, and so our theorem proving identification for this model provides a new

framework where T -completeness could be satisfied. More generally, one goal of our analysis

is to provide relatively low level conditions that serve to identify our model, instead of high

level, difficult to verify conditions as in Fox and Gandhi (2013), or like T -completeness.

Perhaps the result that comes closest to our identification theorem is Matzkin (2003), which

in an appendix describes sufficient conditions for identification of a general class of additive

models with unobserved heterogeneity. The biggest difference between our results and Matzkin

(2003) is that we identify the joint distribution of U , while Matzkin assumes the elements of U

are mutually independent. However, even our model when K = 1 (the case where there is no

joint distribution to be identified) while employing a structure very similar to Matzkin’s, does

not satisfy her identification assumptions and so even in that case our Theorem is not a direct

corollary of her results.

3 Generalized Random Coefficient Model Identification

In this section we first consider additive models given by equation (2). Specifically, Theorem 1

below shows nonparametric identification of each functions Gk and the marginal distribution of

each random coefficient Uk . We then provide, in Theorem 2, separate assumptions under which
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the joint distribution of the random coefficients can be identified in the more general model of

equation (1) when G is known. We then combine both theorems to nonparametrically identify

both the joint distribution of random coefficients and the functions Gk equation (2). We also

discuss conditions for identification of more general models that equal the sum of an additive

model and a parameterized model of cross effects.

Theorem 1 employs an argument similar to identification at infinity (it is actually identifica-

tion at zero), or what Khan and Tamer (2010) call "thin set identification." However, when we

combine Theorems 1 and 2 we obtain overidentifying restrictions, and therefore our results do

not depend solely on thin set identification.

Later sections will then provide the connection between these theorems and our Barten

scales model of demand. However, we note upfront that in our empirical application each Xk

and Uk is positive (though not bounded away from zero), so it is relevant that our identification

theorems allow for zero being on the boundary of the closure of the supports of these variables.

For any random vectors A and B let FA|B (a | b) and fA|B (a | b) denote the conditional

cumulative distribution function and conditional probability density function, respectively, of A

given B. Let ek be the K vector containing a one in position k and zeros everywhere else. Let

X(k) denote the K − 1 vector that contains all the elements of X except for Xk .

3.1 Additive Model and Marginal Distribution Identification

ASSUMPTION A1: The conditional distribution FY |X,Z (y | x, z) and the marginal dis-

tribution FZ (z) are identified. (U0,U1, ...,UK ) ⊥ X | Z and (U1, ...,UK ) ⊥ U0 | Z . Ei-

ther U0 has a nonvanishing characteristic function (conditional on Z ) or U0 is identically zero.

supp (U0) ⊆ supp (Y ) and {0, e1, ..., eK } is a subset of the closure of supp (X).1

ASSUMPTION A2: Uk, Xk | Z are continuously distributed, and for every r ∈ supp (XkUk)

there exists an xk ∈ supp (Xk) such that fUk

(
x−1

k r

)
6= 0.

ASSUMPTION A3: Gk is a strictly monotonically increasing function. The free location

and scale normalizations Gk (0) = 0 and Gk (1) = y0 for some known y0 ∈ supp (Y ) are

imposed.

Assumption A1 first assumes identification of FY |X,Z (y | x, z) and FZ (z), which would

in general follow from a sample of observations of Y, X, Z with sample size going to infinity.

Identification of FY |X,Z (y | x, z) is actually stronger than necessary for Theorem 1, since only

certain features of this distribution are used in the proof. For example, it would suffice to only

identify FY |X,Z (y | xkek, z) for k = 1, ..., K . However, more information regarding FY |X,Z is

used in Theorem 2 and other extensions.

Assumption A1 imposes conditional independence and support requirements on U , X and

Z . The role of Z is to permit the error U0 and random coefficients Uk to be correlated with X ,

thereby allowing elements of X to be endogenous. See, e.g., the correlated random coefficients

model of Heckman and Vytlacil (1998). This allows for Heckman and Robb (1986) control

1Formally, the condition on U0 regarding a nonvanishing characteristic function required for the deconvolution

step of the proof is only that the set of t ∈ R for which E
(
ei tU0

)
6= 0 is dense in R. See, e.g., Meister (2005).
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function type endogeneity, with Z being control function residuals as in Blundell and Powell

(2003, 2004). In particular, if Xk = hk

(
X(k), Q

)
+ Zk for some observed instrument vector Q

and some identified function hk (typically hk would be E
(
Xk | X(k), Q

)
), then the conditional

independence assumptions in A1 correspond to standard control function assumptions. Note

that Z can be empty, so all the results given below will hold if there is no Z , in which case U

is independent of X and so the regressors X are exogenous. The assumptions also permit Z to

be discrete, and place no restriction on the dimension of Z , although control function residuals

would generally be continuous and have dimension equal to the number of endogenous elements

of X .

Assumption A2 assumes that the regressors and random coefficients are continuously dis-

tributed. Assumption A2 also calls for a mild relative support assumption on Xk and Uk . Later

Theorem 2 will require a stronger support restriction.

The normalizations in Assumption A3 are free normalizations, because first if Gk (0) 6= 0

then we can redefine Gk (r) as Gk (r)−Gk (0) and redefine U0 as U0+Gk(0), thereby making

Gk (0) = 0. Next, given a nonzero y0 ∈ supp (Y ), there must exist a nonzero r0 such that

Gk (r0) = y0. We can then redefine Uk as r0Uk and redefine Gk (r) as Gk (r/r0), thereby

making Gk (1) = y0. These particular normalizations are most convenient for proving Theorem

1 below, but in empirical applications alternative normalizations may be more natural, e.g.,

choosing location to make E (U0) = 0.

What follows is our first identification theorem, which as noted in the literature review is

closely related to, but is not a direct corollary of, results in Matzkin (2003).

THEOREM 1: Let Y =
∑K

k=1 Gk (XkUk) + U0 and let Assumption A1 hold. Then the

distribution function FU0|Z is nonparametrically identified, and for every k ∈ {1, ..., K } such

that Assumptions A2 and A3 hold, the function Gk and the distribution function FUk |Z are

nonparametrically identified.

Identification of FZ was assumed, and Theorem 1 gives identification of FU0|Z and FUk |Z ,

and so by combining these the marginal distributions FU0
and FUk

are also identified. In appli-

cations we would generally assume that Assumptions A2 and A3 hold for all k ∈ {1, ..., K }.2

In our notation, Matzkin (2003) considers models of the form Y =
∑K

k=0 Mk (S, Xk,Uk)
where Mk are unknown functions and S are additional observed covariates. Our Theorem 1 fits

this general framework with Mk (S, Xk,Uk) = Gk (XkUk) and G0 (X0U0) = U0 with X0 = 1.

As we do, Matzkin assumes that Mk is monotonic in Uk and that U and X are continous and

conditionally independent. She proposes alternative restrictions or normalizations that suffice

to identify each function Mk and distribution FUk
, but none of her proposed restrictions fit

our generalized random coefficients framework, and as a result Theorem 1 is not a corollary

of her results. Her closest result to our framework is the assumption that Mk (S, Xk,Uk) =
Nk (S, Xk −Uk) for some function Nk . By redefining Xk and Uk as ln Xk and ln Uk , we can

2The proof of Theorem 2 involves evaluating the distribution of Y given X where either X = 0 or all but one

element of X equals zero. This means conditioning on a set of measure zero. The same applies to Theorem 1

regarding conditioning on Z at a point if Z is continuous. Note, however, that issues of nonuniqueness of the

limiting argument (the Borel-Kolmogorov paradox) do not arise here, since the identification proof depends only

on transformations of smooth conditional density and expectation functions. It would be possible to recast the

proofs in terms of conditioning on sets ‖ X ‖ ≤ c and taking limits as c→ 0.
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replace our Gk (XkUk) with gk (Xk −Uk) for a suitably redefined function gk . However, we

still cannot apply Matzkin’s result by equating Nk (S, Xk −Uk) = gk (Xk −Uk), because for

this specification Matzkin (2003) requires the presence of at least one additional regressor S that

has certain properties, and our model has no such additional regressors inside the Gk functions.3

Another point of difference between our Theorem 1 and Mazkin (2003) is that she assumes the

Uk functions are mutually (conditionally) independent, while our Theorem 1 does not impose

either conditional or unconditional independence.

A small extension to Theorem 1 is the following.

COROLLARY 1: Let G̃ (X1U1, ..., XK UK ) be any function that equals zero when all but

one of its elements equal zero. Then Theorem 1 holds replacing Y =
∑K

k=1 Gk (XkUk) + U0

with

Y = G̃ (X1U1, ..., XK UK )+
∑K

k=1
Gk (XkUk)+U0 (3)

In Corollary 1, the function G̃ is not identified, so the main point of this corollary is that

presence of a G̃ function does not interfere with identification of the Gk and FUk |Z functions.

We later apply Corollary 1 in contexts where G̃ can be identified by other means.

It is worth noting that if Y = G (X1U1, ..., XK UK ) + U0 for any function G, then there

exist functions G̃ and Gk that satisfy equation (3), with G̃ having the required property of

equaling zero when all but one of its elements is zero. This is easily shown by construc-

tion. Given any function G, for k = 1, ..., K , define Gk (XkUk) as G (0, ..., 0, XkUk, 0, ..., 0),
that is, as G with all elements except the k′th element evaluated at zero. Then define G̃ by

G̃ (X1U1, ..., XK UK ) = G (X1U1, ..., XK UK ) −
∑K

k=1 Gk (XkUk). Then, by construction,

equation (3) holds and G̃ has the desired property.

3.2 Joint Distribution Identification

Theorem 1 only identifies the distribution function of each Uk . We now make additional as-

sumptions sufficient to identify the joint distribution FU |Z (U1,...,UK | Z). Theorem 2 below

shows identification when G is known in equation (1). We will then combine both Theorems

to obtain overidentification of equation (2), which should mitigate some concern about making

use of identification at zero arguments in Theorem 1.

ASSUMPTION A4: The conditional distribution FỸ |X,Z (y | x, z) and the marginal distrib-

ution FZ (z) are identified. U ⊥ X | Z . U, X | Z are continuously distributed. X and U have

rectangular support with the closure of supp (X | Z) equal to the closure of supp (U1 X1, ...,UK XK | Z).

Given U ⊥ X | Z , the support conditions in Assumption A4 could be satisfied in a few

different ways. For example, it holds for a given element k if supp (Xk | Z) = R, or if

3An alternative identifying restriction Matzkin (2003) proposes has S empty, but assumes Mk (̃xk,Uk) = Uk

for some known value x̃k . However, in our model this would require Gk (̃xkUk) = Uk , which only holds when Gk

is proportional to the identity function. One other restriction she considers is that Mk be linearly homogeneous in

Xk and Uk , which cannot hold for our Gk .
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supp (Xk | Z) = R+ and supp (Uk | Z) ⊆ R+, or if supp (Xk | Z) = (0, ck for some con-

stant ck and supp (Uk | Z) = (0, 1, or if supp (Xk | Z) = −c, c and supp (Uk | Z) = −1, 1.

ASSUMPTION A5: Ỹ = G (X1U1, ..., XK UK ) for some identified function G.

