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Abstract

The aim of this chapter is to get you guys be familiar with quantitative
tools in discrete-time stochastic process and their applications in dynamic
programming methods. This chapter is based on the following materials.

• Durrett, Rick. Probability: theory and examples. Cambridge uni-
versity press, 2010.

• Stokey, Nancy L. Recursive methods in economic dynamics. Harvard
University Press, 1989.

• Ross, Sheldon M. Stochastic processes. Vol. 2. New York: John
Wiley & Sons, 1996.

• Lecture Notes of ”Dynamic Optimization” by Professor Zhu Sheng-
hao, https://shenghaozhu.weebly.com/teaching-materials.html

1 Introduction to Stochastic Process

A stochastic process is a collection of random variables indexed by time.

An alternate view is that it is a probability distribution over a space of
paths; this path often describes the evolution of some random value, or system,
over time. In a deterministic process, there is a fixed trajectory (path) that the
process follows, but in a stochastic process, we do not know a priori which path
we will be given. One should not regard this as having no information of the
path since the information on the path is given by the probability distribution.
For example, if the probability distribution is given as one path having proba-
bility one, then this is equivalent to having a deterministic process. Also, it is
often interpreted that the process evolves over time. However, from the formal
mathematical point of view, a better picture to have in mind is that we have
some underlying (unknown) path, and are observing only the initial segment of
this path.

For example, the function f : R≥ → R given by f(t) = t is a deterministic
process, but a ”random process” f : R≥ → R given by f(t) = t with probability
1
2 and f(t) = −t with probability 1

2 is a stochastic process. This is a rather
degenerate example and we will later see more examples of stochastic processes.

We are still dealing with a single basic experiment that involves outcomes
governed by a probability law. However, the newly introduced time variable al-
lows us to ask many new interesting questions. We emphasize on the following
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topics:

• We tend to focus on the dependencies in the sequence of values generated
by the process. For example, how do future prices of a stock depend on
past values?

• We are interested in long-term averages involving the entire sequence of
generated values. For example, what is the fraction of time that a machine
is idle?

• We are interested in boundary events. For example, what is the probability
that within a given hour all circuits of some telephone system become
simultaneously busy

A stochastic process has discrete-time if the time variable takes positive in-
teger values, and continuous-time if the time variable takes positive real values.
We start by studying discrete time stochastic processes. These processes can be
expressed explicitly, and thus are more ‘tangible’, or ‘easy to visualize’. Later
we address continuous time processes.

2 Simple Random Walk

Let Y1, Y2, ... be i.i.d random variables such that Yi = 1 or Yi = −1. Let X0 = 0
and

Xk = Y1 + ...+ Yk

for all k ≥ 1. This gives a probability distribution over the sequences {X0, X1, ..., },
and thus defines a discrete time stochastic process. This process is known as the
one-dimensional simple random walk, which we conveniently refer to as random
walk from now on.

By the central limit theorem, we know that for large enough n, the distribu-
tion of 1√

n
Xn converges to the normal distribution with mean 0 and variance 1.

This already tells us some information about the random walk. We state some
further properties of the random walk.

Theorem 2.1. • E [Xk] = 0 for all k;

• (Independent increment) For all 0 = k0 ≤ k1 ≤ ... ≤ kr, the random
variable Xki+1 −Xki , for 0 ≤ i ≤ r − 1 are mutually independent.

• (Stationary) For all h ≥ 1 and k ≥ 0, the distribution of Xk+h − Xk is
the same as the distribution of Xh

Example 2.2. • Suppose that a gambler plays the following game. At each
turn the dealer throws an un-biased coin, and if the outcome is head the
gambler wins $1, while if it is head she loses $1. If each coin toss is
independent, then the balance of the gambler has the distribution of the
simple random walk.
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• Random walk can also be used as a (rather inaccurate) model of stock
price.

3 Markov Chain

One important property of the simple random walk is that the effect of the past
on the future is summarized only by the current state, rather than the whole
history. In other words, the distribution of Xk+1depended only on the value of
Xk, not on the whole set of values of X0, X1, X2, ..., Xk. A stochastic process
with such property is called a Markov chain.

More formally, let X0, X1, ..., be a discrete time stochastic process where
each Xi takes value in some discrete set S (note that this is not the case in
the simple random walk). The set S is called the state space. We say that the
random process has the Markov property if

P(Xn+1 = i|Xn, Xn−1, ..., X0) = P(Xn+1 = i|Xn)

for all n ≥ 0 and i ∈ S. We will discuss the case when S is a finite set. In this
case, we let S = [m] for some positive integer m.

A stochastic process with the Markov property is called a Markov chain.
Note that a finite Markov chain can be described in terms of the transition
probabilities

pij = P(Xn+1 = j|Xn = i), i, j ∈ S

One could easily see that ∑
j∈S

pij = 1,∀i ∈ S

Thus all the elements of a Markov chain could be encoded into a transition
probability matrix

A =


p11 p21 · · · pm1

p12 p22 · · · pm2

...
...

. . .
...

p1m p2m · · · pmm


Note that the sum of each column is equal to one.

Example 3.1. • A machine can be either working or broken on a given
day. If it is working, it will break down in the next day with probability
0.01, and will continue working with probability 0.99. If it breaks down
on a given day, it will be repaired and be working in the next day with
probability 0.8, and will continue to be broken down with probability 0.2.
We can model this machine by a Markov chain with two states: working,
and broken down. The transition probability matrix is given by[

0.99 0.8
0.01 0.2

]
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• A simple random walk is an example of a Markov chain. However, there
is no transition probability matrix associated with the simple random walk
since the sample space is of infinite cardinatlity.
Let rij(n) = P(Xn = j|X0 = i) be the n-th transition probabilities. These
probabilities satisfy the recurrence relation

rij(n) =

m∑
k=1

rik(n− 1)pkj

for n > 1, and rij(1) = pij. Hence the n-step transition probability matrix
could be easily shown to be An.
A stationary distribution of a Markov chain is a probability distribution
over the state space (whereP(X0 = j) = πj) such tat

πj =

m∑
k=1

πk · pkj

for ∀j ∈ S

• Let S = Zn and X0 = 0. Consider the Markov chain X0, X1, ... such that
Xn+1 = Xn + 1 with probability 1

2 and Xn+1 = Xn − 1 with probability 1
2 .

Then the stationary distribution of this Markov chain is πi = 1
n for ∀i.

Here is one fundamental theorem for Markov chain process, which is as,

Theorem 3.2. If pij > 0 for all i, j ∈ S then there exists a unique stationary
distribution of the system. Moreover,

limn→∞rij(n) = πij

for ∀i, j ∈ S. However, a corresponding theorem is not true if we consider infi-
nite state spaces.

4 Martingale

Definition 4.1. A discrete-time stochastic process {X0, X1, ...} is a martingale
if

Xt = E [Xt+1|Ft]

for all t ≥ 0, where Ft = {X0, ...Xt} (hence we are conditioning on the initial
segment of the process).

This says that our expectated gain in the process is zero at all times. We can
also view this definition as a Mathematical formalization of a game of chance
being fair.

Theorem 4.2. For all t ≥ s, we have Xs = E [Xt|Fs]

Proof: This easily follows from deduction and iterated law of expectations
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Example 4.3. • Random walk is a martingale

• The balance of a roulette player is not a martingale (we always have Xk >
E [Xk+1|Ft])

• Let Y1, Y2, ... be iid random variable such that Yi = 2 with probability 1
3 and

Yi = 1
2 with probability 2

3 . Let X0 = 0, Xk =
∏k
i=1 Yi. Then {X0, X1, ...}

forms a martingale.

5 Poisson Process

To state the deÖnition of a Poisson process we use the deÖnition of a counting
process. I copy the following two concepts from Ross (1983) textbook, Stochas-
tic Processes.

Definition 5.1. A stochastic process {N(t), t ≥ 0} is said to be a counting
process if N(t) represents the total number of ”event” that have occurred up to
time t. Hence, a counting process N(t) must satisfy:

• N(t) ≥ 0

• N(t) is integer valued

• If s < t, then N(s) ≤ N(t)

• For s < t, N(t)−N(s) equals the number of events that have occurred in
the interval (s, t]

Definition 5.2. The counting process {N(t), t ≥ 0} is said to be a Poisson
process having rate λ, λ > 0, if:

• N(0) = 0

• The process has independent increments

• The number of events in any interval of length t is Poisson distributed
with mean λt. That is, for all s, t≥0,

P {N(t+ s)−N(t) = n} = e−λt
(λt)n

n!

for ∀n = 0, 1, 2, 3, ...

The Poisson process is a collection {N(t), t ≥ 0} of random variables, where
N(t) is the number of events that have occurred up to time t (starting from time
0). The number of events between time a and time b is given as N(b) − N(a)
and has a Poisson distribution. Each realization of the process {N(t)} is a non-
negative integer-valued step function that is non-decreasing, but for intuitive
purposes it is usually easier to think of it as a point pattern on [0,∞) (the
points in time where the step function jumps, i.e. the points in time where an
event occurs).
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6 Dynamic Optimization with a Jump Process

Here we plan to solve an optimization problem,

maxE0

∫ T

0

f(t, x, u)dt+ θ(x(T ), T )

s.t.dx = g(t, x, u)dt+ σ(t, x, u)dz +m(t, x, u, ω)dq

x(0) = x

where z(t) is a standard Brownian motion and q(t) is a Poisson process. The
term of m(t, x, u, ω)dq means that when a jump happens, x changes from x(t)
to x(t) + m(t, x, u, ω), i.e. the jump part dominates the diffusion part. If no
jump happens, x follows dx = g(t, x, u)dt + σ(t, x, u)dz. Here the jump size
m(t, x, u, ω) is a random variable. I use ω to represent sample path. We usually
use a Poisson process to represent a jump process.

6.1 Principle of Dynamic Optimization

To solve the dynamic optimization problem, we could use Ito formula for stochas-
tic process with jumps. But now we will the recursive structure of the stochastic
process with jumps directly to derive Hamilton-Jacobian-Bellman equation. The
optimal value function is as,

maxE0

∫ T

0

f(t, x, u)dt+ θ(x(T ), T )

s.t.dx = g(t, x, u)dt+ σ(t, x, u)dz +m(t, x, u, ω)dq

Let us derive HJB as

J(t, x) = maxuEt
∫ T

t

f(s, x, u)ds+ θ(x(T ), T )

= maxuEt
∫ t+∆t

t

f(s, x, u)ds+

∫ T

t+∆t

f(s, x, u)ds+ θ(x(T ), T )

= maxuEt(
∫ t+∆t

t

f(s, x, u)ds+maxuEt+∆t

∫ T

t+∆t

f(s, x, u)ds+ θ(x(T ), T ))

= maxuEt(
∫ t+∆t

t

f(s, x, u)ds+ J(t+ ∆t, x+ ∆x))

= maxuEt(f(t̃, x(t̃), u(t̃))∆t+ J(t+ ∆t, x+ ∆x))

= maxuEt(f(t̃, x(t̃), u(t̃))∆t+ λ∆tJ(t+ ∆t, x+m)

+ (1− λ∆t)(J(t, x) + Jt∆t+ Jx∆x+
1

2
Jxx(∆x)2))

= maxuEt(f(t̃, x(t̃), u(t̃))∆t+ λJ(t+ ∆t, x+m)∆t+ (1− λ∆t)(J(t, x)

+ Jt∆t+ Jxg∆t+ Jxσ∆z +
1

2
Jxxσ

2∆t))

(1)
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Note that Et∆t = 0. Taking expectation operator,we have

J(t, x) = maxu(f(t̃, x(t̃), u(t̃))∆t+λEtJ(t+∆t, x+m)∆t+(1−λ∆t)(J(t, x)+Jt∆t+Jxg∆t+
1

2
Jxxσ

2∆t))

We have the term of EtJ(t + ∆t, x + m) in the equation, because m(t, x, u,m)
is a random variable.
Dividing by ∆t on both sides and letting ∆t→ 0, we have

λJ − Jt = maxu(f(t, x, u)− λEtJ(t, x+m) + Jxg +
1

2
Jxxσ

2)

Example 6.1. (Investment return with a jump process)
Now the agent can access a risky asset: a stock with possibility to receive

dividend. The value of the stock follows

dS(t) = αS(t)dt+ σS(t)dz(t) + θS(t)dq(t)

The jump size θ could be a random variable. Here for simplicity, I assume θ
is a constant. When a jump happens, the value of stock changes from S(t) to
(1 + θ)S(t). The agent chooses optimal consumption and investment rules, c(t)
and ω(t) to maximize the utility

maxc(t),ω(t)E0

∫ ∞
0

e−βt
(c(t))1−γ

1− γ
dt

s.t., dw(t) = (rω(t)+(α−r)ω(t)w(t)−c(t))dt+σω(t)w(t)dz(t)+θω(t)w(t)dq(t)

Let,

V (w(t)) = maxc(s),ω(s)Et
∫ ∞
t

e−β(s−t) (c(s))1−γ

1− γ
ds

Then HJB is (λ + β)V (w) = maxc(t),ω(t)(
(c(t))1−γ

1−γ + λV ((1 + θω(t))w(t)) +

V
′
(w)(rw(t) + (α− r)ω(t)w(t)− c(t)) + 1

2V
′′
(w)σ2ω2(t)w2(t))

Then first order conditions are

(c(t))−γ = V
′
(w)

λV
′
((1 + θω(t))w(t))θw(t) + V

′
(w)(α− r)w(t) + V

′′
(w)σ2ω(t)w2(t) = 0

Guess

V (w(t)) =
A

1− γ
(w(t))1−γ

Thus
c(t) = A−

1
γw(t)

ω(t) = ω

Where ω solves
γσ2ω − λθ(1 + θω−γ)− (α− r) = 0

From HJB we find that

A = (
λ+ β − λ(1 + θω)1−γ − (1− γ)(r + (α− r)ω − 1

2γσ
2ω2)

γ
)−γ
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Chapter II: Stochastic Calculus

Liu Yanbo

May 24, 2018

Abstract

This part of is intended to prepare you guys for the continuous-time
models both in Macroeconomics II and Econometrics II. Among all five
chapters of Math IIB, stochastic calculus is definitely the hardest part.
This chapter is based on the following materials.

• Øksendal, Bernt. ’Stochastic differential equations.’ Stochastic dif-
ferential equations. Springer Berlin Heidelberg, 2003. 65-84.

• Karatzas, Ioannis, and Steven Shreve. Brownian motion and stochas-
tic calculus. Vol. 113. Springer Science & Business Media, 2012.

• Shreve, Steven E. Stochastic calculus for finance II: Continuous-time
models. Vol. 11. Springer Science & Business Media, 2004.

• Lecture Notes of ”Introduction to Financial Mathematics II”, Na-
tional Chiao Tung University, http://ocw.nctu.edu.tw/

• Lecture Notes of ”Dynamic Optimization” by Professor Zhu Sheng-
hao, https://shenghaozhu.weebly.com/teaching-materials.html

1 Continuous-Time Martingales

1.1 Stochastic Processes

Let (Ω,F ,P) be a probability space and let I ⊆ [0,∞) be an interval.

Definition 1.1. A real-valued stochastic process X = (Xt)t∈I is a family of
random variables (Xt : t ∈ I) on (Ω,F)

Remark 1.2. We may regard the stochastic process X as a function of two
random variables

X : I × Ω→ R

(t, ω)→ Xt(ω))

so we could treat the random process as the two-dimensional function

• For fixed ω ∈ Ω, then
t→ Xt(ω)

is a function: I → R, which is called a path of X

• For fixed t ∈ I, then
ω → Xt(ω)

is a function: Ω→ R, which is a random variable.
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1.2 Martingales in continuous time

Here Let I = [0,∞)

Definition 1.3. A stochastic process X = (Xt)t≤0 is called a martingale with
respect to Pif,

• for 0 ≤ s ≤ t <∞,
E [Xt|Fs] = Xs

with P− a.s.

Definition 1.4. A stochastic process X = (Xt)t≤0 is called a submartingale
with respect to P if,

• for 0 ≤ s ≤ t <∞,
E [Xt|Fs] ≥ Xs

with P− a.s.

Definition 1.5. A stochastic process X = (Xt)t≤0 is called a supermartingale
with respect to P if,

• for 0 ≤ s ≤ t <∞,
E [Xt|Fs] ≤ Xs

with P− a.s.

Example 1.6. Let Z ∈ L1(P), then the process (Xt) defined by

Xt = E [Z|Ft]

is one martingale, and this is easily checked by using the iterated law of expec-
tations and Fubini theorem

1.3 Doob-Meyer Decomposition

Theorem 1.7. (Doob-Meyer Decomposition) Let X = (Xt)t≥0 be a super-
martingale, then X admits a unique decomposition

Xt = X0 +Mt −At

where M is a martingale with M0 = 0 and A is an increasing, right-continuous
previsible process with A0 = 0

Corollary 1.8. Let M ∈ M2 be right-continuous. Then there exists a unique
right-continuous previsible process 〈M〉 = (〈M〉t)t≥0 with 〈M〉0 = 0 such that
the process M2 − 〈M〉 is a martingale.

Remark 1.9. M is martingale⇒M2 is submartingale⇒ −M2 is supermartin-
gale, since M

[
M2

t |Fs

]
≥ M [Mt|Fs]

2
= M2

s ⇒ Apply the Doob-Meyer decom-
postion to −M2, and the At in the theorem is what we call 〈M〉

Definition 1.10. 〈M〉0 = 0 is called the quadratic variation of M
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Theorem 1.11. Let M ∈M2,c. For partition Π of [0, t], set

‖Π‖ .= max1≤k≤m|tk − tk−1|

we have,

plim‖Π‖→0

m∑
k=1

|Mtk −Mtk−1
|2 = 〈M〉t

i.e., for any ε > 0, θ > 0, there exists δ > 0 such that,

max1≤k≤m|tk − tk−1| < δ ⇒ P(||Mtk −Mtk−1
|2 − 〈M〉t | > ε) < θ

2 Brownian Motions

2.1 Scaled Random Walk

Before introducing Brownian Motions, let us discuss symmetric random walk at
first,

Exercise 2.1. (construction of a symmetric random walk) Toss the coin, and
the probabilities for head and tail are equal, which is as,

Prob(Head) = Prob(Tail) =
1

2

The successive outcome of the toss ω = ω1ω2ω3ω4...ωn..., where ωn is the out-
come of the nth toss. The sample space Ω is given by

Ω = {ω : ω = ω1ω2..., ωi =′ H ′or′T ′}

Let

X =

{
1, if ωn = H
−1, if ωn = T

and (Xn)n≥1 is independent

Definition 2.2. (symmetric random walk) Define

M0 = 0

Mk =

k∑
i=1

Xi, k = 1, 2, 3, 4...

The process (Mk)k≥0 is a symmetric random walk

Theorem 2.3. A random walk has independent increments, i.e., any 0 = t0 <
t1 < t2 < ... < tm = t,(ti ∈ N), the increments of the random walk

Mt1 ,Mt2 −Mt1 ,Mt3 −Mt2 , ...,Mtm −Mtm−1
, ...

are independent.

Proof follows the definition, and is omitted here.
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Theorem 2.4. The random variable

Mtk −Mtk−1
=

tk∑
i=tk−1+1

Xi

has expectation 0 and variance tk − tk−1

Proof: Since
E [Xi] = 0

V ar(Xi) = E
[
X2

i

]
− (E [Xi])

2 = 1

we have

E
[
Mtk −Mtk−1

]
=

tk∑
i=tk−1+1

E [Xi] = 0

V ar(Mtk −Mtk−1
) =

tk∑
tk−1+1

V ar(Xi) = tk − tk−1

and the independence is due to theorem 2.3

Theorem 2.5. (Mk) is a martingale with respect to (FX
k )

Proof: Since (Xn)n≥1 is independent,

E
[
Mk −Mk−1|FX

k−1

]
= E

[
Xk|FX

k−1

]
= E [Xk] = 0

Definition 2.6. (scaled symmetric random walk) Fixed a positive integer n,
define the scaled symmetric random walk,

W
(n)
t =

1√
n
Mnt

Provided nt is an integer. and nt /∈ N, define W
(n)
t by linear interpolation, i.e,

W
(n)
t = ([nt] + 1− nt)W (n)

[nt]
n

+ (nt− [nt])W
(n)
[nt]+1

n

Remark 2.7. The jump size is 1√
n

, and the frequency is 1
n , and we could

connect all the points with straight lines

Theorem 2.8. The scaled symmetric random walk has independent increments

Proof: If 0 = t0 < t1 < t2 < t3... < tm = t satisfy nti ∈ N for all i, then

W
(n)
t1 ,W

(n)
t2 −W

(n)
t1 ,W

(n)
t3 −W

(n)
t2 , ...,W

(n)
tm −W

(n)
tm−1

, ...

are independent.

Theorem 2.9. (Functional Central Limit theorem) Fixed t ≥ 0. As n → ∞,

the distribution of scalar symmetric random walk (W
(n)
t ) evaluated at time t

converges to N (0, t) in the distribution

Remark 2.10. The Functional Central Limit theorem would be met twice in
Econometrics II, one is in Prof. Yu Jun’s part, and the other in Associate Prof.
Anthony Tay’s part. So you guys are supposed to be able to use this theorem
100% correctly.
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Figure 1: When n=1

Figure 2: When n=2

2.2 Brownian Motions

Let (Ω,F ,P) be a probability space.

Definition 2.11. (Brownian Motions) A stochastic process W = (Wt)t≥0 is
called a standard Brownian Motion if

• W0 = 0,P− a.s.

• (Wt) has independent increments, i.e., for 0 ≤ t1 ≤ t2 ≤ ... ≤ tm

Wt1 ,Wt2 −Wt1 ,Wt3 −Wt2 , ...,Wtm −Wtm−1
, ...

are independent

• For 0 ≤ s < t, Wt −Ws ∼ N (0, t− s)

Remark 2.12. Difference between Brownian Motion (Wt) and scaled symmetric

random walk W
(n)
t .

• The scaled random walk has a natural time step 1
n and is linear between

these time steps.