Let ι denote the square root of minus one. For a given function h and real numbers t1,...,tK
define κ t1,...,tK by

κ t1,...,tK =

∫
supp(X |Z)

h [G (s1, ...sK ) , t1, ..., tK ] S
−ιt1−1
1 S

−ιt2−1
2 ...S−ιtK−1

K dS1dS2...dSK (4)

ASSUMPTION A6: Assume for any reals t1,...,tK , given G we can find a non negative,

bounded function h such that κ t1,...,tK is finite and nonzero.

Assumption A6 is a rather mild restriction on G, because the function h is freely chosen,

based on knowing G. Note that the term S
−ιt1−1
1 S

−ιt2−1
2 ...S−ιtK−1

K in equation (4) is unbounded

only on a set of measure zero, so e.g., when supp (X | Z) is bounded we only need to choose

h to ensure that h (G) is sufficiently large on that set (for unbounded support we also need to

control tail thickness to keep the integral bounded). We can also let the function h depend on ι
if desired. Assumption A6 also imposes very little smoothness on G.

To illustrate, suppose supp (X | Z) is bounded, and suppose G equals a sum of any finite

number of terms, each of which is a product consisting of any polynomial multiplied by any

integrable function bounded between two positive numbers. Then h (G, t1, ..., tK ) = e−G will

satisfy Assumption A6.

THEOREM 2: Let Assumptions A4, A5, and A6 hold, and assume supp (U | Z) ⊆ RK+.

Then the joint distribution function FU |Z (U1,...,UK | Z) is identified.

We can also obtain identification for cases where elements of U can be negative as well as

positive, using the following Corollary.

COROLLARY 2: Let Assumptions A4, A5, and A6 hold, replacing the term S
−ιt1−1
1 S

−ιt2−1
2 ...S−ιtK−1

K

in equation (4) with S
−t1−1
1 S

−t2−1
2 ...S−tK−1

K . Assume supp (U | Z) is bounded. Then the joint

distribution function FU |Z (U1,...,UK | Z) is identified.

Having the support of U be bounded is sufficient but not necessary for identification using

Corollary 2. See the proof of this Corollary for details.

3.3 Full Model Identification and Over Identification

Here we combine Theorems 1 and 2 to completely identify equation (2), and then show how the

model might be identified even without the use of Theorem 1.

COROLLARY 3: Let Y =
∑K

k=1 Gk (XkUk)+U0. Define G (X1U1, ..., XK UK ) =
∑K

k=1 Gk (XkUk).
Let Assumptions A1, A2, A3, A4, and A6 hold, and assume supp (U | Z) ⊆ RK+. Then func-

tions G1,G2, ...,GK and the joint distribution function FU |Z (U1,...,UK | Z) are identified.
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Corollary 3 shows not just identification but substantial over identification of the model. In

particular, it follows from the proof of Theorem 2 that, for any k ∈ {1, ..., K } and any real scalar

tk ,4∫
supp(X |Z) E [h (Y −U0, 0, ...0, tk, 0..., 0) | X1, X2...XK , Z ]

X
−ιtk−1

k

X1 X2...XK
d X1d X2...d XK∫

supp(X |Z) h

[∑K
k=1 Gk (Sk) , 0, ...0, tk, 0..., 0

]
S
−ιtk−1

k

S1S2...SK
dS1dS2...dSK

=

∫
supp(Uk |Z)

U
ιtk
1 d FUk |Z (U1 | Z)

(5)

Therefore, the functions G1,G2, ...,GK and FU1|Z , ..., FUK |Z , that are identified by Theorem

1, must also satisfy the infinite collection of additional restrictions given by equation (5) for

every any k ∈ {1, ..., K } and all reals tk . This shows that our identification of these functions is

not solely based on thin sets as in Theorem 1 alone.

In fact, it may be the case in some applications that Theorem 1 is not needed at all. Suppose

we have Y =
∑K

k=1 Gk (XkUk), so there is no U0. Generally, there will exist many functions

h that satisfy Assumption A6. For example, in the case discussed just before Theorem 2, the

h function given by h (G, t1, ..., tK ) = e−ρG will satisfy Assumption A6 for any positive real

number ρ. Let κ t1,...,tK (ρ,G1, ...GK ) be defined by

κ t1,...,tK (ρ,G1, ...GK ) =

∫
supp(X |Z)

e−ρ
∑K

k=1 Gk(xk)S
−ιt1−1
1 S

−ιt2−1
2 ...S−ιtK−1

K dS1dS2...dSK .

(6)

Similarly, let λt1,...,tK (ρ) be defined by

λt1,...,tK (ρ) =

∫
supp(X |Z)

E
(
e−ρY | X1, X2...XK , Z

)
X
−ιt1−1
1 X

−ιt2−1
2 ...X−ιtK−1

K d X1d X2...d XK .

It then follows from the proof of Theorem 2 that for any real positive scalars ρ and ρ̃ and for

any set of k real numbers t1, ..., tK ,

λt1,...,tK (ρ)

κ t1,...,tK (ρ,G1, ...GK )
=

λt1,...,tK (̃ρ)

κ t1,...,tK (̃ρ,G1, ...GK )
(7)

This then provides a continuum of equations in the unknown functions G1, ...GK . If these

equations only have one solution (which is essentially a completeness assumption), then they

suffice to completely G1, ...GK . In this case Theorem 1 is not needed, since this result combined

with Theorem 2 would then identify the entire model.

We do not know of low level sufficient conditions to ensure that equation (7) has a unique

solution, so we do not present this result as a formal identification theorem for the functions

G1, ...GK . However, this infinite set of restrictions, along with additional infinite set of re-

strictions given by equation (5), shows that we have far more identifying information regarding

G1, ...GK and FU1|Z , ..., FUK |Z than just the thin set based information from Theorem 1.

4The conditional distribution of Y − U0 is identified by the deconvolution argument in the proof of Theo-

rem 1, so the numerator of equation (5) is identified. The remainder of this equation depends only on functions

G1,G2, ...,GK and FU1|Z , ..., FUK |Z that are also identified by Theorem 1, and on h which is chosen by the

econometrician as described in Assumption A6.
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3.4 Additional Models and Notes

The overidentifying information discussed in the previous subsection suggests that Theorems 1

and 2 may be combined to potentially identify richer models than equation (2). Suppose that

Y = G̃ (X1U1, ..., XK UK , θ)+
∑K

k=1
Gk (XkUk)+U0 (8)

where the function G̃ is known, but the vector of parameters θ is unknown, and G̃ equals zero

whenever all but one of its first K elements equals zero. Then the functions G1,G2, ...,GK are

still identified by Corollary 1. As above, assume we can construct a set of h functions that satisfy

Assumption A6, and let the parameter ρ ∈ P for some set P index the choice of h function,

which will denote hρ . In the earlier example the h function given by hρ (G, t1, ..., tK ) = e−ρG

satisfies Assumption A6 for any ρ ∈ P where P equals the set of positive real numbers. Let

κ̃ t1,...,tK (θ, ρ) be defined by

κ̃ t1,...,tK (θ, ρ) =

∫
supp(X |Z)

hρ

[
G̃ (s1, ...sK , θ)+

∑K

k=1
Gk (xk) , t1, ..., tK

]
S
−ιt1−1
1 S

−ιt2−1
2 ...S−ιtK−1

K dS1dS2...dSK

(9)

Similarly, let λ̃t1,...,tK (ρ) be defined by equation (31) in the appendix, with Ỹ = Y −U0 and hρ
in place of h. Like equation (7), it then follows from the proof of Theorem 1 that for any two

elements ρ and ρ̃ of the set P , and for any set of k real numbers t1, ..., tK ,

λ̃t1,...,tK (ρ)

κ̃ t1,...,tK (θ, ρ)
=

λ̃t1,...,tK (̃ρ)

κ̃ t1,...,tK (θ, ρ̃)
(10)

This then provides an infinite number of equations in which the only unknown is the finite

vector of parameters θ , and so θ will be identified if no value of this vector other than the true

value satisfies all of these equations. Once θ is identified, then G (s1, ...sK ) = G̃ (s1, ...sK , θ)+∑K
k=1 Gk (sk) is identified and we can then apply Theorem 2 to once more identify FU |Z (U1,...,UK | Z).
To illustrate, consider the model

Y = G1 (X1U1)+ G2 (X2U2)+ θX1U1 X2U2 +U0 (11)

for some unknown scalar constant θ , so in this example G̃ (s1, s2, θ) = θs1s2. Apply Theorem 1

along with equation (5) to overidentify G1 and G2. FU0|Z (U0 | Z) is also identified by Theorem

1. Assume there exists at a value of ρ, ρ̃, t1 and t2 such that κ t1,t2 (θ, ρ) /κ t1,t2 (θ, ρ̃) is strictly

monotonic in the scalar θ . Then that suffices to ensure that equation (10) has a unique solution

and hence that θ is identified. Finally, apply Theorem 2 with G (s1s2) = θs1s2 + G1 (s1) +
G2 (s2) to identify FU |Z (U1,U2 | Z), and so the entire model given by equation (11) is then

identified.

For either equation (2) or more general models like those above, constructing an estimator

based on mimicing the steps of our identification arguments would likely be both inefficient and

difficult to implement. Inefficiency is likely because Theorem 1 uses thin set identification and

Theorem 2 provides equations based on specific choices of the function h, and it is hard to see

how one might choose the function h to maximize efficiency, and indeed different h functions

11



might be optimal for each moment and each function to be estimated. Also, Theorem 2 iden-

tifies the characteristic function of U , so an inversion would be needed to directly obtain the

distribution function of U . Finally, sequentially applying Theorem 1 to estimate G1,G2, ...,GK

and Theorem 2 to estimate FU would ignore the overidentifying information discussed in the

previous subsection. We will therefore later use parametric or sieve maximum likelihood to

estimate our models.

4 Random Barten Scales

Let a "consumer" refer to an individual or household that maximizes a single well behaved

utility function. Let Q j denote the quantity purchased of a good j , and let S (Q,U ) denote

the direct utility function over the bundle of goods Q = (Q1, ..., Q J ) of a consumer hav-

ing a vector of heterogeneity parameters U . Assume S is continuous, non-decreasing, and

quasi-concave in Q. Define the reference consumer to be a consumer that has heterogeneity

parameters U normalized to equal one, and let S (Q1, ..., Q J ) denote the direct utility function

of a reference consumer. Each consumer chooses quantities to maximize utility subject to the

standard linear budget constraint
∑J

j=1 Pj Q j = M where Pj is the price of good j and M

is the total amount of money the consumer spends on this bundle of goods. Write the Mar-

shallian budget share functions that result from maximizing the reference utility function S as

W ∗j = ω j (P1/M, ..., PJ/M), where W ∗j = Q j Pj/M is the share of money M that is spent on

good j (called the budget share of good j). Let V (P1/M, ..., PJ/M) denote the indirect utility

function corresponding to S, obtained by substituting Q j = ω j (P1/M, ..., PJ/M)M/Pj into

S (Q1, ..., Q J ) for j = 1, ..., J .

Our empirical application is based on Barten (1964) scales. Barten scales are a longstanding

method used to bring preference heterogeneity on the basis of observed variables into continu-

ous demand models. Barten scales are consequently a natural starting point for the incorporation

of random utility parameters representing unobserved preference heterogeneity. See, e.g., Lew-

bel (1997) for a survey of various types of equivalence scales in the consumer demand literature,

including Barten scales, and see Jorgenson, Lau, and Stoker (1982) for a prominent empirical

application of traditional Barten scales. Deaton and Muellbauer (1980) includes an extensive

discussion of parametric identification of Barten Scales.