• The scaled random walk W
(n)
t is only approximated normal for each t, but

Brownian motion is exactly normal

• limn→∞W
(n)
t could be treated as Brownian Motions

Theorem 2.13. For 0 ≤ s ≤ t, the covariance of Ws and Wt is as. Explicitly,

E [WsWt] = s ∧ t
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Proof: Since E [Ws] = E [Wt] = 0, the covariance of Ws and Wt is given by,

E [WsWt] = E [Ws(Wt −Ws +Ws)] = E [Ws(Wt −Ws)] + E
[
W 2

s

]
= E [Ws] [(Wt −Ws)] + E

[
W 2

s

]
= 0 + s+ s

Theorem 2.14. Brownian Motion is a Martingale

Proof: For 0 ≤ s < t,

E [Wt|Fs] = E [Wt −Ws|Fs]− E [Ws|Fs] = E [Wt −Ws] +Ws = 0 +Ws = Ws

2.3 Quadratic Variation of Brownian Motions

Theorem 2.15. (Quadratic Variation) The quadratic variation of the standard
Brownian motion is given by

〈W 〉t = t,P− a.s.

for all t ≥ 0

Proof: (Claim: Ww
t − t is martingale by Doob-Meryer Decompostion) For

0 ≤ s ≤ t
E
[
W 2

t − t|Fs

]
= E

[
(Wt −Ws +Ws)

2|Fs

]
− t

= E
[
(Wt −Ws)

2 + 2Ws(Wt −Ws) +W 2
s |Fs

]
− t

= E
[
(Wt −Ws)

2|Fs

]
+ 2E [Ws(Wt −Ws)|Fs] + E

[
W 2

s |Fs|Fs

]
− t

= E
[
(Wt −Ws)

2
]

+ 2E [Ws(Wt −Ws)] + E
[
W 2

s |Fs

]
− t

= t− s+ 0 +W 2
s − t = W 2

s − s

Due to the Doob-Meyer decomposition, we have 〈M〉t = t

Remark 2.16. Let Π = {t0, t1,...} be a partition of [0, t]. Then

lim‖Π‖→0

n−1∑
i=0

(Wti+1 −Wti)
2 = t

lim‖Π‖→0

n−1∑
i=0

(Wti+1
−Wti)(ti+1 − tt) = 0

lim‖Π‖→0

n−1∑
i=0

(ti+1 − ti)2 = 0

Formally, we could write it as,

dWt · dWt = dt

dWt · dt = 0

dt · dt = 0
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2.4 Exponential Martingales

Suppose the interest rate r = 0

un = 1 +
σ√
n
, dn = 1− σ√

n

where σ is a positive constant (called volatility) Assume that nt ∈ N, that means
that up to time t, it is an nt-period model. The risk-neutral probability measure
in the one-period model is given by

p =
1− dn
un − dn

=
1

2

q =
un − 1

un − dn
=

1

2

Just like to toss a fair coin. This implies that we might regard the nt-period
model as tossing a fair coin nt times Suppose Hnt = the number of heads in the
first nt coin tosses Tnt = the number of tails in the first nt coin tosses Mnt =
the position of the 1-dimensional random walk. And we have{

Hnt + Tnt = nt
Hnt − Tnt = Mnt

Thus {
Hnt = nt+Mnt

2

Tnt = nt−Mnt

2

This implies that the stock price at time t is given by

Sn
t = S0u

Hnt
n dTnt

n = S0(1 +
σ√
n

)
nt+Mnt

2 (1− σ√
n

)
nt−Mnt

2

Theorem 2.17. As n→∞, the distribution of Sn
t converges to the distribution

of

St = S0exp(σWt −
σ2t

2
)

where Wt ∼ N (0, t)

Proof is easy, which uses the taylor expansion rule, and it is left as the
exercise.

Definition 2.18. Let (Wt) be a Brownian Motion with filtration (Ft), σ ∈ R.
The exponential martingale corresponding to σ is defined as

Zt = exp(σWt −
σ2t

2
)

Theorem 2.19. (Zt,Ft)t≥0 is a martingale

Proof is omitted here which exactly follows the step of previous techniques.
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3 Stochastic Integrals

3.1 Construction of the Stochastic Integrals with Respect
to Martingale

Let I = [0,∞) ,M ∈ M2,loc. And the primary goal is to define an integral∫
HsdMs for a martingale M and some suitable process H. The first thought is

to borrow the definition of Riemann-Stieltjes integral, which is as,∫ t

0

f(s)dαs = limn→∞

∞∑
i=1

f(t∗i )(α(ti+1)− α(ti))

where f is continuous, α is of bounded variation, and t∗i ∈ [ti, ti+1] But the
problem is whether

∫
HsdMs could be defined in the similar way. The answer

is NO! Because by the previous results Remark 1.27, if M is a continuous non-
constant local martingale, then M is not of bounded variation,and Riemann-
Stieltjes integral fails here. Why? Because

limn→∞

n∑
i=1

Hti(Mti+1
−Mti) 6= limn→∞

n∑
i=1

Hti+1
(Mti+1

−Mti)

which contradicts the definition of Riemann-Stieltjes integral. Another question
is which kind of definition is more appropriate? Using the left end point Hti ,
the right end point Hti+1 , and the middle is H ti+ti+1

2

. And this brings three

kinds of definition for stochastic integral

• Hti(Left-End Point): Ito Integral

• H ti+ti+1
2

(Middle Point): Fisk-Stratonovich Integral

• Hti+1(Right-End Point): Backward Ito Integral

From the perspective of Macroeconomics and Econometrics, the definition of
Ito integral is much more useful, since it is feasible to know the current price
from the future.

3.2 Simple Process

Remark 3.1. Define εb= the collection of all bounded previsible simple pro-
cesses, i.e, all processes H of the form,

Ht(ω) =

n−1∑
i=0

hi(ω)I(ti,ti+1](t)

for 0 ≤ t ≤ ∞

Theorem 3.2. For H ∈ εb, H ·M ∈ M2,c
0 . Moreover, if M is continuous,

H ·M is continuous, i.e., H ·M ∈M2
0, and

E
[
(H ·M)2

∞
]

= E
[∫ ∞

0

H2
sd 〈M〉s

]

8



Proof: Let s ≤ t. If s = tk, t = tl with k<l, then,

E [(H ·M)t − (H ·M)s|Fs] =

l−1∑
i=k

E
[
hi(Mti+1 −Mti)|Ftk

]

=

l−1∑
i=k

E
[
E
[
hi(Mti+1

−Mti)|Fti

]
|Ftk

]
Since hi is Fti−measurable and M is martingale, we have,

E
[
hi(Mti+1 −Mti)|Fti

]
= hiE

[
(Mti+1 −Mti)|Fti

]
Hence,

E [(H ·M)t − (H ·M)s|Fs] = 0

Here to simplify our discussion, we only let s = tk, t = tl. Moreover, since M is
a martingale,

E
[
(H ·M)2

∞
]

= E

[
l−1∑
i=k

(hi)2((Mti+1
−Mti)

2

]

=

l−1∑
i=k

E
[
(hi)2E

[
(Mti+1 −Mti)

2|Fti

]]
Since M and M2 − 〈M〉 are martingales,

E
[
(Mti+1

−Mti)
2|Fti

]
= E

[
M2

ti+1
−M2

ti |Fti

]
= E

[〈
Mti+1

〉
− 〈Mti〉 |Fti

]
Thus,

E
[
(H ·M)2

∞
]

= E

{
n−1∑
i=0

E
[
(hi)2

〈
Mti+1

〉
− 〈Mti〉 |Fti

]}

= E

{
E

[
n−1∑
i=0

(hi)2
〈
Mti+1

〉
− 〈Mti〉 |Fti

]}

= E
[∫ ∞

0

H2
sd 〈M〉s

]
Remark 3.3. For a < b, we denote that,∫ b

a

HsdMs = (H ·M)b − (H ·M)a

Theorem 3.4. Let H ∈ εb and let W be the standard Brownian motion, then

E

[∫ b

a

HsdWs

]
= 0

E

[
(

∫ b

a

HsdWs)
2

]
= E

[∫ b

a

H2
sds

]
Theorem 3.5. Let H1, H2 ∈ εb and c1, c2 ∈ R, then c1H

1 + c2H
2 ∈ εb, and

((c1H
1 + c2H

2) ·M)∞ = (c1H
1 ·M)∞ + (c2H

2 ·M)∞

9



3.3 Square-integrable Processes

Theorem 3.6. If M is any continuous martingale, H satisfies

E

[∫ T

0

H2
sd 〈M〉s

]
<∞

, for each T > 0, then there exists a sequence of simple process H(n) such that

sup
T>0

lim
n→∞

E

[∫ T

0

|H(n)
s −Hs|2 〈M〉s

]
= 0

Remark 3.7. This theorem is for any process H, which satisfies E
[∫ T

0
H2

sd 〈M〉s
]
<

∞, and we could find one simple process sequence H(n) to approximate H.

Definition 3.8. The stochastic integral of H with respect to the martingale M
is defined by∫ T

0

HsdMs
.
= lim

n→∞

∫ T

0

H(n)
s dMs = lim

n→∞

n∑
i=1

H
(n)
i (Mi+1 −Mi)

in the sense of L2−sense, where H(n) is a sequence of simple process satisfying

supt>0limn→∞E
[∫ T

0
|H(n)

s −Hs|2 〈M〉s
]

= 0

Remark 3.9. • The definition is well-defined, suppose there exists another
sequence of simple processes K(n) converging to H in the sense of

supt>0 lim
n→∞

E

[∫ T

0

|H(n)
s −Hs|2 〈M〉s

]
= 0

Then the sequence Z(n) with Z(2n−1) = H(n), and Z(2n) = K(n) is also

convergent to H in the sense of supt>0 limn→∞ E
[∫ T

0
|H(n)

s −Hs|2 〈M〉s
]

=

0. Thus we have,

lim
n→∞

∫ T

0

Z(n)
s dMs

converges in the sense of L2−sense, and this means that

lim
n→∞

∫ T

0

H(n)
s dMs = lim

n→∞

∫ T

0

Z(n)
s dMs = lim

n→∞

∫ T

0

K(n)
s dMs

Theorem 3.10. Let H,K are square-integrable, M is martingale. Then

• (
∫ t

0
HsdMs)0≤t≤T is square-integrable martingale

•
∫ T

0
(αHs + βKs)dMs = α

∫ T

0
HsdMs + β

∫ T

0
KsdMs

• E
[
(
∫ T

0
HsdMs)

2
]

= E
[
H2

sd 〈M〉s
]

• E
[
(
∫ T

0
HsdMs)

2|Fs

]
= E

[
H2

sd 〈M〉s |Fs

]
10



•
〈∫ ·

0
HsdMs

〉
t

=
∫ t

0
H2

sd 〈M〉u
Corollary 3.11. If H is square-integrable, M = W =Brownian motion, then,

E
[∫ t

0

HudWu|Fs

]
= 0

E
[
(

∫ t

0

HudWu)2|Fs

]
= E

[∫ t

s

H2
udu|Fs

]
=

∫ t

s

E
[
H2

u|Fs

]
Theorem 3.12. (Kunita-Watanabe) If M,N are martingales, H, and K are
martingales, then,∫ t

0

|HuKu|d 〈M,N〉u ≤ (

∫ t

0

H2
ud 〈M〉u)

1
2 (

∫ t

0

K2
ud 〈M〉u)

1
2

3.4 Ito Lemma

Exercise 3.13. In calculus, we see that if F,G ∈ C1, by chain rule we have

(F ◦G)
′

= (F
′
◦G) ·G

′

or in differential form

d

dt
(F (G(t))) = F

′
(G(t)) · dG(t)

dt
= F

′
(G(t)) ·G

′
(t)

This implies that

F (G(t))− F (G(0)) =

∫ t

0

F
′
(G(s))G

′
(s)ds =

∫ t

0

F
′
(G(s))dG(s)

But for stochastic calculus, the last equation would not hold for two reasons,
the first is that the differentials for martingales and semimartingales are not
defined, and the second is that there exists great differences between Ito integral
and the Riemann integral.

Theorem 3.14. (one-dimensional Ito formula, continuous form) Let f : R→ R
be a C2− function and let X = (Xt,Ft) be a continuous semimartingale with
the decomposition,

Xt = X0 +Mt +At

where M is a local martingale and A is of bounded variation. Then

f(Xt) = f(X0) +

∫ t

0

f
′
(Xs)dXs +

1

2

∫ t

0

f
′′
(Xs)d [X,X]s

= f(X0) +

∫ t

0

f
′
(Xs)dMs +

∫ t

0

f
′
(Xs)dAs +

1

2

∫ t

0

f
′′
(Xs)d 〈M〉s

Remark 3.15. In the differential form

df(Xt) = f
′
(Xs)dXs +

1

2
f
′′
(Xs)d [X,X]s

= f
′
(Xs)dMs + f

′
(Xs)dAs +

1

2
f
′′
(Xs)d 〈M〉s

Note that f
′
(Xs)dMs is a local martingale, f

′
(Xs)dAs + 1

2f
′′
(Xs)d 〈M〉s is of

bounded variation. This means that if X is (continuous) semimartingale and
f ∈ C2, then f(X) is again a semimartingale

11



Proof: this proof is only basic idea, not that rigorous. By Taylor expansion,

f(Xti+1∧t)− f(Xti) = f
′
(Xti)∆iX +

1

2
f
′′
(Xti)(∆tX)2 +Ri

where ∆iX = Xti+1∧t −Xti∧t and Ri is the error term. Summarize the above
term, we get

f(Xt)− f(X0) =
∑

f
′
(Xtt)∆iX +

1

2

∑
f
′′
(Xtt)(∆iX)2 +

∑
Ri

Due to the definition of stochastic integral and Riemann-Stieltjes integral, we
have ∑

f
′
(Xtt)∆iX →

∫ t

0

f
′
(Xtt)∆iX

1

2

∑
f
′′
(Xtt)(∆iX)2 → 1

2

∫ t

0

f
′′
(Xtt)(∆iX)2

as n→∞ and

|
∑

Ri| ≤
1

2

∑
|f
′′
(Xti)− f

′′
(X̃ti)|(∆tX)2 ≤ ε

2

∑
(∆iX)2 → 0

for large n enough, where X̃ti is between Xti and Xti+1∧t

Remark 3.16. How to calculate [X,X]? If X is continuous semimartingale,
then in notation

(dXt)
2 = d [X,X]t

Thus, the previous one formula is converted into the following one as,

df(Xt) = f
′
(Xt)dXt +

1

2
f
′′
(Xt)(dXt)

2

Moreover, if X = W is standard Brownian motion, then we have

(dt)2 = dt · dWt = dWt · dt = 0

(dWt)
2 = d 〈W 〉t = dt

Exercise 3.17. Consider X = W = standard Brownian motion and

f(x) = x2, f
′
(x) = 2x, f

′′
(x) = 2

thus

W 2
t = W 2

0 +

∫ t

0

f
′
(Ws)dWs +

∫ t

0

1

2
f
′′
(Ws)d 〈Ws〉s

= 2

∫ t

0

Ws)dWs +
1

2

∫ t

0

f
′′
(Ws)(ds)

2 = 2

∫ t

0

WsdWs + t

i.e., ∫ t

0

WsdWs =
1

2
(W 2

t − t)

12



Theorem 3.18. (multi-dimensional Ito formula, continuous local martingale)
Let X = (X1, X2, ..., Xn) be a vector of local martingales in Mc,loc. Let f :
[0,∞)× Rn → R be a C1,2−function. Then

f(t,Xt) = f(0, X0) +

∫ t

0

∂

∂x
f(s,Xs)ds+

n∑
i=1

∫ t

0

∂

∂x
f(s,Xs)dX

i
s

=
1

2

n∑
i,j=1

∫ t

0

∂2

∂xi∂xj
f(s,Xs)d

〈
Xi, Xj

〉
s

for all t

Theorem 3.19. (Ito formula, general form) Let X = (X1, X2, ...Xn) be an
n-dimensional semimartingale with decompostion

Xi
t = Xi

0 +M i
t +Ai

t

for i ≤ i ≤ n, where M i is a local martingale and Ai is of bounded variation.
Let f : Rn → R be a C2 function, then f(X) is a semimartingale and

f(Xt) = f(X0) +

n∑
i=1

∫ t

0

∂

∂xi
f(Xu)dXi

u

+
1

2

n∑
i,j=1

∫ t

0

∂2

∂xi∂xj
f(Xu)d

〈
M i,c,M j,c

〉
u

+
∑
s≤t

[
f(Xs)− f(Xs−)−

n∑
i=1

∂

∂xi
f(Xs−)∆Xs−

]

Exercise 3.20. (stochastic dynamic programming, example used in Macro II)
Assume y = F (t, x), and dx = g(t, x)dt + σ(t, x)dz, and the differential of y is
as,

dy = Ftdt+ Fxdx+
1

2
Ftt(dt)

2 + Ftxdtdx+
1

2
Fxx(dx)2

= Ftdt+ Fxdx+ Ftxdtdx+
1

2
Fxx(dx)2

= Ftdt+ Fx(gdt+ σdz) + Ftxdt(gdt+ σdz) +
1

2
(gdt+ σdz)2

= Ftdt+ Fxgdt+ Fxσdz +
1

2
σ2dt

= (Ft + Fxg +
1

2
Fxxσ

2)dt+ Fxσdz

(1)

And for another y, y = F (t, x1, x2) and

dx1 = g1(t, x1)dt+ σ1(t, x1)dz1

dx2 = g2(t, x2)dt+ σ2(t, x2)dz2

and
dz1dz2 = ρdt
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The differential of y is as

dy = Ftdt+ Fx1
dx1 + Fx2

dx2

+
1

2
(Ftt(dt)

2 + Fx1x1(dx1)2 + Fx2x2(dx2)2 + Ftx1dtdx1 + Ftx2dtdx2 + Fx1x2dx1dx2)

= (Ft + Fx1g1 + Fx2g2 +
1

2
(Fx1x1σ

2
1 + Fx2x2σ

2
2) + Fx1x2σ1σ2ρ)dt+ Fx1σ1dz1 + Fx2σ2dz2

(2)

And we could now start to solve a continuous-time stochastic problem, and the
optimal value function is as

J(t0, x0) = maxuEt0

∫ T

t0

f(t, x, u)dt+ θ(x(T ), T )

s.t., dx = g(t, x, u)dt+ σ(t, x, u)dz

Now let us write the value function recursively

J(t, x) = maxuEt

∫ T

t

f(s, x, u)ds+ θ(x(T ), T )

= maxuEt

{∫ t+∆t

t

f(s, x, u)ds+ (Et+∆t

∫ T

t+∆t

f(s, x, u)ds+ θ(x(T ), T ))

}

= maxuEt

{∫ t+∆t

t

f(s, x, u)ds+ J(t+ ∆t, x+ ∆x)

}
= maxuEt

{
f(t̃, x(t̃), u(t̃))∆t+ J(t+ ∆t, x+ ∆x)

}
= maxuEt

{
f(t̃, x(t̃), u(t̃))∆t+ J(t, x) + Jt∆t+ Jx∆x+

1

2
Jxx(∆x)2

}
= maxuEt

{
f(t̃, x(t̃), u(t̃))∆t+ J(t, x) + Jt∆t+ Jxg∆t+ Jxσ∆z +

1

2
Jxxσ

2∆t

}
(3)

Thus we have

0 = maxuEt(f(t̃, x(t̃), u(t̃))∆t+ Jt∆t+ Jxg∆t+ Jxσ∆z +
1

2
Jxxσ

2∆t)

First take expectation operator. Note that Et∆z = 0. Then dividing ∆t on both
sides and letting ∆t→ 0. Then divide ∆t on both sides and letting ∆t→ 0, we
have

0 = maxuEt(f(t, x, u) + Jt + Jxg +
1

2
Jxxσ

2

And this equation is called the HJB equation, which would be widely used.
Using first order condition, we can solve optimal u∗ as a function of Jx and Jxx.
Then plugging the expression of optimal u∗ into the HJB equation, we could
solve a partial differential equation of J(t, x),

−Jt = f(t, x, u∗) + Jxg(t, x, u∗) +
1

2
(σ(t, x, u∗))2

This partial differential equation plus its boundary condition

J(T, x(T )) = θ(x(T ), T )

should have a solution of J(t, x).
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Chapter III: Ordinary Differential Equation &

Stochastic Differential Equation

Liu Yanbo

May 24, 2018

Abstract

Instead of showing rigorous theory on ordinary differential equation, I
would just offer basic solution techniques for first-order ordinary differen-
tial equation. Moreover, the combination of ordinary differential equation
and stochastic calculus would be the natural extension. This chapter is
based on the following materials.

• Blanchard, Paul, Robert L. Devaney, and R. Glen. ”Hall, and
Jong-Eao Lee.” Differential Equations: A Contemporary Approach,
Thomson Learning (2007).

• Øksendal, Bernt. ”Stochastic differential equations.” Stochastic dif-
ferential equations. Springer Berlin Heidelberg, 2003. 65-84.

• Lecture Notes of ”Ordinary Differential Equation”, National Chiao
Tung University, http://ocw.nctu.edu.tw/

• Lecture Notes of ”Introduction to Financial Mathematics II”, Na-
tional Chiao Tung University, http://ocw.nctu.edu.tw/

1 Ordinary Differential Equation

1.1 Separable Equation

1.1.1 Direct Transformation

Claim 1.1.
y

′
= g(x)h(y)

which could be separated as,

dy

h(y)
= g(x)dx

and if we take integral on both sides, and derive the following as,∫
dy

h(y)
=

∫
g(x)dx+ C

Example 1.2.

y
′

=
y

1 + x

1



and it could be separated as,
dy

dx
=

y

1 + x

and take integral on both sides, and we have∫
dy

y
=

∫
dx(1 + x)

and we generate the following form solution as,

ln|x| = ln|1 + x|+ C

where C is one constant, and the general solution is given as,

y = eC(1 + x)

Claim 1.3.
M1(x) ·M2(y)dx+N1(x) ·N2(y)dy = 0

and it could separated as,

M1(x)

N1(x)
dx+

N2(y)

M2(y)
dy = 0

and take integral for both sides and we derive the following as,∫
M1(x)

N1(x)
dx+

∫
N2(x)

M2(y)
= C

Example 1.4.
dy

dx
=

xy + 3x− y − 3

xy − 2x+ 4y − 8

and separate two sides as,

(xy + 3x− y − 3)dx = (xy − 2x+ 4y − 8)dy

(x− 1)(y + 3)dx = (x+ 4)(y − 2)dy

(
x− 1

x+ 4
)dx = (

y − 2

y + 3
)dy

(1− 5

x+ 4
)dx = (1− 5

x+ 3
)dy∫

(1− 5

x+ 4
)dx =

∫
(1− 5

x+ 3
)dy

and the general solution is as,

x− 5 lnx+ 4 = y − 5 ln y + 3 + C

2



1.1.2 Indirect Transformation

Definition 1.5. If the ODE could be written as y
′

= f(x, y), and this equation
is called first-order homogeneous ODE

Remark 1.6. Solution procedure could be generalized as,

• transform f(x, y) into f( yx )

• let y
x = u, and y = xu, dy = xdu+ udx

• put the above expressions back into the ODE, and we derive this as,

dy

dx
=
xdu+ udx

dx
= f(u)

which as

x
du

dx
+ u = f(u)

and we have ∫
du

f(u)− u
=

∫
dx

x
+ C = ln |x|+ C

Example 1.7.

y
′

=
y

x
+ 1

let u = y
x , thus y = xu, dy = xdu+ udx and we have

xdu+ udx

dx
= u+ 1

x
du

dx
+ u = u+ 1∫
du =

∫
1

x
dx

u = ln |x|+ C

thus the general solution is,
y

x
= ln |x|+ C

Remark 1.8. If the first-order ODE is as M(x, y)dx+N(x, y)dy = 0, in which
M(x, y) and N(x, y) are both m-order function, and this ODE is first-order
ODE, and the solution procedure could be shown as,

• transform into M( yx )dx+N( yx )dy = 0

• let y
x = u, and dy = udx+ xdu

• put the above expression back into ODE, which is as M(u)dx+N(u)(udx+
xdu) = 0, and organize the equation, we derive the following expression
as, ∫

dx

x
+

∫
N(u)

uN(u) +M(u)
du = C

3



Example 1.9.

y
′

=
x− y
x+ y

(x− y)dx = (x+ y)dy

(1− y

x
)dx = (1 +

y

x
)dy

let u = y
x , y = xy, dy = xdu+ udx, and we have

(1− u)dx = (1 + u)(xdu+ udx)

1− 2u+ u2

1 + u
= x

du

dx∫
− 1

x
dx =

∫
1 + u

u2 + 2u− 1
du

− ln |x|+ C1 =
1

2
ln |u2 + 2u− 1|

x2(u2 + 2u− 1) = C

where C = e2C1

x2(
y2

x2
+

2y

x
− 1) = C

and the general solution is

y2 + 2xy − x2 = C

1.1.3 (a1x+ b1y + c1)dx+ (a2x+ b2y + c2)dy = 0

Claim 1.10. If a1
a2
6= b1

b2
then the solution could be derived as,

• find the intersection point for a1x+ b1y + c1 = 0 and a2x+ b2y + c2 = 0

• let x = u + α ⇒ dx = du, and y = v + β ⇒ dy = dv put the above
expressions in to the original ODE, and get the first-order homogeneous
ODE as,

(a1u+ b1v)du+ (a2u+ b2v)dv = 0

• solve the ODE using the method developed for first-order homogeneous
ODE.