Barten (1964) proposed the model in which consumers have utility functions of the form

S(Q1, .., Q J ;αh1, ..., αh J ) = S (Q1/αh1, ..., Q J/αh J ), where the Barten scales αh1, ..., αh J

are positive functions of observable household attributes h, such as age or family size, that

embody variation in preferences across consumers. For households with multiple members,

Barten scales can be interpreted as representing the degree to which each good is shared or

jointly consumed. The smaller the Barten scale αhj is, the greater the economies of scale to

consumption of good j within the household. This is then reflected in the demand functions,

where smaller Barten scales have the same effect on demands as lower prices. For example, if a

couple with one car rides together some of the time, then in terms of total distance each travels

by car, sharing has the same effect as making gasoline cheaper. The more they drive together

instead of alone, the lower is the effective cost of gasoline, and the smaller is the couple’s Barten

scale for gasoline.
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More generally, Barten scales provide a measure of the degree to which different households

get utility from different goods. This is how we will employ them. Although Barten scales

have long been a popular method of modeling preference heterogeneity in empirical work, up

until now Barten scales have always been modeled as deterministic functions of observable

characteristics of consumers. Here we consider using Barten scales to embody unobserved

heterogeneity of preferences across consumers.

We propose random Barten scales, assuming that consumers have utility functions of the

form S(Q1, .., Q J ;U1, ...,Uh J ) = S (Q1/U1, ..., Q J/UJ ), where U1, ...,UJ are positive ran-

dom utility parameters embodying unobserved preference heterogeneity across consumers. More

formally, we could write each random Barten scale as U j (h), since for each good j , the dis-

tribution function that U j is drawn from could depend on observable household attributes h.

Barten’s original model is then the special case where the distribution of each U j (h) is degen-

erate with a mass point at αhj .

Define normalised prices X j = Pj/M for each good j and rewrite the budget constraint

as
∑J

j=1 X j Q j = 1. Now S (Q1, ..., Q J ) and V (X1, ..., X J ) are the direct and indirect

utility functions of the reference consumer, and ω j (X1, ..., X J ) is the Marshallian budget

share demand function of the reference consumer. It can be immediately verified from the

first order conditions for utility maximization that a consumer will have Marshallian demand

functions of the form W ∗j = ω j (U1 X1, ...,UJ X J ) for each good j if and only if the con-

sumer’s direct and indirect utility function equal, up to an arbitrary monotonic transformation,

S (Q1/U1, ..., Q J/UJ ) and V (U1 X1, ...,UJ X J ), respectively. Also, given a specification of

reference indirect utility V (X1, ..., X J ), the corresponding Barten scaled demand functions can

be obtained by the logarithmic form of Roy’s identity:

ω j (U1 X1, ...,UJ X J ) =
∂V (U1 X1, ...,UJ X J )

∂ ln X j

/

(∑J

`=1

∂V (U1 X1, ...,UJ X J )

∂ ln X`

)
(12)

Notice that the functional form of each ω j only depends on the functional form of S or equiva-

lently of V , so U1, ...UJ can vary independently of X1, ..., X J across consumers. These deriva-

tions are exactly those given by Barten (1964) and by later authors who applied Barten scales,

e.g., Jorgenson, Lau, and Stoker (1982), except that we put unobserved random variables U j

in place of deterministic functions αhj of observed household characteristics. Random Barten

scaled Marshallian demand functions then have precisely the form of our generalized random

coefficients given in equation (1).

4.1 Additive Model Random Barten Scales: Theory

In our empirical application, we let ω1 be the budget share of a single good of interest, energy,

and we let ω2 denote the budget share of all other goods, corresponding to the general Barten

scaled model with J = 2. This case only requires estimating a single equation for ω1, since the

equation for ω2 is automatically determined by construction as ω2 = 1− ω1. If we had J > 2,

then we would have J − 1 separate equations to estimate, and we would have further overiden-

tification because the same Barten scales, with the same joint distribution FU |Z (U1,...,UK | Z),
would appear in each equation.
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Matzkin, (2007a), (2007b), (2008) discusses identification of systems of equations where

the number of equations equals the number of random parameters, assuming it is possible to

invert the reduced form of the system to express the random parameters as functions of ob-

servables. Although our model has J Barten scales U j and J demand equations, Matzkin’s

identification method for systems of equations cannot be applied here because there are actu-

ally only J − 1 distinct demand functions ω1,...,ωJ−1, with the remaining demand function ωJ

determined by the adding up constraint that
∑J

j=1 ω j = 1.

The decomposition of total consumption into J = 2 goods is often done in empirical work

when one wishes to focus on the welfare effects of a price change on a particular good, as

we will do empirically. See, e.g., Hausman (1981), Hausman and Newey (1995), Blundell,

Horowitz, and Parey (2010), and Hoderlein and Vanhems (2010, 2011). This construction is

formally rationalizable by assuming utility is separable into good 1 and a subutility function

of all other goods. See, e.g., Blackorby, Primont, and Russell (1978). Alternatively Lewbel

(1996) provides conditions on the distribution of prices (stochastic hicksian aggregation) under

which Marshallian demand functions have the same properties with nonseparable utility as with

separable utility.

With J = 2 goods, our model is W ∗1 = ω1 (U1 X1,U2 X2) and W ∗2 = 1 − W ∗1 , and with

J = 2 we can rewrite equation (12) as

λ
(
W ∗1

)
= ln

(
∂V (U1 X1,U2 X2)

∂ ln X1

)
− ln

(
∂V (U1 X1,U2 X2)

∂ ln X2

)
(13)

where λ
(
W ∗1

)
is the logit transformation function λ

(
W ∗1

)
= ln

[
W ∗1 /

(
1−W ∗1

)]
.

Due to the constraints of Slutsky symmetry, imposing additivity directly on the Marshallian

demand function ω1 (X1, X2) would result in extreme restrictions on behavior. See, e.g., Black-

orby, Primont, and Russell (1978). So we instead impose additivity on the logit transformation

of ω1 (X1, X2) (later this will be relaxed to allow for interaction terms), thereby assuming de-

mands have the additive form

λ (W1) = λ [ω1 (U1 X1,U2 X2)]+U0 = g1 (U1 X1)+ g2 (U2 X2)+U0 (14)

Here the functions g1 and g2 are nonparametric and U0 is interpreted as measurement error

in the observed budget share W1 relative to the true budget share W ∗1 . This implies that the

underlying demand function for good 1 is given by

W ∗1 = ω1 (U1 X1,U2 X2) =
(

1+ e−g1(U1 X1)−g2(U2 X2)
)−1

(15)

Use of the logit transformation here, and assumed additivity in logit transformed budget

shares, has as far as we know not been considered before in the estimation of continuous demand

functions. However, this logit transformed model has a number of advantages. First, λ (W1) has

support on the whole real line, so the measurement error U0 has unrestricted support, instead

of a support that necessarily depends on covariates. Second, with this transform no constraints

need to be placed on the range of values the nonparametric functions g1 and g2 take on. Third,

unlike all other semiparametric or nonparametric applications of the Hausman (1981) consumer

surplus type methodology (such as those cited above), a closed form expression for the indirect
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utility function that gives rise Marshallian demands (15) and hence (14) exists, and is given by

Theorem 3.

THEOREM 3: The demand function ω1 satisfies λ [ω1 (U1 X1,U2 X2)] = g1 (U1 X1) +
g2 (U2 X2) for some functions g1 and g2 if and only if ω1 is derived from an indirect utility

function of the form

V (U1 X1,U2 X2) = H [h1 (U1 X1)+ h2 (U2 X2) ,U1,U2] .

for some montonic in its first element function H and some differentiable functions h1 and h2.

The functions g1, g2, h1, and h2 are related by

h1 (U1 X1)+ h2 (U2 X2) =

∫ ln X1

−∞
eg1(U1x1)d ln x1 +

∫ ln X2

−∞
e−g2(U2x2)d ln x2 (16)

and

g1 (U1 X1)+ g2 (U2 X2) = ln

(
∂h1 (U1 X1)

∂ ln X1

)
− ln

(
∂h2 (U2 X2)

∂ ln X2

)
(17)

Also, the functions h1 (U1 P1/M) and h2 (U2 P2/M) are each nonincreasing, and their sum is

strictly increasing in M and quasiconvex in P1,P2, and M .

The function H has no observable implications for individual consumer’s demand functions,

and is present only because utility functions are ordinal and therefore unchanged by monotonic

transformations.5 We can therefore just write the indirect utility function in Theorem 3 as

V (U1 X1,U2 X2) = h1 (U1 X1)+ h2 (U2 X2) . (18)

Preferences V (X1, X2) are defined to be indirectly additively separable (see, e.g., Blackorby,

Primont, and Russell 1978) if, up to an arbitrary monotonic transformation, V (X1, X2) =
h1 (X1)+ h2 (X2) for some functions h1, h2. So an equivalent way to state the first part of The-

orem 3 is that ω1 satisfies equation (15) if and only if preferences are given by a Barten scaled

indirectly additively separable utility function. The second part of Theorem 3 then provides

closed form expressions for the indirect utility function given the nonparametric (additive in the

logit transformation) demand function and vice versa.

4.2 Additive Model Random Barten Scales: Identification and Estimation

From equation (14) we have the demand model

λ (W1) = g1 (U1 X1)+ g2 (U2 X2)+U0 (19)

Identification of this model can be obtained by Corollary 3, letting Y = λ (W1) and Gk = gk .

A condition that suffices to make the monotonicity of Assumption A3 hold is that the goods not

5Later we will reintroduce the function H to construct a money metric representation of utility for use in social

welfare calculations.
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be Giffen goods.6 Having good 1 not be Giffen guarantees monotonicity of g1, and similarly

the restriction that good 2 is not Giffen means that ω2 is monotonic in X2, which by the adding

up constraint ω1 + ω2 = 1 implies monotonicity of g2.

Next consider Assumptions A1, A2, and A4. Continuity of each Xk and Uk is straightfor-

ward. U0 is assumed to be measurement error in Y and hence independent of the other variables.

U1 and U2 are preference parameters, and it is common to assume that tastes are determined

independently of regressors in partial equilibrium analyses (though we will consider potential

endogeneity later). As discussed earlier, Barten scales are traditionally modeled as determin-

istic functions of demographic characteristics, so in our extension to random Barten scales we

assume Z are demographic characteristics.

Each Xk is by construction nonnegative and Assumption A1 requires zero to be in the clo-

sure of the support of X , so we are assuming that prices can be arbitrarily close to zero and/or

total expenditures can be arbitrarily large. However, Assumption A1 is only needed for The-

orem 1, and as discussed earlier it may be possible to completely identify the model without

Theorem 1 and therefore without Assumption A1, and even if not, Theorem 2 provides very

many overidentifying conditions that do not depend on this identification at zero. Barten scales

are nonnegative, so remaining support conditions can be satisfied by assuming the support of

each Xk is R+, or by assuming the support of each Xk is the interval (0, ck for some constant ck

and (after rescaling units of measurement if necessary) supp (Uk) = (0, 1. Finally, the earlier

discussions regarding Assumption A6 carry over directly to these demand applications.