Claim 1.11. a1
a2

= b1
b2
6= c1

c2
And the solution is constructed as,

• Let a2x+ b2y = t, and then a1x+ b1y = mt, and dy = dt−a2dx
b2

• put the above expressions into the original ODE, and we have

(mt+ c1)dx+ (t+ c2)
dt− a2dx

b2
= 0

which is as, ∫
t+ c2

a2t+ a2c2 − b2mt− b2c1
dt =

∫
dx

4



1.1.4 (y
′

= f(ax+ by + c))

Claim 1.12. The solution for TYPE III, (y
′

= f(ax+ by+ c)) could be shown
as,

• let t = ax+ by + c, and dy = dt−adx
b

• put the above expression back into the original ODE, and we have,

dy

dx
=

(dt−adxb )

dx
= f(t)

which is as, ∫
dt

bf(t) + a
=

∫
dx+ c = x+ c

Example 1.13. Suppose the ODE is as, y
′

= tan2(x + y) and let u = x + y,
du = dx+ dy

du

dx
= 1 + tan2u = sec2u

(cos2u)du = dx∫
1 + cos2u

2
du =

∫
dx

u

2
+

1

4
sin(2u) = x+ C

and the general solution is

x+ y

2
+

1

4
sin2(x+ y) = X + C

1.2 Exact

1.2.1 Exact Equation

Definition 1.14. If the first-orde ODE is like M(x, y)dx+N(x, y)dy = 0, and
if there exists one function θ(x, y) satisfies M(x, y)dx + N(x, y)dy = 0 and we
call M(x, y)dx + N(x, y)dy = 0 as the first-order exact ODE And the solution
techniques are given as, If M(x, y)dx + N(x, y)dy = 0 is exact, then according
to the definition, we have,

dθ =
∂θ

∂x
dx+

∂θ

∂y
dy = M(x, y)dx+N(x, y)dy = 0

, Then ODE is solved as θ(x, y) = c⇒ dθ = ∂θ
∂xdx+ ∂θ

∂ydy = 0, so θ(x, y) = c is
the general solution, and θ satisfies

∂θ

∂x
= M(x, y)⇒ θ(x, y) =

∫ x

M(x, y)dx+ g(y)

∂θ

∂y
= N(x, y)⇒ θ(x, y) =

∫ y

N(x, y)dy + h(x)

and we could compare the above two equations, and get g(y)and h(x), and then
get θ(x, y)
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Exercise 1.15.

(siny − ysinx)dx+ (cosx+ xcosy − y)dy = 0

let M = siny − ysinx, N = cosx+ xcosy − y

⇒ ∂M

∂y
= cosy − sinx, ∂N

∂x
= −sinx+ cosy

And this ODE is exact, and solve θ(x, y) = C∗, and θ(x, y) satisfies that

∂θ

∂x
= M = siny − ysinx

and
∂θ

∂y
= N = cosx− xcosy − y

Take integral on both sides, and we have

θ(x, y) = xsiny + ycosx+ g(y)

θ(x, y) = ycosx+ xsiny − y2

2
+ h(x)

and compare the above two equations, and find out that

θ(x, y) = xsiny + ycosx− y2

2
+ C1

and put the above expression into θ(x, y) = C∗, and the ODE’s general solution
is as,

xsiny + ycosx− y2

x
= C

where C ≡ (C∗ − C1)

1.2.2 Modified exact equation

Definition 1.16. If on non-exact ODE is characterized as M(x, y)dx+N(x, y)dy =
0, and if there exists one function I(x, y) could transform the original ODE back
into the exact form, which is,

I(x, y)M(x, y)dx+ I(x, y)N(x, y)dy = dθ(x, y) = 0

then I(x, y) is called the Integrating factor.

Remark 1.17. (How to tell an ODE is exact or not) From defintion we know
that I(x, y)M(x, y)dx+I(x, y)N(x, y)dy = dθ(x, y) = 0 is exact, and it satisfies,

∂

∂y
[I(x, y)M(x, y)] =

∂

∂x
[I(x, y)N(x, y)]

and the above equation could be expanded as,

N(x, y)
∂I

∂x
−M(x, y)

∂I

∂y
= I(

∂M

∂y
− ∂N

∂x
)

If I = I(x, y), then there is no solution, but if I = I(x) or I = I(y) only, then
the previous equation could be simplified as,

6



• If I = I(x), then the above equation is as N dI
dx = I(∂M∂y −

∂N
∂x )

• If I = I(y), then the above equation is as −M dI
dy = I(∂M∂y −

∂N
∂x )

And we have the characteristic function for ODE, which is as,

N

dx
=
−M
dy

=
I(∂M∂y −

∂N
∂x )

dI

Separate the characteristic function of ODE, we have I

• If I = I(x), then by N dI
dx = I(∂M∂y −

∂N
∂x ), we have

dI

I
= (

∂M
∂y −

∂N
∂x

N
)dx = f(x)dx

⇒ I(x) = exp(

∫
f(x)dx)

• If I = I(y), then by −M dI
dy = I(∂M∂y −

∂N
∂x ), we have

dI

I
= (

∂M
∂y −

∂N
∂x

−M
)dy = f(y)dx

⇒ I(y) = exp(

∫
f(y)dy)

Remark 1.18. • If ODE M(x, y)dx + N(x, y)dy = 0 is not exact, And if

(
∂M
∂y −

∂N
∂x

N ) = f(x) only, then we have

I(x) = exp(

∫
f(x)dx)

• If ODE M(x, y)dx+N(x, y)dy = 0 is not exact, And if (
∂M
∂y −

∂N
∂x

−M ) = f(y)
only, then we have

I(y) = exp(

∫
f(y)dy)

• Put I back into original ODE, and we have

⇒ I(x, y)M(x, y)dx+ I(x, y)N(x, y)dy = dθ(x, y)

is exact, and let the solution to original ODE is θ(x, y) = C, and

θ(x, y)

satisfies

∂θ

∂x
= I(x, y)M(x, y), θ(x, y) =

∫ x

I(x, y)M(x, y)dx+ g(y)

∂θ

∂y
= I(x, y)N(x, y), θ(x, y) =

∫ y

I(x, y)N(x, y)dx+ g(x)

And compare the above two equations, and we could derive θ(x, y)
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Example 1.19. Suppose the ODE is as 6xydx + (4y + 9x2)dy = 0 and Let
M = 6xy, and N = 4y + 9x2 ⇒ ∂M

∂y = 6x, and ∂N
∂x = 18x. This ODE is not

exact. And check whether there exists integrating factor

I(

∂M
∂y −

∂N
∂x

−M
) =
−12x

−6xy
=

2

y
= f(y)

only Actually it exists as

I(y) = exp(

∫
f(y)dy) = y2

Plug the integrating factor back into the original ODE, and we have

6xy3dx+ (4y3 + 9x2y2)dy = 0

which is an exact ODE.
Then solve θ(x, y) = C∗, and θ(x, y) satisfies,

∂θ

∂x
= 6xy3&

∂θ

∂y
= N = 4y3 + 9x2y2

Take integral with respect to x and y for the above two equations, and we have

θ(x, y) = 3x2y3 + g(y)&θ(x, y) = y4 + 3x2y3 + h(x)

and compare the above two equations, and we have

θ(x, y) = 3x2y3 + y4 + C1

And put it back into θ(x, y) = C∗, and we have the general solution as, 3x2y3 +
y4 = C, where C = (C∗ − C1)

1.2.3 Linear Differential Equation

Definition 1.20. A 1st-order linear ODE as, y
′
(x) + P (x)y(x) = Q(x)

• When Q(x) = 0, it is called homogeneous ODE

• When Q(x) 6= 0, it is called nonhomogeneous ODE

Claim 1.21. A 1st−order linear ODE is like y
′
(x) + P (x)y(x) = Q(x)

⇒ dy + [P (x)y −Q(x)] dx = 0

Let M(x, y) = P (x)y −Q(x), and N(x, y) = 1
Then ∂M

∂y = P (x), ∂N∂x = 0, ⇒non-exact.
Then check if an integrating factor exists, and we observe that,

∂M
∂y −

∂N
∂x

N
= P (x)

x only ⇒The equation has the integrating factor I(x) = exp(
∫
P (x)dx) And the

original ODE could be transformed as I(x)y
′
(x) + I(x)P (x)y(x) = I(x)Q(x),

which is exact ⇒ (Iy)
′

= IQ, and take integral to get Iy =
∫
IQdx+ C, which

is the general solution
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1.2.4 Bernoulli’s Equation

Definition 1.22. y
′
+ P (x)y = Q(x)yn, which is 1st−order non-linear ODE

Remark 1.23. This kind of equation is very common in engineering and physics.

Claim 1.24. (Solution Procedure)

y
′
+ P (x)y = Q(x)yn

⇒ y−ny
′
+ P (x)y1−n = Q(x)

Using the approach transformation of variable, let u = y1−n, dudx = (1−n)y−ny
′

And plug it back into ODE, and we have

du

dx
+ (1− n)P (x)u = (1− n)Q(x)

And let the integrating factor be defined as I(x) = exp(
∫

(1− n)P (x)dx)

⇒ Iu =

∫
I(1− n)Q(x)dx+ C

Example 1.25. Suppose xy
′
+ 2y = xy3

⇒ y
′
+

2

x
y = y3

y−3y
′
+

2

x
y−2 = 1

Let u = y−2, u
′

= −2y−3y
′

plug the above expressions back into the original
ODE, and we have

−u
′

2
+

2

x
u = 1

, and we have u
′ − 4

xu = −2

⇒ P (x) =
−4

x
,Q(x) = −2

And the integrating factor

I(x) = exp

∫
(− 4

x
)dx =

1

x4

Iu =

∫
1

x4
(−2)dx =

2

3x2
+ C

⇒ u =
2

3
x+ Cx4 = y−2

which is the general solution
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2 Stochastic Differential Equation

Consider a stochastic process (Xt) satisfying

dXt = b(t,Xt,Wt)dt+ σ(t,Xt,Wt)dWt

Question

• Can we obtain the existence and uniqueness theorem for dXt = b(t,Xt,Wt)dt+
σ(t,Xt,Wt)dWt? What are the properties of the solution?