Given identification, we will estimate the model using Sieve Maximum Likelihood. We do

not list here the formal assumptions for consistency and asymptotic inference of sieve maximum

likelihood estimation in this application, because the generic conditions for validity of these

estimators in an independently, identically distributed data setting like ours are well established.

See, e.g., Chen (2007) and references therein.7

Based on Theorem 3, and in particular equation (17), we can nonparametrically specify g1

and g2 by nonparametrically specifying h1 and h2 in terms of sieve basis functions (imposing

the shape restrictions possesed by indirect utility functions if desired). For efficiency, it is

desirable to choose a basis for sieve expansions having the property that low order terms are

equivalent to good parametric models. We therefore consider a polynomial in logs sieve basis

ln hk (Uk Xk) =
S∑

s=0

βks (ln (Uk Xk))
s (20)

6A Giffen good is a good that has a positive own price elasticity in its Marshallian quantity demand function,

and hence an upward sloping demand curve. While possible in theory, very little empirical evidence has been

found for the existence of Giffen goods, and particularly not for the types of goods we consider in our application.

The only example we know of is Jensen and Miller (2008), who show that some grains may have been Giffen

goods for extremely poor households in rural China.
7Depending on the supports and tail thickness of the model errors and regressors, it is possible in problems like

ours for identification to be weak, in the sense that recovering the structural functions of the model could entail

ill-posed inverse problems. See, e.g., Hoderlein, Nesheim, and Simoni (2011), who document these issues in a

framework similar to ours, though in their model only the error distributions are nonparametric. The assumptions

required for standard sieve maximum likelihood inference may rule out at least some forms of weak identifica-

tion, though our use of sieves could even then be interpreted as a choice of regularization for structural function

estimation.
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with constants βks , for k = 1, 2, letting S → ∞ as n → ∞. Logarithmic specifications like

these are common in demand models, e.g., with S = 1 equations (18) and (20) correspond to

Barten scaled Cobb Douglas preferences, and with S = 2 this gives a separable version of the

Translog indirect utility function of Jorgenson, Lau, and Stoker (1982), though in their model

the Barten scales have the traditional form of being functions only of observable characteristics.

Having S = 3 without Barten scales corresponds to an additively separable version of the third-

order Translog budget share function as in Nicol (1984).

In this model we impose the free normalization β20 = 0. This is imposed without loss of

generality, because if β20 6= 0 then we can multiply the indirect utility function V (U1 X1,U2 X2)
by e−β20 (which is a monotonic transformation of V ) and redefine β10 as β10−β20 to get an ob-

servationally equivalent representation of indirect utility that has β20 = 0. Applying Theorem

3 and equation (14) to this model gives the demand function

λ (W1) = λ [ωS1 (U1 X1,U2 X2, β)]+U0 (21)

= β10 +

(
S∑

s=1

[ln (U1 X1)]
s β1s − [ln (U2 X2)]

s β2s

)
+ ln

(∑S
s=1 (ln (U1 X1))

s−1 sβ1s∑S
s=1 (ln (U2 X2))

s−1 sβ2s

)
+U0.

where ωS1 (U1 X1,U2 X2, β) denotes the sieve representation of ω1 (U1 X1,U2 X2) with S terms

in the parameters β. Here, λ (W1) is additive as in (14) since the logged ratio may be written as

a difference of logs.

To simplify the model, instead of letting the dependence of U on a vector of demographic

characteristics Z be entirely unrestricted, we assume each Barten scale takes the form

Uk = αk (Z) Ũk

where αk (Z) is a traditional deterministic Barten scale that depends on demographic household

characteristics Z , and the remaining random variation Ũk in each Barten scale is assumed to be

independent of covariates. Our sieve for modeling αk (Z) is to replace ln [αk (Z)] with an

ordinary polynomial in Z , with a vector of coefficients denoted θ k . This polynomial does not

include a constant term, because the scaling of αk (Z) is freely absorbed into the βks parameters.

We nonparametrically model the density functions of U0 and the vector Ũ =
(
Ũ1, Ũ2

)
by

using Hermite polynomial seive densities as in Gallant and Nychka (1987). For the joint density

fŨ , this corresponds to a J ′th order expansion of the form

fŨ J

(
Ũ1, Ũ2, γ , σ , ρ

)
=

(∑J
j1=0

∑J
j2=0 γ j1 j2

(
ln Ũ1

) j1
(
ln Ũ2

) j2
)2

Ũ1Ũ2C (γ , σ , ρ)
exp


(

ln Ũ1

σ 1

)2

− 2ρ
(

ln Ũ2

σ 2

) (
ln Ũ1

σ 1

)
+
(

ln Ũ2

σ 2

)2

−2
(
1− ρ2

)


(22)

where γ is the vector of coefficients γ j1 j2
, σ = (σ 1, σ 2), and C (γ , σ , ρ) is the constant neces-

sary to make fŨ J integrate to one. Because we scale by C , we can without loss of generality let

γ 00 = 1. When J = 0 (which in our empirical work we find to be a reasonable restriction) this

reduces to Ũ1 and Ũ2 being bivariate log normal with C (γ , σ , ρ) = 2πσ 1σ 2

(
1− ρ2

)
, each

ln Ũk having mean zero and variance σ 2
k , and correlation coefficient ρ. Note that we don’t need

to explicitly model the mean of ln Ũ and hence the scaling of each Ũk , because the scaling of
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Ũk , like that of αk (Z), is freely absorbed into the βks parameters. The analogous sieve for the

density of U0 is

f0J (U0, δ, σ 0) =

(∑J
j=0 δ jU

j

0

)2

C0

(
δ, µ0, σ 0

) exp

(
−

(
U0 − µ0

σ 0

)2

/2

)
(23)

where δ is the vector of coefficients δ j , δ0 = 1, C0

(
δ, µ0, σ 0

)
is the constant necessary to make

f0J integrate to one, and we constrain these coefficients to impose the usual assumption that the

additive model error U0 is mean zero.

In our application we did not require J greater than two, and for J = 2 we get

C0

(
δ, µ0, σ 0

)
=
[(
µ4

0 + 6µ2
0σ

2
0 + 3σ 4

0

)
δ2

2 + 2
(
µ3

0 + 3µ0σ
2
0

)
δ1δ2 +

(
µ2

0 + σ
2
0

) (
2δ2 + δ

2
1

)
+ 2µ0δ1 + 1

]
σ 0 (2π)

1/2 ,

and the restriction that E (U0) = 0 imposes the constraint that(
µ5

0 + 10µ3
0σ

2
0 + 15µ0σ

4
0

)
δ2

2+2
(
µ4

0 + 6µ2
0σ

2
0 + 3σ 4

0

)
δ1δ2+

(
µ3

0 + 3µ0σ
2
0

) (
2δ2 + δ

2
1

)
+2

(
µ2

0 + σ
2
0

)
δ1+µ0 = 0

when J = 1 these simplify to

C0

(
δ, µ0, σ 0

)
=
[(
µ2

0 + σ
2
0

)
δ2

1 + 2µ0δ1 + 1
]
σ 0 (2π)

1/2

and (
µ3

0 + 3µ0σ
2
0

)
δ2

1 + 2
(
µ2

0 + σ
2
0

)
δ1 + µ0 = 0.

For J = 0, we get C0

(
δ, µ0, σ 0

)
= σ 0 (2π)

1/2 and µ0 = 0, corresponding to a mean zero

normal.

For a given consumer with observed values x1 and x2, the conditional density function of

W1 is then

fW1|X1,X2,Z (w1 | x1, x2, z;β, σ , θ, δ, γ , ρ)

=

∫ ∞
0

∫ ∞
0

f0J

[
ln

(
w1

1− w1

)
− ωS1 (α1 (z) ũ1x1, α2 (z) ũ2x2, β) , δ, σ 0

]
fŨ J (̃u1, ũ2, γ , σ , ρ) dũ1dũ2

Assuming independently, identically distributed observations w1i , x1i , x2i of consuming house-

holds i , estimation then proceeds by searching over parameter vectors β, σ , δ, and γ to maxi-

mize the sieve log likelihood function∑n

i=1
ln fW1|X1,X2,Z (w1i | x1i , x2i , zi ;β, σ , θ, δ, γ , ρ) . (24)

4.3 Empirical Additive Model Random Barten Scales

We estimate the model of the previous subsection using Canadian household expenditure micro-

data from the 1997 to 2008 Surveys of Household Spending. We consider households comprised

of one adult (as of 31 Dec) aged 25-45 residing in provinces other than Prince Edward Island
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(due to data masking). We consider the share of total nondurable expenditures commanded by

energy goods, and drop observations whose expenditures on energy goods are zero, and those

whose total nondurable expenditures are in the top or bottom percentile of the total nondurable

expenditure distribution. This leaves 9413 observations for estimation.

Total nondurable expenditures are comprised of the sum of household spending on food,

clothing, health care, alcohol and tobacco, public transportation, private transportation opera-

tion, and personal care, plus the energy goods fuel oil, electricity, natural gas and gasoline. Total

nondurable expenditures are scaled to equal one at its mean value, which is a free normalization

of units.

Table 1: Summary Statistics: Canadian Energy Shares

9413 observations mean std dev min max

energy share, W 0.14 0.09 0.00 0.73

total nondurable expenditure, M 1.00 0.50 0.1 2.90

price of energy goods, P1 1.00 0.23 0.43 2.28

price of nonenergy goods, P2 0.96 0.08 0.76 1.35

energy normalised price, X1 1.31 0.92 0.19 10.27

nonenergy normalised price, X2 1.30 0.94 0.29 9.41

Prices vary by province (9 included) and year (12 years) yielding 108 distinct price vectors

for the underlying commodities comprising nondurable consumption. These underlying com-

modity prices are normalised to equal one in Ontario in 2002. To maximize price variation,

following Lewbel (1989) and Hoderlein and Mihaleva (2008), we construct P1 as the Stone

price index using within group household specific budget shares of energy goods, and P2 is

constructed similarly for non-energy goods. These price indices both have a value of one in

Ontario in 2002. Finally, the regressors X1 and X2 are defined as the prices for energy and

non-energy divided by total nondurable expenditure for the households. Table 1 gives summary

statistics for budget shares, expenditures, prices, and normalised prices.

We estimate equation (24) in Stata, plugging in equations (21) and (??) with S = 3 and

J = 2. Estimated coefficients are given in Table 2 below. Standard errors are provided with the

caveat that they treat the sieve basis functions as finite model parameterizations.8

8Given that our our data ended up implying low order sieve polynomials, it is reasonable to interpret our

estimates parametrically.
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Table 2: Estimated Parameters

h1 and h2 est se U0,U1, and U2 est se

β0 -2.144 0.137 σ 0 0.070 0.026

β11 1.046 0.033 σ 1 0.636 0.031

β12 -0.120 0.016 σ 2 0.983 0.045

β13 0.040 0.005 δ1 -0.452 0.925

β21 0.554 0.048 γ 11 -0.663 0.038

β22 0.087 0.010 γ 21 -0.322 0.063

β23 0.024 0.004 δ2 -0.348 0.482

γ 12 0.154 0.038

γ 22 -0.056 0.029

Figures 1 and 2 show the estimated distributions of ln U1 and ln U2. We do not show the

distribution of U0, because it is insignificantly different from a normal (δ1 and δ2 are jointly

insignificant). These two distributions of unobserved heterogeneity parameters are not far from

log normal and hence rather strongly right-skewed, with modes well below zero.

The estimated standard deviations of ln U1 and ln U2 in Figures 1 and 2 are 0.52 and 0.84,

(these differ from σ 1 and σ 2 because the γ parameters affect the second moments). The stan-

dard deviations of ln X1 and ln X2 are 0.54, indicating that unobserved preference heterogene-

ity in the Barten scales contributes variation to energy demand of the roughly the same order

of magnitude as that contributed by observed variation in prices and total expenditures across

consumers. The standard deviation of the additive error U0 is 0.26, showing that both additive

errors and unobserved preference heterogeneity contribute substantively to observed variation

in demand.

We postpone more thorough empirical analyses to later, when we report estimated results

from a richer model.

4.4 Interaction Terms in Utility

The additive utility model in Theorem 3, estimated in the previous subsection, restricts price

interaction effects. Using identification based on Theorem 2 instead of Theorem 1, we could

instead nonparametrically estimate any sufficiently smooth demand function ω1 (U1 X1,U2 X2),
and identify the function ω1 and distribution of the associated Barten scales U1 and U2. How-

ever, in doing so we would lose the benefits we gained from Theorem 3 of having closed form

expressions for the corresponding indirect utility function V (U1 X1,U2 X2), which is useful for

welfare analyses and convenient for imposing constraints associated with utility maximization.

We will therefore instead generalize the class of indirect utility functions given by Theorem 3.

Theorem 3 yielded the indirectly additive utility function V (X1, X2) = h1 (X1)+ h2 (X2).
To relax the restrictiveness (in terms of cross effects) of additive demand functions, we now

consider adding second and third order interaction terms to the model of Theorem 3, giving an

indirect utility function of the form

V (X1, X2) = h1 (X1)+ h2 (X2)+ X1 X2α0 + X2
1 X2α1 + X1 X2

2α2 (25)
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For unknown functions h1 (X1) and h2 (X2) along with unknown constants α0, α1, and α2.

Higher order interactions could be similarly identified if necessary, indeed, we could interpret

these interactions as the first terms in a sieve expansion for an arbitrary indirect utility function.

Barten scaling this indirect utility function, substituting the result into equation (13), and adding

the error term U0 as before gives the demand model

λ (W1) = ln
[
g1 (U1 X1)+ M1 (U1 X1,U2 X2, α)

]
−ln

[
g2 (U2 X2)+ M2 (U1 X1,U2 X2, α)

]
+U0

(26)

where gk (Uk Xk) = Uk Xk∂h′k (Uk Xk) /∂ (Uk Xk) for k = 1, 2 and

M1 (U1 X1,U2 X2, α) = U1 X1U2 X2α0 + 2U 2
1 X2

1U2 X2α1 +U1 X1U 2
2 X2

2α2, (27)

M2 (U1 X1,U2 X2, α) = U1 X1U2 X2α0 +U 2
1 X2

1U2 X2α1 + 2U1 X1U 2
2 X2

2α2. (28)

Identification of this demand model follows directly from Theorem 3.9

For estimation of the model, we let the functions hk in equation (25) be represented by the

same polynomial in logs sieve basis functions as before. Barten scaling this indirect utility

function gives, by equation (26), the demand function

λ (W1) = ωS1 (U1 X1,U2 X2, β)+U0 (29)

= ln
[(

eβ10+
∑S

s=1(ln(U1 X1))
sβ1s

) (∑S

s=1
(ln (U1 X1))

s−1 sβ1s

)
+ M1 (U1 X1,U2 X2, α)

]
− ln

[(
e
∑S

s=1(ln(U2 X2))
sβ2s

) (∑S

s=1
(ln (U2 X2))

s−1 sβ2s

)
+ M2 (U1 X1,U2 X2, α)

]
+U0

The demand function given by equation (29) is the same as (21), except for the addition of the

functions M1 and M2 given by equations (27) and (28), which embody the additional desired

price interaction terms. We estimate equation (29) using the same sieve maximum likelihood

method as before.

4.5 Empirical Barten Scales with Interaction Terms

Table 3 presents estimated parameters for the demand equation (29), that is, the Barten scale

model with interaction terms. Again, we use a 2nd order Hermite expansion around the normal

for U0, ln U1 and ln U2, and a 3rd order polynomial in ln X j for G j . In this model, if any of the

interaction coefficients α0, α1, and α2 are negative, then for large values of either U1 or U2, the

utility function will violate monotonicity. In the demand and likelihood functions, this would

make the argument of the log function in λ (W1) negative. We therefore restrict α0, α1, and α2

to be non-negative.

As Table 3 shows, two of the interaction terms are statistically significant (and all three are

jointly significant). For comparison, we also estimated the model, denoted "without heterogene-

ity," imposing the constraint that U1 = U2 = 1 and thereby removing unobserved preference

9It’s possible to directly prove identification of the demand model of equations (26), (27), and (28) under

weaker conditions than those of Theorem 3. Specifically, identification follows if Assumptions A1, A2, and A3

hold with Gk (Xk) = ln gk (Xk) for k ∈ {1, 2}, the functions g1 and g2 are differentiable, and either g′k (0) E (Uk)
for k = 1 or for k = 2 is nonzero and finite. A proof appears in earlier working paper version of this paper.
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heterogeneity. This corresponds to a more traditional demand model in which the only error

term is additive, albeit additive in the logit transform of the budget share.

Figures 3 and 4 show the estimated densities of ln U1 and ln U2. Here the standard deviations

of ln U1 and ln U2 are 0.44 and 0.81, respectively, which is similar to what we observed in

the model without interaction terms. Finding that U2 has a larger variance that U1 means that

consumers have more heterogeneity in their preferences for non-energy goods than for energy

goods, which is not surprising, given the extent to which energy goods are necessities.

Recall X j = Pj/M where M is total expenditures. Figure 5 displays estimated energy

budget share functions (Engel curves) evaluated at prices P1 = P2 = 1, for each quartile of the

U1 and U2 distribution. Nine Engel curves are displayed, corresponding to the combinations

of each quartile of U1 with each quartile of U2. Each Engel curve was obtained by simulation,

drawing 10,000 observations of total expenditures M from a nonparametric estimate of the dis-

tribution of real expenditure (nominal expenditure deflated by the Stone index) and evaluating

the estimated budget share equations for each given U1 and U2 quartile at each total expenditure

M draw. Here, we see that variation in the random Barten scales U1 and U2 causes substantial

shifts in the Engel curves. For comparison, Figure 5 also displays, with a thick grey line, the

Engel curve from a model without heterogeneity which imposes U1 = U2 = 1.

Table 3: Interaction Terms in Utility: Estimated Parameters

h1 and h2 est se U0,U1, and U2 est se

β0 -2.546 0.174 σ 0 0.166 0.039

β11 1.084 0.056 σ 1 0.540 0.046

β12 -0.143 0.030 σ 2 0.854 0.041

β13 0.056 0.013 δ1 -0.822 1.732

β21 0.947 0.064 γ 11 -0.646 0.072

β22 0.276 0.032 γ 21 -0.482 0.039

β23 0.066 0.008 δ2 0.002 2.517

α0 0.000 0.001 γ 12 0.141 0.063

α1 0.006 0.002 γ 22 0.134 0.016

α2 0.017 0.004

The shape of the Engel curve without unobserved preference heterogeneity in Figure 5 is

rather different from those that allow for unobserved preference heterogeneity. For example, at

low expenditure levels, allowing for unobserved preference heterogeneity reduces the slope of

the energy Engel curve, suggesting that it is not as much of a neccessity as would appear in the

absence of such heterogeneity.

Because U1 and U2 affect budget shares in different ways, it is difficult to see the joint effect

of these two unobserved heterogeneity parameters on the distribution of implied behaviour. We

address this in our remaining figures. Figure 6 displays a contour plot of the density of estimated

energy budget shares evaluated at P1 = P2 = 1. This is again obtained by simulation, based on

10,000 draws of M as before. This time, for each real expenditure draw we also draw a value

of U1 and U2 from their estimated distributions, and evaluate the estimated energy budget share

at these drawn values of M , U1 and U2. For comparison, we also display, as a thick gray line,

the simulated shares from the model without heterogeneity.
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The standard deviation of the marginal distribution of energy budget shares is 0.09 in the

model which accounts for both unobserved preference heterogeneity and observed expenditure

variation. In contrast, it is only 0.02 in the model which accounts only for observed expendi-

ture variation. Thus, the variation in budget shares due to heterogeneity in preferences is large

relative to that due to variation in total expenditures.

4.6 Consumer Surplus Effects of a Carbon Tax

We now apply our model to evaluate the partial equilibrium effects of a large change in the

price of energy, as might result from a carbon tax.10 Using equation (25), even with non-

parametric demand components we have a closed form expression for indirect utility. We can

therefore compute consumer surplus effects without approximations of the type proposed by

Vartia (1984). Instead, we numerically invert the indirect utility function (25) to obtain the cost

of living impact of a price change. We would otherwise need to numerically solve a differential

equation as in Hausman and Newey (1995), but such a solution would need to be calculated for

every value on the continuum of points that U1 and U2 can take on.

For an individual facing initial prices P1, P2, having total expenditures M and preferences

indexed by Barten scales U1,U2, the cost-of-living impact of moving to new prices P1, P2 is

π
(
U1,U2,M, P1, P2, P1, P2

)
, defined as the solution to

V

(
U1 P1

M
,

U2 P2

M

)
= V

(
U1 P1

πM
,

U2 P2

πM

)
.

Here π is the proportionate change in costs M needed to compensate for the price change, that

is, the amount by which M would need to be scaled up to bring an individual facing prices

P1, P2 (and having preferences given by U1,U2) back to the same indifference curve they were

on when facing prices P1, P2. To show price effects clearly, we consider a large price change:

doubling the price of energy. So we solve for the π function given the initial price vector

P1 = P2 = 1 and the new price vector P1 = 2, P2 = 1. Figure 7 shows the resulting estimated

joint distribution (contour plot) of lnπ and ln M . This plot is constructed by calculating the

surplus for each of 10,000 draws of U1, U2, and M , and, as in Figure 6, the thick gray line gives

estimates of π based on the model no preference heterogeneity.

Table 4 gives summary statistics of distributions presented in Figure 7. The "without het-

erogeneity" estimates in Table 4 are statistics for the marginal distribution of π , obtained from

sieve maximum likelihood (SML) estimates of a model without unobserved preference hetero-

geneity (the same estimates that generate the thick gray line in Figure 7). The variation in these

without-heterogeneity statistics comes only from variation in M .

The second set of estimates in Table 4 are based on the SML estimates given in Table

3, that is, our main model that includes the random Barten scales. The "ignore heterogeneity"

10Our model is not a general equilibrium model, so we are only estimating the consumer’s responses to a

change in energy prices. Moreover, these should only be interpreted as short run responses, since in the longer

run consumers could change their energy elasticities and demand by, e.g., buying more energy efficient cars and

appliances. Also, we just consider a change in the overall price of energy, and so do not consider impacts of

possible changes in the composition of energy goods.
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estimates in Table 4 describe the marginal distribution of π , conditioning on U1 and U2 equaling

their estimated medians. These estimates differ from "without heterogeneity" in the estimated

parameter values of the demand functions, but still have variation that only comes from variation

in M . If our main model is correctly specified, then "without heterogeneity" demand function

estimates will be inconsistent, while the "ignore heterogeneity" statistics will show the impacts

of ignoring heterogeneity, evaluated at consistently estimated demand parameters.