• How to solve it?

2.1 Examples and some solution methods

Example 2.1.
dXt = αXtdWt + σXtdt

where the initial condition X0 is given and α, σ are constant. Rewrite this
equation as

dXt

Xt
= αdWt + σdt

and we could get ∫ t

0

dXt

Xt
=

∫ t

0

αdWt +

∫ t

0

σdu = αWt + σt

Due the Ito Lemma, we have

df(t,Xt) =
∂

∂t
f(t,Xt)dt+

∂

∂x
f(t,Xt)dXt +

1

2

∂2

∂x2
f(t,Xt)(dXt)

2

and we might have f(t,Xt) = f(x) = lnx, then

f
′
(x) =

1

x
, f

′′
(x) = − 1

x2

Then

d ln(Xt) =
1

Xt
dXt −

1

2

1

X2
t

(dXt)
2 =

1

Xt
dXt −

α2

2
dt

i.e.,

ln(Xt)− ln(X0)−
∫ t

0

dXu

Xu
− α2t

2

And combine
∫ t
0
dXt

Xt
=
∫ t
0
αdWt +

∫ t
0
σdu = αWt + σt, and ln(Xt) − ln(X0) −∫ t

0
dXu

Xu
− α2t

2 , we get

ln(
Xt

X0
) +

α2t

2
=

∫ t

0

dXu

Xu
= αWt + σt

Thus, the solution to the stochastic differential equation is given as,

Xt = X0 exp(αWt + (σ − α2

2
)t)
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Definition 2.2. A stochastic process (Xt) of the form Xt = X0exp(αWt +µt),
is called the geometric Brownian motion.

Remark 2.3. • If (Wt) is independent of X0, then

E [Xt] = E
[
X0exp(αWt + (σ − α2

2
)t)

]
= E [X0] eσt

• The solution of SDE has several properties as,

– If σ > α2

2 , then Xt →∞ as t→∞, P−a.s.

– If σ < α2

2 , then Xt → 0 as t→∞, P−a.s.

– If σ = α2

2 , then Xt will fluctuate between arbitrary large and arbitrary
small values as t→∞, P−a.s.

Example 2.4. (Hull-White interest-rate model) Consider

dRt = (at − btRt)dt+ σtdWt

with R0 = r, where at, bt, and σt are deterministic function. Then

dRt + btRtdt = atdt+ σtdWt

which implies that

d(Rtexp(

∫ t

0

budu)) = atexp(

∫ t

0

budu)dt+ σtexp(

∫ t

0

budu)dWt

Thus, the solution to the original SDE is given by,

Rt = rexp(−
∫ t

0

budu) +

∫ t

0

asexp(−
∫ t

0

budu)ds+

∫ t

0

σsexp(−
∫ t

0

budu)dWs

Example 2.5. Consider the stochastic differential equation

dXt = rXt(K −Xt)dt+ βXtdWt

Rewrite the equation as

dXt

Xt
+ rXtdt = rKdt+ βdWt

Taking integration on both sides and we have,∫ t

0

dXu

Xu
+ r

∫ t

0

Xudu = rKt+ βWt

Using a similar argument as in the previous example and we have∫ t

0

dXu

Xu
= lnXt − lnX0 +

1

2

∫ t

0

1

X2
u

d 〈X〉u

= ln(
Xt

x
) +

1

2

∫ t

0

1

X2
u

β2X2
udu = ln(

Xt

x
) +

1

2
β2t

11



Thus,

ln(
Xt

x
) + r

∫ t

0

Xudu = βWt + (rK − 1

2
β2)t

Which implies that

Xtexp(r

∫ t

0

Xudu) = x exp

[
βWt + (rK − 1

2
β2)t

]
Integration with respect to t on both sides, we obtain

x

∫ t

0

exp

[
βWs + (rK − 1

2
β2)s

]
ds =

∫ t

0

Xsexp(r

∫ s

0

Xudu)ds

=

∫ t

0

exp(r

∫ s

0

Xudu)d(

∫ s

0

Xudu)

=
1

r
exp(

∫ s

0

Xudu)|ts=0

=
1

r

[
exp(r

∫ t

0

Xudu)− 1

]
Hence,

exp(r

∫ t

0

Xudu) = 1 + rx

∫ t

0

exp

[
βWs + (rK − 1

2
β2)d

]
ds

i.e., ∫ t

0

Xudu =
1

2
ln(1 + rx

∫ t

0

exp

[
βWs + (rK − 1

2
β2)d

]
ds)

Taking derivative with respect to t, we see that the solution to the SDE is as,

Xt =
1

r

rxexp
[
βWt + (rK − 1

2β
tt)
]

1 + rx
∫ t
0
exp

[
βWs + (rK − 1

2β
2)d
]
ds

=
exp

[
βWt + (rK − 1

2β
tt)
]

x−1 + r
∫ t
0
exp

[
βWs + (rK − 1

2β
2)d
]
ds

Example 2.6. Solving the stochastic differential equation

dXt = atdt+ btXtdWt

Rewrite it as,
dXt − btXtdWt = atdt

And we are supposed to find the appropriate integrating factor to reduce the
equation, such that,

ρtdXt − btρtXtdWt = atρtdt

By integration by parts, we have

d(ρtXt) = −btρtdXt +Xtdρt + d 〈ρ,X〉t
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By the idea of integrating factor, we are to find Xtdρt = −btρtdWt, thus we
want to find ρ such that

dρt
ρt

= −btdWt

Then by Ito’s lemma,

−
∫ t

0

budWu =

∫ t

0

dρu
ρu

= ln(ρt)− ln(ρ0) +
1

2

∫ t

0

1

ρ2u
(dρu)2

which is

−
∫ t

0

budWu = ln(ρt)− ln(ρ0) +
1

2

∫ t

0

b2udu

⇔ ρt = ρ0 exp(−
∫ t

0

budWu −
1

2

∫ t

0

b2udu)

Hence,
d(ρtXt) = ρtdXt +Xtdρt + (dXt)(dρt)

= ρtdXt − btρtdWt + (atdt+ btXtdWt)(−btρtXtdWt)

= ρtdXt − btρtXtdWt − b2tρtXtdt

Plug the above result into dXt − btXtdWt = atdt, we have

d(ρtXt) + b2tρtXtdt = atρtdt

Using the integrating factor again, and let Gt = exp(
∫ t
0
b2udu), we get

d(Gtρt)Xt = Gtd(ρtXt) + ρtXtdGt = atρtGtdt

set

F (t) = ρtGt = exp(−
∫ t

0

budWu +
1

2

∫ t

0

b2udu)

Thus,
d(FtXt) = atFtdt

i.e.,

FtXt − F0X0 =

∫ t

0

auFudu

Hence its solution is given by,

Xt = F−1t X0 + F−1t

∫ t

0

auFudu

= X0 exp(

∫ t

0

budWu −
1

2

∫ t

0

b2udu) +

∫ t

0

auexp(

∫ t

0

bvdWv −
1

2

∫ t

0

b2vdv)du

Remark 2.7. (How to find integrating factor) Suppose Xtdρt = −btρtXtdWt

Hence, we want to find ρ such that,

dρt
ρt

= −btdWt

13



By Ito lemma,

−
∫ t

0

budWu =

∫ t

0

dρu
ρu

= ln(ρt)− ln(ρ0) +
1

2

∫ t

0

1

ρ2u
(dρu)2

= ln(ρt)− ln(ρ0) +
1

2

∫ t

0

b2udu

Hence, we have

ρt = ρ0exp(−
∫ t

0

budWu −
1

2

∫ t

0

b2udu)

And by letting ρ0 = 1, we have

ρt = exp(−
∫ t

0

budWu −
1

2

∫ t

0

b2udu)

Example 2.8. Solving the stochastic differential equation

LQ
′′

t +RQ
′

t +
1

C
Qt = Gt + αŴt

where Ŵt is the white noise. Introduce the vector

Xt =

{
X

(1)
t

X
(2)
t

}
=

{
Qt
Q

′

t

}
Then {

(X
(1)
t )

′
= X

(2)
t

L(X
(2)
t )

′
+RX

(2)
t + 1

CX
(1)
t = Gt + αŴt

And we might rewrite the original SDE in this form as,

dXt = AXtdt+Htdt+KdWt

Where (Wt) is a 1-dimensional Brownian motion

Xt =

{
X

(1)
t

X
(2)
t

}

A =

{
0 1
− 1
CL −RL

}
Ht =

{
0
Gt

L

}
K =

{
0
α
L

}
Thus

d exp [exp(−At)Xt] = exp(−At)(Htdt+KdWt)

The solution is of the form

Xt = exp(At)X0 + exp(At)

∫ t

0

exp(−As)(Hsds+KdWs)
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2.2 An Existence and Uniqueness Result

Theorem 2.9. (Existence and uniqueness theorem for stochastic differential
equation) Let T > 0, and let b, σ, (b : [0, T ]×Rn → Rn, σ : [0, T ]×Rn → Rn×m)
be measurable functions satisfying

|b(t, x)|+ |σ(t, x)| ≤ C(1 + |x|)

for all x ∈ Rn, t ∈ [0, T ] for some constant C, where

|σ|2 =

n∑
i=1

m∑
j=1

|σij |2

and
|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ D|x− y|

for all x, y ∈ Rn, t ∈ [0, T ] for some constant D. Let Z be a random variable
which is independent ofFXT , the σ−algebra generate by (Ws : 0 ≤ s ≤ T ), and
E|Z|2 <∞. Then the differential equation

dXt = b(t,Xt)dt+ σ(t,Xt)dWt

for 0 ≤ t ≤ T , X0 = Z has one unique t-continuous solution Xt with the
properties that

• Xt is adapted to FWt ∨ σ(Z)

• E
[∫ T

0
|Xt|2dt

]
<∞

Example 2.10. Consider the differential equation

dXt

dt
= 3X

2
3
t

with X0 = 0, which has more than one solution. For any a > 0, the function

Xt =

{
0 for t ≤ a

(t− a)3 for t > a

is the solution of the original SDE. In this case, b(x) = 3x
2
3 does not satisfy the

condition |b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ D|x− y| at x = 0

2.3 Weak and Strong solutions

Definition 2.11. • A strong solution of the stochastic differential equation

dXt = b(t,Xt)dt+ σ(t,Xt)dWt

on a given probability space (Ω,F ,P) and with respect to the fixed Brown-
ian motion W and initial value Z, is a stochastic process X with continuous
sample paths and with the following properties:

– X is adapted to the filtration (Ft)
– P [X0 = Z] = 1
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– P
[∫ t

0
(|bi(s, xs)|+ σ2

ij(s,Xs))ds
]

= 1 for all 1 ≤ i ≤ d, 1 ≤ j ≤ r,

and 0 ≤ t <∞
– the integral version of the original SDE is

Xt = X0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs

• A weak solution of dXt = b(t,Xt)dt + σ(t,Xt)dWt is a triple (X,W ),
(Ω,F ,P), (Ft), where

– (Ω,F ,P) is a probability space and (Ft) is a filtration of sub-σ−algebra
of F satisfying the usual conditions

– X = (Xt,Ft)0≤t<∞ is continuous, adapted Rn−valued process. W =
(Wt,Ft)0≤t<∞ is a standard Brownian motion, and satisfies the fol-
lowing conditions as,

∗ P
[∫ t

0
(|bi(s, xs)|+ σ2

ij(s,Xs))ds
]

= 1 for all 1 ≤ i ≤ d, 1 ≤ j ≤ r,
and 0 ≤ t <∞

∗ the integral version of the original SDE is

Xt = X0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs

Remark 2.12. There are stochastic differential equations which has no strong
solutions, but still has a weak solution

Remark 2.13. The major difference between strong and weak conditions are
that, the probability space for strong condition is given in advance, but the one
for weak condition is generated by the Brownian motion used in the stochastic
differential equation.
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Chapter IV: Difference Equation & Stochastic

Differential Equation

Liu Yanbo

May 24, 2018

Abstract

Difference Equation could be treated as the discrete-time ordinary
differential equation, and widely used in macroeconomics, finance and
time series. This chapter is based on the following materials.