Table 4: Summary Statistics for Cost of Living Change and Social Welfare

Mean Std Dev Lower Qtl Median Upper Qtl

log-cost of living impacts for individuals

Overall–without heterogeneity 0.111 0.013 0.105 0.113 0.120

std err 0.020 0.006 0.018 0.018 0.021

Overall-ignore heterogeneity 0.128 0.016 0.122 0.131 0.135

std err 0.016 0.003 0.015 0.015 0.017

Overall–with heterogeneity 0.128 0.072 0.073 0.120 0.172

std err 0.013 0.004 0.011 0.014 0.016

At lower Qtl of M (ln M = −0.38) 0.140 0.079 0.070 0.137 0.204

At median of M (ln M = −0.03) 0.130 0.071 0.070 0.123 0.181

At upper Qtl of M (ln M = 0.26) 0.113 0.057 0.068 0.110 0.151

The remaining set of estimates in Table 4, labeled "with-heterogeneity," are based on our

main model (SML estimates from Table 3), showing features of the marginal distribution of

π accounting for the estimated variation in U1 and U2, as well as variation in M . The last

three rows of Table 4 give the conditional distribution of π in the with-heterogeneity model,

conditioning on the quartiles of M . The variation in these last three rows comes only from

variation in U1 and U2.

It has long been known that first order approximations to the cost of living effects of mar-

ginal price changes can be evaluated without estimating demand functions and associated de-

mand elasticities (see, e.g., Stern 1987). These theoretical results have been used to argue that

demand function estimation is not required for marginal policy analyses. In our data, the av-

erage value of the budget share for energy is 0.14, so if there were no substitution effects in

response to a price change, doubling the price of energy would increase the cost of living by

π = 0.14. This would be the first order approximation based estimate of π . However, the esti-

mated average cost-of-living impacts given in Table 4 are much less 0.14, showing substantial

relative price substitution effects. This supports findings in, e.g., Banks, Blundell, and Lewbel

(1996) that, contrary to the first order approximation theory, it is empirically necessary to esti-

mate demand functions and associated price elasticities to properly evaluate consumer surplus

and welfare effects when price changes are large rather than marginal. Moreover, one goal of an

energy tax would be to reduce energy consumption, so it’s important to account for the impact

on welfare of this reduction.

In place of the first order approximation of .14, Table 4 shows that our main model gives an

estimated average cost of living impact of 0.128, which is over nine percent smaller. This is true

whether we ignore heterogeneity in our main model or not, but if we misspecify the demand
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functions by estimating them without heterogeneity, we get a value of 0.111, thereby under-

estimating the average impact by over ten percent, a substantial amount. This is because, in a

nonlinear model like ours, estimation without-heterogeneity leads to bias in the estimated para-

meters. Thus, even if we were not interested in the distribution of effects of a price change, just

getting the average impact correct requires accounting for unobserved preference heterogeneity

when estimating demand function parameters.

Far larger than these differences in the mean of π is the effect of preference heterogeneity

on the variation of impacts in cost of living π across consumers. This can be seen in Figure

7, where consumers near the top of the contour plot have their costs of living go up by over

25%, while those near the bottom have impacts near zero. This variation can be seen in the

standard deviations and interquartile ranges of estimates of π in Table 4. Particularly notable

is that, when allowing for heterogeneity, the standard deviation increases 450%, from .016

when ignoring heterogeneity to .072 when allowing for preference heterogeneity. The increase

relative to the without-heterogeneity model is even larger, an increase of almost sixfold.

The effects of preference heterogeneity on cost of living are even larger than the impacts

of varying M . The cost of living impact of the tax is, in percentage terms, bigger for poor

households than for rich ones, as can be seen in the first column and last three rows of Table

4. The cost of living impact drops from 0.14 for consumers at the bottom quartile level of total

expenditures M to 0.113 for those at the top quartile, giving an interquartile range of 0.027. In

contrast, looking across the "median of M" row of Table 4 shows that the interquartile range

in impacts just from variation in preferences (that is, holding M fixed) is 0.111 (0.181 minus

0.070). This is more than four times larger than the interquartile range of 0.027 stemming from

variation in M . Overall, variation in preferences has a dramatically larger impact than variation

in income on who is hurt the most or least by our energy tax experiment.

4.7 Social Welfare Implications of a Carbon Tax

The above analyses summarized the distribution of welfare implications of our energy tax ex-

periments across consumers. To evaluate the implications for aggregate welfare, we consider

the impacts of our experiment on a range of possible social welfare functions. To proceed, we

require interpersonally comparable and cardinal measures of individual utility. To make util-

ity functions interpersonally comparable, we follow the standard procedure in this literature of

constructing money metric cardinalizations of utility. A money metric utility cardinalization Ṽ

of a given indirect utility function V is the monotonic transformation H(V ) having the property

that, at base prices P1, P2, the function Ṽ = H(V ) equals total expenditures. Since in our ap-

plication preferences also vary by Barten scales, we also need to choose a base level of Barten

scales U 1,U 2 at which H(V ) equals total expenditures. Formally, Ṽ is defined by

Ṽ (U1 P1/M,U2 P2/M) = H
[
V (U1 P1/M,U2 P2/M) ,U 1,U 2, P1, P2

]
.

where V is given by equation (25) and H is defined to satisfy

Ṽ
(
U 1 P1/M,U 2 P2/M

)
= M

for all values of M . Strict monotonicity of H as a function of V , and of V as a function of M ,

ensures that such a function H exists and that the resulting function Ṽ is unique.
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We let base prices be P1 = P2 = 1 and we take U 1 and U 2 to equal the medians of the

estimated distributions of U1 and U2, respectively. We could have allowed H to depend on U1

and U2 directly (as in the statement of Theorem 3), in addition to depending on V,U 1,U 2, P1,
and P2, but this turns out to be unnecessary for constructing the money metric utility Ṽ .11 As

a result Ṽ , like our original expression of the utility function V , depends on Barten scales only

through their interactions with prices.12

Let Ṽi denote the money metric utility of a consumer i . The range of social welfare functions

over money-metric utilities that we consider are in the Atkinson (1970) Mean-of-Order-r class,

defined by

Sr (Ṽ1...ṼN ) =

(
1

N

∑(
Ṽi

)r)1/r

for r 6= 0, and Sr (Ṽ1...ṼN ) = exp

(
1

N

∑
ln Ṽi

)
for r = 0.

We use r = −1, 0, 1 corresponding to the harmonic, geometric and arithmetic mean of individ-

ual money metric utility. The social welfare function S1 is inequality neutral, while S0 and S−1

are inequality averse.

Table 5 provides estimates of the value of these social welfare functions defined over utilities

when facing initial prices P1 = 1, P2 = 1 and new prices P1 = 2, P2 = 1, holding the popu-

lation distribution of Mi U1i and U2i fixed. Simulated parametric standard errors are provided

in italics.13 Table 5 includes estimates of the social welfare functions Sr at both initial and new

prices, and also reports the social welfare loss associated with the energy price increase, defined

as the difference in the estimated social welfare function Sr between the two price regimes. In

addition, we report the loss difference, defined as the difference in estimated losses based on Sr

versus the estimated losses based on S1. The estimated loss is a social welfare measure of the

cost of the hypothetical energy tax, while the loss difference measures the impact of accounting

for inequality aversion on these estimated costs.

As one would expect, the estimated welfare losses based on the S1 social welfare function

(the arithmetic mean of money metrics) confirm the patterns associated with the mean estimates

of π in Table 4. In particular, the estimated loss based on S1 increases when we account for

unobserved heterogeneity in the model. As reported in the first column of Table 5, the esti-

mated welfare loss based on S1 increases from 10.3% without heterogeneity to 14.9% with

heterogeneity.

11This convenient feature does not always hold, e.g., the social welfare calculations in Jorgenson, Lau, and

Stoker (1982) use representations of Barten scaled utility functions that do not have this property.
12We do one final adjustment to money-metric utilities, which is to scale them by a factor which makes the aver-

age money metric at initial prices the same for the models with and without unobserved preference heterogeneity.

This makes the inequality-neutral social welfare function S1 have the same value for both models at base prices,

which makes comparisons across the specifications easier to interpret.
13Note that for the model without heterogeneity, the estimated level of social welfare at base prices does not

have sampling variability induced by the estimation of the parameter vector. This is because, by construction,

heterogeneity is only induced by variation in Mi , and in particular will for S1 just equal the mean of Mi at base

prices, which is 1.035. To facilitate comparisons across models with and without heterogeneity, our normalization

of individual utilities likewise normalizes the S1 estimates at base prices with heterogeneity to equal 1.035, the

average of Mi .
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Table 5: Social Welfare Values

arithmetic geometric harmonic

S1 std err S0 std err S−1 std err

without heterogeneity initial prices 1.035 – 0.907 – 0.763 –

new prices 0.928 0.035 0.809 0.024 0.675 0.017

loss 0.103 0.033 0.108 0.026 0.115 0.023

loss difference -0.005 0.009 -0.012 0.019

with heterogeneity initial prices 1.035 – 0.698 0.005 0.430 0.007

new prices 0.880 0.013 0.606 0.005 0.387 0.002

loss 0.149 0.013 0.132 0.013 0.101 0.012

loss difference 0.017 0.003 0.048 0.005

However, a different story emerges when we include inequality aversion in the social welfare

calculations. Without accounting for unobserved preference heterogeneity, we see that inequal-

ity in total expenditures Mi does not affect estimated welfare losses very much. Welfare loss

is 10.3% under S1, 10.8% under S0, and 11.5% under S−1, and the differences between these

measures are statistically insignificant. When we fail to account for unobserved heterogeneity,

it appears greater inequality aversion is associated with no change, or possibly a small increase,

in the estimated social welfare cost of the energy tax.

In contrast, once we take unobserved preference heterogeneity into account, estimated wel-

fare losses decrease as the degree of inequality aversion increases, from 14.9% under S1 to

13.2% under S0 to 10.1% under S−1. The loss differences between these numbers are strongly

statistically significant.

Essentially, the impacts of inequality due to variation in preferences mitigates the impacts

of inequality due to variation in income. The reason is that, without allowing for unobserved

preference variation, every poor consumer appears to be hit harder by an energy tax than every

rich consumer. Accounting for preference variation shows that some wealthy people who con-

sume a lot of energy or are more energy price inelastic will be hurt more, in relative terms, than

some poorer consumers who use relatively less energy or who are more energy price elastic.

These patterns can be seen in Figure 8. In the model without unobserved preference hetero-

geneity, the induced consumer surplus loss increases somewhat with total expenditures M , but

does not have much variation overall. However, in the model with unobserved heterogeneity,

some rich households have very large utility (money-metric) impacts, which drives down S1

substantially. Since risk averse social welfare functions downweight the utilities of the rich,

these individuals in the upper right of the distribution shown in Figure 8 don’t influence social

welfare as much, and so the social welfare loss based on inequality averse measures like S0

and S−1 is reduced. The main point here is that failing to account for preference heterogeneity

completely misses the potential mitigating effect that variation in preferences from causes other

than income has on inequality averse social welfare calculations.

Overall, our energy tax experiment yields two major conclusions. First, accounting for un-

observed preference heterogeneity has a big impact on how much variation we find in the cost-

of-living impacts of price changes. In our example, the standard deviation of cost-of-living

impacts due to a 100% energy tax is 5 times as large in the model with unobserved prefer-

ence heterogeneity as in the model without unobserved preference heterogeneity. Second, we
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find that accounting for unobserved preference heterogeneity reverses how the estimated social

welfare loss of an energy tax varies with inequality aversion.

5 Conclusions and Extensions

We have shown nonparametric identification of a generalized random coefficients model, and

provided an empirical application in which the generalized random coefficient structure arises

from extending existing commonly used economic models of observed heterogeneity to models

of unobserved heterogeneity. In our application to Barten scales, allowing for general forms of

unobserved heterogeneity is shown to be important for empirically evaluating the welfare ef-

fects of potential policy interventions such as a carbon tax. For example, we find that failure to

account for preference heterogeneity would result in underestimating the total cost of an energy

tax (measured as the effect on total consumer surplus) by over ten percent, and in underestimat-

ing the variation in impacts (measured as the standard deviation in cost of living impacts across

consumers) by over eighty percent. We also find that unobserved preference heterogeneity

strongly interacts with inequality aversion in social welfare calculations, reversing conclusions

that would have been made in models that failed to account for preference heterogeneity.

Our application focused on consumers with single utility functions. A possible extension

would be to consider collective household models, e.g., Barten scales have been applied to

household models in, e.g., Browning, Chiappori, and Lewbel (2010). It would also be useful to

place our carbon tax analyses into a general equilibrium setting.

Useful areas for further work on the theory of generalized random coefficients would be

extensions to nonparametrically identify joint rather than marginal distributions of the random

coefficients, and to relax the smoothness assumptions that were imposed for identification of

the nonadditive model.

6 Appendix B: Proofs

Before proving Theorem 1, we prove a couple of lemmas.

LEMMA 1: Let Ỹk = Gk (XkUk) where Gk is a strictly monotonically increasing function.

Assume Uk ⊥ X | Z . The marginal distributions of Uk and Xk are continuous. The support of

Xk includes zero, the support of Uk is a subset of the support of Ỹk , and for every r such that

Gk (r) is on the support of Ỹk there exist an xk 6= 0 on the support of Xk such that fUk

(
x−1

k r

)
6=

0. Assume the location and scale normalizations Gk (0) = 0 and Gk (1) = y0 for some known

y0 in the support of Ỹk are imposed. Let r = Hk (ỹk) be inverse of the function Gk where

ỹk = Gk (r). Define X(k) to be the vector of all the elements of X except for Xk . Define the

function Sk (ỹk, x̃) by

Sk (ỹk, x̃) = E

[
FỸk |Xk ,X(k),Z

(
ỹk | x̃

−1, 0, Z

)]
=

∫
supp(Z)

FỸk |Xk ,X(k),Z

(
ỹk | x̃

−1, 0, z
)

fz (z) dz.
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Then

Hk (ỹk) = sign

sign (xk)
∂Sk

(
ỹk, x−1

k

)
∂x−1

k

 exp

∫ ỹ

y0

xk∂Sk

(
ỹk, x−1

k

)
/∂ ỹ

∂Sk

(
ỹk, x−1

k

)
/∂x−1

k

d ỹk

 (30)

Note that if Z is discretely distributed, then the integral defining Sk becomes a sum. If Z is

empty (so Uk and X are unconditionally independent) then Sk (ỹk, x̃) = FỸk |Xk ,X(k)

(
ỹk | x̃−1, 0

)
.

The main implication of Lemma 1 is that if the distribution FỸk |X,Z
is identified, then the func-

tion Hk is identified by construction.

PROOF of Lemma 1: For any ỹk = Gk (xkUk) and any xk > 0 we have

FỸk |Xk ,X(k),Z
(ỹk | xk, 0, z) = Pr

(
Gk (xkUk) ≤ ỹ | Xk = xk, X(k) = 0, Z = z

)
= Pr

(
Uk ≤ x−1

k Hk (ỹ) | Xk = xk, X(k) = 0, Z = z

)
= FUk |Xk ,X(k),Z

[
x−1

k Hk (ỹ) | xk, 0, z
]
= FUk |Z

[
x−1

k Hk (ỹ) | z
]

where the last equality uses Uk ⊥ X | Z . Similarly for any xk < 0 we have

FỸk |Xk ,X(k),Z
(ỹk | xk, 0, z) = Pr

(
Gk (xkUk) ≤ ỹ | Xk = xk, X(k) = 0, Z = z

)
= Pr

(
Uk ≥ x−1

k Hk (ỹ) | Xk = xk, X(k) = 0, Z = z

)
= 1− FUk |Z

[
x−1

k Hk (ỹ) | z
]

Together these equations say

FUk |Z

[
x−1

k Hk (ỹk) | z
]
= I (xk < 0)+ sign (xk) FỸk |Xk ,X(k),Z

(ỹk | xk, 0, z) .

So

FUk

[
x−1

k Hk (ỹk)
]
=

∫
supp(Z)

[
I (xk < 0)+ sign (xk) FỸk |Xk ,X(k),Z

(ỹk | xk, 0, z)
]

f (z) dz.

= I (xk < 0)+ sign (xk) S

(
ỹk, x−1

k

)
It follows that for any xk 6= 0,

∂S

(
ỹk, x−1

k

)
∂x−1

k

= sign (xk) fU

[
x−1

k Hk (ỹk)
]

Hk (ỹk)

and

∂S

(
ỹk, x−1

k

)
∂ ỹk

= sign (xk) fU

[
x−1

k Hk (ỹk)
]

x−1
k

∂Hk (ỹk)

∂ ỹk
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So for fU

[
x−1

k Hk (ỹk)
]
6= 0 it follows that

xk∂S

(
ỹk, x−1

k

)
/∂ ỹk

∂S

(
ỹk, x−1

k

)
/∂x−1

k

=
∂Hk (ỹk) /∂ ỹk

Hk (ỹk)
=
∂ ln |Hk (ỹk) |

∂ ỹk

so

exp

∫ ỹk

y0

xk∂S

(
ỹ, x−1

k

)
/∂ ỹ

∂S

(
ỹ, x−1

k

)
/∂x−1

k

d ỹ

 = exp

(∫ ỹk

y0

∂ ln |Hk (ỹ) |

∂ ỹ
d ỹ

)
= exp (ln |Hk (ỹk) | - ln |Hk (ỹ0) |) = |Hk (ỹk) |

where Hk (ỹ0) = 1 follows from Gk (1) = ỹ0. Finally

sign

sign (xk)
∂S

(
ỹk, x−1

k

)
∂x−1

k

 = sign

(
sign (xk) sign (xk) fU

[
x−1

k Hk (ỹk)
]

Hk (ỹk)
)

= sign

(
fU

[
x−1

k Hk (ỹk)
]

Hk (ỹk)
)
= sign (Hk (ỹk))

So the right side of equation (30) equals sign (Hk (ỹk)) |Hk (ỹk) | = Hk (ỹk) as claimed.

LEMMA 2: If Assumption A1 holds and the normalization Gk (0) = 0 for all k holds, then

FU0|Z and the distribution function FỸ |X,Z

(
Ỹ | x, z

)
are identified, where Ỹ =

∑K
k=1 Gk (XkUk).

PROOF of Lemma 2:

FY |X,Z (y | 0, z) = Pr (G (0)+U0 ≤ y | X = 0, Z = z) = FU0|X,Z (y | 0, z) = FU0|Z (y | z)

identifies the distribution function FU0|Z on the support of Y , which contains the support of

U0. Next define Ỹ = Y − U0. Then since Y = Ỹ + U0 and the distributions of Y | X, Z

and U0 | X, Z are identified, for each value of X = x, Z = z apply a deconvolution (using

the nonvanishing characteristic function of U0) to identify the distribution of Ỹ | X, Z , where

Ỹ =
∑K

k=1 Gk (XkUk).

PROOF of Theorem 1: When X(k) = 0 (equivalently, when X = ekxk for some xk) we

get Ỹ = Gk (XkUk) +
∑

j 6=k G j (0) = Gk (XkUk). Define Ỹk = Gk (XkUk). It follows that

FỸk |Xk ,X(k),Z
(ỹk | xk, 0, z) = FỸ |X,Z (ỹk | xkek, z), so the distribution function on the left of

this identity is identified, given by Lemma 2 that FỸ |X,Z is identified. Let r = Hk (ỹk) denote

the inverse of the function Gk where ỹk = Gk (r). It follows by construction from Lemma 1

that Hk (ỹk) is identified for every value of ỹk on the support of Ỹk satisfying the property that,

for some xk on the support of Xk , fUk

[
x−1

k H (ỹk)
]
6= 0. This identification of Hk (ỹk) in turn

means that the function Gk (r) is identified for every r such that Gk (r) is on the support of
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Ỹk and there exist an xk on the support of Xk such that fUk |Z

(
x−1

k r

)
6= 0. This then implies

identification of Gk on its support. Finally, given identification of FỸ |X,Z and of Hk (ỹk), the

distribution function FUk |Z is identified by FUk |Z
[
H (ỹ) /xk | z

]
= FỸ |Xk ,X(k),Z

(ỹ | xk, 0, z)

for xk > 0 and FUk |Z
[
H (ỹ) /xk | z

]
= 1− FỸ |Xk ,X(k),Z

(ỹ | xk, 0, z) for xk < 0.

PROOF of Corollary 1: By construction, the function G̃ (X1U1, ..., XK UK ) is zero when

evaluated at X = 0 or at X = Xkek for any k, so evaluated at any such value of X , equation (3)

is equivalent to equation (2). For equation (2), the proof of Theorem 1 showed identification

of the conditional distributions of each Uk given Z , and identification of each function Gk only

using X = 0 and X = Xkek , so these functions are also identifed for equation (3).

PROOF of Theorem 2:

Define λt1,...,tK by

λt1,...,tK =

∫
supp(X |Z)

E
[
h
(
Ỹ , t1, ..., tK

)
| X1, X2...XK , Z

]
X
−ιt1−1
1 X

−ιt2−1
2 ...X−ιtK−1

K d X1d X2...d XK

(31)

λt1,...,tK is an integral of a known conditional expectation, and so is identified. Then

λt1,...,tK =

∫
supp(X |Z)

∫
supp(U |Z)

h (G (X1U1, ..., XK UK ) , t1, ..., tK ) d F (U1,U2...UK | Z) X
−ιt1−1
1 X

−ιt2−1
2 ...X−ιtK−1

K d X1d X2...d XK

=

∫
supp(U |Z)

∫
supp(X |Z)

h (G (X1U1, ..., XK UK ) , t1, ..., tK ) X
−ιt1−1
1 X

−ιt2−1
2 ...X−ιtK−1

K d X1d X2...d XK d F (U1,U2...UK | Z)

where the second equality follows from Fubini’s theorem. Do a change of variables on the inner

integrals, letting Sk = XkUk for k = 1, ..., K to get

λt1,...,tK =

∫
supp(U |Z)

∫
supp(X |Z)

h (G (S1, ..., S) , t1, ..., tK ) S
−ιt1−1
1 S

−ιt2−1
2 ...S−ιtK−1

K U
ιt1
1 U

ιt2
2 ...U

ιtK
K dS1dS2...dSK d F (U1,U2...UK | Z)

= κ t1,...,tK

∫
supp(U |Z)

U
ιt1
1 U

ιt2
2 ...U

ιtK
K d F (U1,U2...UK | Z) = κ t1,...,tK E

(
U
ιt1
1 U

ιt2
2 ...U

ιtK
K | Z

)
and therefore E

(
U
ιt1
1 U

ιt2
2 ...U

ιtK
K | Z

)
is identified, by equaling the ratio of identified objects

λt1,...,tK /κ t1,...,tK . With supp (U | Z) ⊆ RK+, the characteristic function of the vector ln U

is identified from E
(
U
ιt1
1 U

ιt2
2 ...U

ιtK
K | Z

)
= E

(
eι
∑K

k=1 tk ln Uk | Z

)
, and identification of this

characteristic function implies identification of the distribution function FU |Z (U1,...,UK | Z).