• Hamilton, James Douglas. Time series analysis. Vol. 2. Princeton:
Princeton university press, 1994.

• Stokey, Nancy L. Recursive methods in economic dynamics. Harvard
University Press, 1989.

• Lecture Notes of ”Probability Theory”, University of Cambridge,
https://www.cl.cam.ac.uk/teaching/2003/Probability/.

• Lecture Notes of ”Introduction to Financial Mathematics II”, Na-
tional Chiao Tung University, http://ocw.nctu.edu.tw/

1 Introduction

Many problems in Probability give rise to difference equations. Difference equa-
tions relate to differential equations as discrete mathematics relates to continu-
ous mathematics.

As with differential equations, one can refer to the order of a difference equa-
tion and note whether it is linear or non-linear and whether it is homogeneous
or inhomogeneous. The present discussion will almost exclusively be confined to
linear second order difference equations both homogeneous and inhomogeneous.

2 Notation Convention

A trivial example stems from considering the sequence of odd numbers starting
from 1. The associated difference equation might be specified as:

f(n) = f(n− 1) + 2, f(1) = 1

In words: term n in the sequence is two more than term n − 1. The proviso,
f(1) = 1, constitute an initial condition. The first term in the sequence is 1.
A term like f(n) so strongly suggests a continuous function that many writers

1



prefer to use a subscript notation. The present difference equation would be
presented as:

un = un−1 + 2, u1 = 1

This is the notation which will be used below. It is strongly implicit that n
is an integer. In simple cases, a difference equation gives rise to an associated
Auxiliary Equation. In the case of un = un−1+2, u1 = 1, the associated auxiliary
equation is as,

w1 − 1 = 0

The highest power of the polynomial in w is 1 and, accordingly, un = un−1 +
2, u1 = 1 is said to be a first order difference equation. If the constant term 2
were absent from un = un−1 + 2, u1 = 1, the equation would be homogeneous
but its presence makes it inhomogeneous. Some standard techniques for solving
elementary difference equations analytically will now be presented...

3 Second Order Homogeneous Linear Difference
Equation-I

To solve,
un = un−1 + 2, with, u1 = 1, u0 = 1

transfer all the terms to the left-hand side:

un − un−1 − un−2 = 0

The zero on the right-hand side signifies that this is a homogeneous difference
equation. Guess:

un = Awn

so
Awn −Awn−1 −Awn−2 = 0

and
w2 − w − 1 = 0

This is the auxiliary equation associated with the difference equation. Being
a quadratic, the auxiliary equation signifies that the difference equation is of
second order. The two roots are readily determined:

w1 =
1 +
√

5

2
, w2 =

1−
√

5

2

For any A1 substituting A1w
n
1 in un − un−1 − un−2 yields zero. For any A2

substituting A2w
n
2 for un in un − un−1 − un−2 yields zero. And this suggests a

general solution as,
un = A1w

n
1 +A2w

n
2

Check this by substituting into un − un−1 − un−2 thus:

(A1w
n
1 +A2w

n
2 )− (A1w

n−1
1 +A2w

n−1
2 )− (A1w

n−2
1 +A2w

n−2
2 )

This, arranged, is

A1w
n−2
1 (w2

1 − w1 − 1) +A2w
n−2
2 (w2

2 − w2 − 1)

2



And this is zero because both expressions in brackets are zero. On substituting
the values of w1 and w2 the general solution is,

un = A1(
1 +
√

5

2
)n +A2(

1−
√

5

2
)n

but, by noting initial conditions, values for A1 and A2 can be obtained. And
note that,

u0 = 1⇒ A1 +A2 = 1&A2 = 1−A1

Likewise,

u1 = 1⇒ A1(1 +
√

5) + (1−A1)(1−
√

5)

2
= 1

so

A1 =
1 +
√

5

2
√

5

And A2 = 1−A1 = 1− 1+
√
5

2
√
5

= 1−
√
5

2
√
5

In consequence,

un =
1 +
√

5

2
√

5
(
1 +
√

5

2
)n − 1−

√
5

2
√

5
(
1−
√

5

2
)n

Thus

un =
1√
5

[
(
1 +
√

5

2
)n+1 − (

1−
√

5

2
)n+1

]
as the final solution.

4 Second Order Homogeneous Linear Difference
Equation — II

To solve

un = p · un+1 + q · un−1, with, u0 = 1, ul = 1, and, p+ q = 1

Transfer all the terms to the left-hand side:

p · un+1 − un + q · un−1 = 0

Guess:
un = A · wn

so
pAwn+1 −Awn + qAwn−1 = 0

⇒ pw2 − 2 + q = 0

⇒ pw2 − (p+ q)w + q = 0

⇒ (w − 1)(pw − q) = 0

Then two roots are
w1 = 1, and,w2 =

q

p

3



This suggests a general solution:

un = A1(1)n +A2(
q

p
)n, provided, p 6= q

Check by substituting into q · un+1 − un + q · un−1, thus[
pA1(1)n+1 + pA2(

q

p
)n+1

]
−
[
A1(1)n +A2(

q

p
)n
]

+

[
qA1(1)n−1 + qA2(

q

p
)n−1

]
This, rearranged, is:

A1 [p− 1 + q] +A2(
q

p
)n−1

[
p(
q

p
)2 − q

p
= q

]
which, given that p+ q = 1, is

A2(
q

p
)n−1

[
q2

p
− q

p
+ q

]
= A2(

q

p
)n−1

[
q

p
(q − 1) + q

]
= A2(

q

p
)n−1

[
q

p
(−p) + q

]
= 0

The next step is to determine values for A1 and A2 for general solution. And
the general solution was determined to be,

un = A1(1)n +A2(
q

p
)n, with, p 6= q

Note
u0 = 0⇒ A1 +A2 = 0

Likewise
ul = 1⇒ A1 +A2(

q

p
)l = 1

so

−A2 +A2(
q

p
)l = 1⇒ A2 =

1

( qp )l − 1

and

A1 = −A2 =
−1

( qp )l − 1

In consequence:

un =
−1

( qp )− 1
+

( qp )n

( qp )l − 1

giving

un =
( qp )n − 1

( qp )l − 1

as the final solution.

Remark 4.1. First, u0 = 0, and u1 = 1 as required. Second, suppose 0� n� l
(e.g.: l=57, and n=41)...

• If q
p < 1,

[
( qp )i → 0forlargei

]
, the solution un → 0−1

0−1 → 1

• q
p > 1, the solution un →

( q
p )

n[1−( p
q )

n]
( q
p )

l[1−( p
q )

l]
→ 1

( q
p )

l−n

[
1−0
1−0

]
→ 0

4



In simple terms, provided n is well clear of the extremes 0 and l, un will tend
to 1 or to 0 depending on whether q < p or q > p. (It has been assumed that
p 6= q)

Remark 4.2. (what about the case p = q as for an even coin) Recall that
w1 = 1, and w2 = q

p so the case p = q implies twin roots, w1 = w2 = 1. The
general solution un = A1w

n
1 + A2w

n
2 would be un = A1 + A2 which is silly. In

such case, try a different guess:

un = (A1 +A2n)wn

where w is the twin root. In the present case, try

un = (A1 +A2n)(1)n

as the general solution. Check by substituting into p ·un+1−un−q ·un−1, thus:

p [A1 +A2(n+ 1)]− [A1 +A2n] + q [A1 +A2(n− 1)]

This, arranged, is:

A1 [p− 1 + q] +A2 [pn+ p− n+ qn− q]

which, remembering that p+ q = 1, is zero
The next step is to determine values for A1 and A2 in the general solution

whose revised form is
un = (A1 +A2n)(1)n

Note
u0 = 0⇒ A1 = 0

Likewise

ul = 1⇒ 0 +A2l = 1, if, A2 =
1

l

In consequence

un = 0 +
1

l
n

giving

un =
n

l

as the final solution when the special case p = q applies.

5 Second Order Inhomogeneous Linear Differ-
ence Equation

To solve
vn = 1 + pvn+1 + qvn−1

given that v0 = vl = 0, and p + q = 1, and transfer all the terms except the 1
to the left-hand side:

pvn+1 − vn + qvn−1 = −1

5



If the right-hand side were zero, this would be identical to the homogeneous
equation just discussed. The new equation is solved in two steps. First, deem
the right-hand side to be zero and solve as for the homogeneous case:

vn = A1(1)n +A2(
q

p
)n

provided that q 6= p. Then, augment this solution by some f(n) which has to
be given further thought:

vn = A1(1)n +A2(
q

p
)n + f(n)

This augmented vn has to be such that when substituted into pvn+1−vn+qvn−1
the result is −1.

From previous experience with un, it is known that substituting A1(1)n +
A2( qp )n gives a result of zero. In consequence, the property required of f(n) is
that on substituting it into pvn+1 − vn + qvn−1 the result must be −1

It will always be reasonable to express f(n) as the quadratic a + bn + cn2

with only one of the constants a, b and c non-zero. In the present case tray
f(n) = kn and therefore require:

pk(n+ 1)− kn+ qk(n− 1) = −1

so
pkn+ pk − kn = qkn− qk = −1

Hence (p− q)k = −1 so k = 1
q−p , giving:

vn = A1 +A2(
q

p
)n +

n

q − p

as the general solution appropriate to the inhomogeneous difference equation.
It is left as an exercise for the reader to determine values for A(1) and A(2)
appropriate for the initial conditions given.

Remark 5.1. (What about the case p = q ?) When p = q the equation
pvn+1 − vn + qvn−1 = −1 can be solved in two steps as before. First, deem the
right-hand side to be zero and solve as for the homogeneous case:

vn = (A1 +A2n)(1)n

Then, augment this solution by some f(n) which has to be given further thought:

vn = (A1 +A2n)(1)n + f(n)

As before, this augmented vn has to be such that when substituted into pvn+1−
vn + qvn−1 the results is −1 but remember that p = q this time. Again, from
previous experience with un, it is known that substituting (A1 +A2n)(1)n gives
a result of zero. Once more, the property required of f(n) is that on substituting
it into pvn+1 − vn + qvn−1 the result must be −1.

Since p = q, it is no use this time employing the previous approach which
was to try f(n) = kn and derive k = 1

q−p . This is not a helpful value for k!

6



The appropriate approach now is to try f(n) = kn2 and require

pk(n+ 1)2 − kn2 + qk(n− 1)2 = −1

so
pkn2 + 2pkn+ pk − kn2 + qkn2 − 2qkn+ qk = −1

Hence (p+ q)k = −1 so k = −1, giving

vn = A1 +A2n− n2

as the general solution appropriate to the inhomogeneous difference equation
when p = q. Note that A1 + A2n is the solution to the homogeneous equation
when p = q and −n2 is the required augmentation. Given the initial conditions
v0 = vl = 0, it is easy to determine that A1 = 0, and A2 = l giving:

vn = n(l − n)

as the final solution when the special case p = q applies.