PROOF of Corollary 2: Repeating the proof of Theorem 2, dropping ι everywhere it appears,

shows identification of E
(
U

t1
1 U

t2
2 ...U

tK
K | Z

)
for all reals t1,...,tK , and hence identification of all

the moments of U . Sufficient conditions that then suffice to uniquely identify the distribution

of U given its moments are well known. See, e.g., Billingsley (1979), chapter 30. One such

sufficient condition is that the support of continuously distributed U be bounded.
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PROOF of Corollary 3: Theorem 1 identifies the functions G1,G2, ...,GK , and shows that

the distribution of Ỹ defined by Ỹ = G (X1U1, ..., XK UK ) is identified. Assumption A5 there-

fore holds, and by Theorem 2 the joint distribution function FU |Z (U1,...,UK | Z) is identified.

==================================================

==================================================

==================================================

==================================================

==================================================

==================================================

PROOF of Corollary 1: Applying the proof of Lemma 2 to the model of Corollary 1

shows that FU0|Z and the distribution function F˜̃
Y |X,Z

(˜̃
Y | x, z

)
are identified, where

˜̃
Y =∏K

k=1 gk (XkUk). It therefore follows that FỸ |X,Z

(
Ỹ | x, z

)
is identified where Ỹ = ln

(˜̃
Y

)
=∑K

k=1 ln
[
gk (XkUk)

]
=
∑K

k=1 Gk (XkUk), and the remainder of the identification therefore

follows applying the proof of Theorem 1.

PROOF of Theorem 2: By construction, the function G̃ (X1U1, ..., XK UK ) is zero when

evaluated at X = 0 or at X = Xkek for any k, so evaluated at any such value of X , equation (??)

is equivalent to equation (2). For equation (2), the proof of Theorem 1 showed identification of

the conditional distributions of each Uk given Z , and identification of each function Gk only us-

ing X = 0 and X = Xkek , so these functions are also identifed for equation (??). What remains

is to identify the function G̃. Define R (X, Z) = E
[
G̃ (X1U1, ..., XK UK ) | X, Z

]
. The func-

tion R (X, Z) is identified for all X because R (X, Z) = E

[
Y −

∑K
k=1 Gk (XkUk)−U0 | X, Z

]
,

which depends only on distributions and functions that have already been identified. For non-

negative integers t1, ...tK define Rt1,...tK by

Rt1,...tK (x, z) =
∂ t1+...+tK R (x, z)

∂x
t1
1 ...∂x

tK
K

and similarly for G̃ t1,...tK . Then

Rt1,...tK (x, z) = E
(
U

t1
1 × ...×U

tK
K G̃ t1,...tK (x1U1, ..., xK UK ) | X = x, Z = z

)
and E

(
U

t1
1 × ...×U

tK
K | X = x, Z = z

)
= E

(
U

t1
1 | Z = z

)
×...×E

(
U

tK
K | Z = z

)
has already

been identified from Theorem 1. Therefore G̃ t1,...tK (0) = Rt1,...tK (0) /E
(
U

t1
1 × ...×U

tK
K | Z = z

)
is identified for all sets of nonnegative integers t1, ...tK . Now G̃ is entire and analytic, so it

equals its Maclaurin series expansion

G̃ (r) =
∞∑

t1=0

...
∞∑

tK=0

r
t1
1 ...r

tK
K G̃ t1,...tK (0)

(t1 + ...+ tK )
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for all values of r , which shows that the function G̃ (r) is identified, since G̃ t1,...tK (0) is identi-

fied for all sets of nonnegative integers t1, ...tK .

PROOF of Corollary 2: For a given j ∈ {1, ..., J } let Y = −Q j if j is not a Giffen good,

otherwise let Y = Q j . Then the function G in Theorem 2 is given by−ω j (U1 X1, ...,UJ X J ) /U j X j

which makes the function and G j in Theorems 1 and 2 be −ω j

(
0, ..., 0,U j X j , ..., 0

)
/U j X j

(remove the minus signs if the good j was Giffen). Then G j is strictly monotonically increas-

ing, and we have taken U0 = 0, so by Theorem 1, the distribution function FU j |Z is identified.

Repeating this procedure for each j ∈ {1, ..., J } identifies all of the FU j |Z distributions. Given

identification of all of the FU j |Z distributions, we can now apply the remainder of the proofs of

Theorems 1 and 2 to each demand function Q j X j = ω j (U1 X1, ...,UJ X J ) for j ∈ {1, ..., J } to

identify each function ω j , observing that by Roys identity (and boundedness of budget shares)

each ω j will be analytic, and having each U j be positive and bounded makes the remaining

assumptions of Theorem 2 hold.

PROOF of Theorem 3: As discussed in the text, a property of Barten scales (which can

be readily verified using Roys identity) is that, if V (X1, X2) is the indirect utility function

corresponding to the demand function ω1 (X1, X2), then up to an arbitrary monotonic trans-

formation H (V,U1,U2) of V , the indirect utility function corresponding to ω1 (U1 X1,U2 X2)
is V (U1 X1,U2 X2), and vice versa. It therefore suffices to prove that the theorem holds with

U1 = U2 = 1.

By equation (12), given any indirect utility function V , the corresponding demand function

ω1 is given by

ω1 (X1, X2) =
∂V (X1, X2) /∂ ln X1[

∂V (X1, X2) /∂ ln X1

]
+
[
∂V (X1, X2) /∂ ln X2

]
Similarly, given any demand function ω1, if this equation holds then V equals, up to an arbitrary

monotonic transformation, the indirect utility function that corresponds to ω1. It follows that

λ [ω1 (X1, X2)] = ln

(
∂V (X1, X2)

∂ ln X1

)
− ln

(
∂V (X1, X2)

∂ ln X2

)
(32)

Given any functions g1 (X1) and g2 (X2), define a corresponding function V (X1, X2) by

V (X1, X2) =

∫ ln X1

−∞
eg1(x1)d ln x1 +

∫ ln x2

−∞
e−g2(X2)d ln x2. (33)

Substituting equation (33) into equation (32) gives

λ [ω1 (X1, X2)] = g1 (X1)+ g2 (X2) (34)

which shows that, up to monotonic transformation, equation (33) is the indirect utility function

that generates the demand equation (34) (note that a property of demand systems is that, if

some indirect utility function V generates a given demand system, then all other indirect utility

functions that generate that same demand system are monotonic transformations of V ). Since
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equation (33) is additive, this shows that the indirect utility function that generates the demand

equation (34) is additive.

To go the other direction, given any differentiable functions h1 (X1) and h2 (X2), if V (X1, X2) =
h1 (X1)+ h2 (X2) equation (32) equals

λ [ω1 (X1, X2)] = ln

(
∂h1 (X1)

∂ ln X1

)
− ln

(
∂h2 (X2)

∂ ln X2

)
(35)

which is in the form of equation (34), showing that any additive indirect utility function gener-

ates a demand equation in the form of (34).

Together these results prove the first part Theorem 3. Adding back the Barten scales U1 and

U2 to the functions g1, g2, h1, and h2 proves equations (17) and (16). The properties of the

functions h1 and h2 given at the end of Theorem 2 follow from the fact that the indirect utility

function h1 (U1 P1/M)+h2 (U2 P2/M)must possess the standard properties of all indirect utility

functions, i.e., homogeneity and quaisconvexity in P1,P2, and M , nondecreasing in each price,

and increasing in M .

PROOF of Theorem 4: When X(k) = 0 we get Ỹ = Gk (XkUk) +
∑

j 6=k Gk (0) =

Gk (XkUk). Define Ỹk = Gk (XkUk). It follows that FỸk |Xk ,X(k),Z
(ỹk | xk, 0, z) = FỸ |X,Z (ỹk | xkek, z),

so FỸk |Xk ,X(k),Z
(ỹk | xk, 0, z) is identified, given by Lemma 1 that FỸ |X,Z is identified. Let

r = Hk (ỹk) be inverse of the function Gk where ỹk = Gk (r). Now consider any particular

positive xk ∈ 9k . For that xk we have FỸk |X,Z
(y0 | ek, z) = FỸk |X,Z

(ỹk | ekxk, z) and since

the function FỸk |X,Z
is identified, the particular value ỹk that satisfies this equation is identified.

Then

Pr (Gk (xkUk) ≤ ỹk | X = xkek, Z = z) = Pr (Gk (Uk) ≤ y0 | X = xkek, Z = z)

= Pr (Gk (Uk) ≤ y0 | Z = z)

FUk |Z
[
Hk (ỹk) /xk, z

]
= FUk |Z

[
Hk (y0) , z

]
similarly, if we have a given negative xk ∈ 9k then

1− Pr (Gk (xkUk) ≤ ỹk | X = xkek, Z = z) = Pr (Gk (Uk) ≤ y0 | X = xkek, Z = z)

1− Pr (Uk ≥ Hk (ỹk) /xk | X = xkek, Z = z) = Pr (Uk ≤ Hk (y0) | Z = z)

FUk |Z
[
Hk (ỹk) /xk, z

]
= FUk |Z

[
Hk (y0) , z

]
By invertibility of FU1|Z these equations show that for any xk ∈ 9K we get Hk (ỹk) /xk =
Hk (y0) where the ỹk corresponding to the given xk is known. Now Gk (1) = y0 means that

Hk (y0) = 1, so Hk (ỹk) = xk , and therefore ỹk = Gk (xk), so the value of the function Gk

evaluated at this particular xk is known. This holds for any and hence all xk ∈ 9k , so by

Assumption A2’ this suffices to identify the function Gk everywhere, and hence also identifies

the function Hk everywhere.

Given identification of FỸ |X,Z and of Hk (ỹ), the distribution function FUk |Z is identified

by FUk |Z
[
H (ỹk) /xk | z

]
= FỸk |X,Z

(ỹk | ekxk, z) for xk > 0 and FUk |Z
[
H (ỹk) /xk | z

]
=

1− FỸk |X,Z
(ỹk | ekxk, z) for xk < 0.
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PROOF Theorem 5: First observe that Lemma 2 still holds in this model, identifying FU0|Z

by taking X = 0. Similarly, all the interaction terms X j Xk equal zero when X = ekxk for any k,

so the proof of Theorem 1 goes through to identify each FUk |Z and Gk function. Next, for each

j, k pair evaluate the model at X = e jk to get Y = V jk + U jk where V jk = U0 + Gk (Uk) +
G j

(
U j

)
At this stage the distribution of V jk | Z is identified (because each component is

identified), so FU jk |Z can be identified by a deconvolution of Y | Z with V jk | Z .
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