6 Lag Operator

Definition 6.1. (Lag Operator) Denote L, and L · yt = yt−1

Remark 6.2. • The lag operator could be raised to powers, e.g. L2yt =
yt−2. We could also form polynomials of it

a(L) = a0 + a1L+ a2L
2 + ...+ apL

p

a(L)yt = a0yt + a1yt−1 + a2yt−2 + ...+ apyt−p

• Lag polynomials could be multiplied. Multiplication is commutative, a(L)b(L) =
b(L)a(L)

• Some lag polynomials could be inverted. We define (1 − ρL)−1 by the
following equality

(1ρL)(1− ρL)−1 ≡ 1

Theorem 6.3. If |ρ| < 1, then

(1− ρL)−1 =

∞∑
i=0

ρiLi

Proof:

(1− ρL)

∞∑
i=0

ρiLi =

∞∑
i=0

ρiLi −
∞∑
i=1

ρiLi = ρ0L0 = 1

For higher order polynomials, we can invert them by factoring, using the
formula for (1−ρL)−1 (assuming that the roots are outside the unit circle), and
then rearranging, for example:

1− a1L− a2L2 = (1− λ1L)(1− λ2L), with, |λi| < 1

(1− a1L− a2L2)−1 = (1− λ1L)−1(1− λ2L)−1

7



⇒ (1− a1L− a2L2)−1 = (

∞∑
i=0

λi1L
i)(

∞∑
i=0

λi2L
i) =

∞∑
j=0

Lj(

j∑
k=0

λk1λ
j−k
2 )

Another (perhaps more easy) way to approach the same problem is do a partial
fraction decomposition

1

(1− λ1x)(1− λ2x)
=

a

1− λ1x
+

b

1− λ2x

⇒ a =
λ1

λ1 + λ2
, b =

λ2
λ1 + λ2

a−1(L) = a

∞∑
i=0

λi1L
i + b

∞∑
i=0

λi2L
i

This trick only works when the λi are unique. The formula is slightly different
otherwise.

7 Application I: Simple Process in Time Series

7.1 Autoregressive (AR)

AR(1) : yt = ρyt−1 + et, |ρ| < 1

(1− ρL)yt = et

AR(p) : a(L)yt = et

Where a(L) is of order p

7.2 Moving Average (MA)

MA(1) : yt = et + θet−1

yt = (1 + θL)et

MA(q) : yt = b(L)et

where b(L) is of order q

7.3 ARMA

ARMA(p, q) : a(L)yt = b(L)et

where a(L) is order p and b(L) is order q, and a(L) and b(L) are relatively prime
An ARMA representation is not unique, For example, an AR(1) (with |ρ| <

1) is equal to an MA(∞), as we saw above. We can see it from the formula for
inversion:

yt =

∞∑
j=0

ρjet−j

Aside, you can also get this formula by repeatedly using definition of AR(1), as

yt = ρyt + et = ρ(ρyt−2 + et−1) + et = ... =

k−1∑
j=0

ρjet−j + ρkyt−k

8



and noticing that ρk
L2

→ 0 as k → ∞. In fact, this is more generally true.
Any AR(p) with roots outside the unit circle has an MA representation. These
processes are called stationary (Because there is weakly stationary version of
them).

Any MA process with roots outside unit circle could also be written as
AR(∞), such process called invertible. If yt = b(L)et is an invertible MA
process, then et = b(L)−1yt. That is, the ”errors” are laying in a space of
observations and could be recovered from y’s (another name for this: errors are
fundamental).

8 Application II: From Stochastic Differential
Equation to Autoregressive Time Series Model

Remind ourselves of ordinary differential equation that has been studied,

dY (t)

dt
= −κY + b(t) = p(t)Y + b(t), with, Y (0) = 0

where p(t) = −κ but it could be more general. Remind ourselves of the Inte-
grating Factor, which is v(t) defined as,

v(t) = exp(−
∫ t

0

p(r)dr) = exp(κt)

By definition, dv(t)/dt = −v(t)p(t) = κv(t). Consider

d(v(t)Y (t))

dt
= v(t)

dY (t)

dt
+ Y (t)

dv(t)

dt
+ Y (t)

dv(t)

dt
= v(t)b(t)

The solution is

v(t)Y (t)− v(0)Y (0) =

∫ t

0

v(r)b(r)dr =

∫ t

0

exp(κr)b(r)dr

Y (t) = Y0exp(−κt) +

∫ t

0

exp(−κ(t− r))b(r)dr

with Y (0) = 0, then

Y (t) =

∫ t

0

exp(−κ(t− r))b(r)dr

Thus the following stochastic differential equation could be solved using the
similar manner, which is

dY (t) = −κY dt+ σdB(t), Y (0) = 0

And the general solution could be derived as,

Y (t) =

∫ t

0

σexp(−κ(t− r))dB(r)

9



and we could discretize the process as,

Y (t+ h) = e−κhY (t) +

∫ h

0

σexp(−κ(h− s))dB(t+ s)

This is an AR(1) model. Since∫ h

0

σe−κ(h−s)dB(t+ s) N(0,

∫ h

0

σ2e−2κ(h−s)ds) = N(0,
σ2(1− exp(−2κh))

2κ
)

Then the transition density is

Y (t+ h)|Y (t) N(e−κhY (t),
σ2(1− exp(−2κh))

2κ
)

Besides deriving the transition probability from the AR process, we could also
discretize the stochastic differential equation into autoregressive regression model
to finish the estimation, and the procedure is conducted as,

dY (t) = −κY (t)dt+ σdB(t)

⇒ Y (t+ 1)− Y (t) = −κY (t) [(t+ 1)− t] + σN(0, 1)

⇒ Y (t+ 1) = (1− κ)Y (t) + σN(0, 1)

⇒ Y (t+ 1) = ρY (t) + ε(t)

Where ρ = 1 − κ, and ε(t) = σN(0, 1) And using the techniques of OLS, we

could derive ρ̂, and if the interval is going to zero, then ρ̂
p→ 1− κ according to

law of large number.
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Chapter V: Partial Differential Equation &

Stochastic Differential Equation

Liu Yanbo

May 24, 2018

Abstract

Some of the stochastic differential equation could not easily be solved
using simple method for ordinary differential equations, so more advanced
methods as partial differential equation are in need. This chapter is based
on the following materials. This chapter is based on the following teaching
materials.

• Strauss, Walter A. Partial differential equations. Vol. 92. New York:
Wiley, 1992.

• Øksendal, Bernt. ”Stochastic differential equations.” Stochastic dif-
ferential equations. Springer Berlin Heidelberg, 2003.

• Lecture Notes of ”Introduction to PDE”, National Chiao Tung Uni-
versity, http://ocw.nctu.edu.tw/

• Lecture Notes of ”Introduction to Financial Mathematics II”, Na-
tional Chiao Tung University, http://ocw.nctu.edu.tw/

1 Mathematical Preliminary I: Laplace Trans-
form

• Transforms: An operation that transform a function into another function

– Differentiation transform

d

dx
(x2) = 2x

– Integration transform: ∫
x2dx =

1

3
x3 + c

• Now consider a defined integral
∫∞
0
k(s, t)f(t)dt that transforms f(t) into

a function of variables

– The integral is said to be convergent if the limit exists:∫ ∞
0

k(s, t)f(t)dt = limb→∞

∫ b

0

k(s, t)f(t)dt

1



– The integral is said to be divergent if the limit does not exist

• Laplace transform: one kind of integration transform

– Definition: L [f(t)] =
∫∞
0
e−stf(t)dt, where f(t) is a function defined

for t ≥ 0, and s,t are two independent variables.

– When the above integral converges, the result is a function of s:

L [f(t)] =

∫ ∞
0

e−stf(t)dt

Remark 1.1. L [1] ≡
∫∞
0
e−stdt = limb→∞e

−stdt = limb→∞
−e−st
s |b0 = limb→∞

−b−sb
+ 1s =

1
2 for s > 0; similarly we could derive more results, as
L [1] = 1

s , for, s > 0

L [tn] = n!
sn+1 ,∀n > −1, s > 0

L [eat] = 1
s−1 , (s− a) > 0

L [sin(kt)] = k
s2+k2 , s > 0

L [cos(kt)] = s
s2+k2 , for, s > 0

Remark 1.2. • Linear property L [αf(t) + βg(t)] = αL [f(t)] + βL [g(t)] =
αF (s) + βG(s)

• Existence of L [f(t)],

– Sufficient condition 1: for the existence of L[f(t)], the graph of f(t)
cannot grow faster than the graph of est as t increase.

– Sufficient condition 2: f(t) can be a stepwise continuous function on
the interval [0,∞)

Definition 1.3. If F (s) represents the L-transform of f(t), i.e. L [f(t)] = F (s),
we then say f(t) is the inverse L-transform of F (s), and could be expressed as
follows:

L−1 [F (s)] =
1

2πi

∫ r+i∞

r−i∞
estF (s)ds = f(t),∀t ≥ 0, r ∈ R

Remark 1.4. L−1
[
1
2

]
= 1

L−1
[
n!
sn+1

]
= tn

L−1
[

1
s−1

]
= eat

L−1
[

k
s2+k2

]
= sin(kt)

L−1
[

s
s2+k2

]
= cos(kt)

L−1
[

k
s2−k2

]
= sinh(kt)

L−1
[

s
s2−k2

]
= cosh(kt)

And the linearity also holds here.
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2 Mathematical Preliminary II: Fourier Trans-
formation

Definition 2.1. The Fourier expansion of f defined on the interval (−P, P ) is
given by

f(x) =
a0
2

+

∞∑
n=1

[
ancos

nπ

p
x+ bnsin

nπ

p
x

]
where a0 = 1

p

∫ p
−p f(x)dx

an = 1
p

∫ p
−p f(x)cos(nπp x)dx

bn = 1
p

∫ p
−p sin(nπp x)dx→ Fourier coefficient of f.

Example 2.2. Expand f(x) = 0,−π < x < 0 and f(x) = 2− x, 0 ≤ x < π in a
Fourier series
Hence (−p, p) = (−π, π)
a0 = 1

p

∫ p
−p f(x)dx = π

2

an = 1
p

∫ p
−p f(x)cos(nπp x)dx = 1−(−1)n

n2π

bn = 1
p

∫ p
−p sin(nπp x)dx = 1

n

⇒ f(x) = π
4 +

∑∞
n=1

[
1−(−1)n
n2π cos(nx) + 1

nsin(nx)
]

Remark 2.3. (Cosine and Sine series)

• If f has f(−x) = f(x) property on (−P, P ), then its Fourier expansion is
a0 = 1

p

∫ p
−p f(x)dx = 2

p

∫ p
0
f(x)dx

an = 1
p

∫ p
−p f(x)cos(nπp x)dx = x

∫ p
0
cos(nπp x)dx

bn = 1
p

∫ p
−p sin(nπp x)dx = 0 ⇒ f(x) = a0

2 +
∑∞
n=1 ancos(

nπ
p x)

• If f has f(−x) = −f(x) property on (−P, P ), then its Fourier expansion
is

f(x) =

∞∑
n=1

bnsin(
nπ

p
x)→ Fouriersineseries

where bn = 2
p

∫ p
0
f(x)sin(nπp x)dx

Example 2.4. Expand f(x) = −1,−π < x < 0 and f(x) = 1, 0 < x < π in a
Fourier series. Note that the interval (−p, p) = (−π, π)
Since f(x) is odd at (−π, π), f(x) could be simply expanded in sine series

⇒ f(x) =

∞∑
n=1

bnsin(
nπ

p
x)

where bn = 2
p

∫ p
0
f(x)sin(nπp )dx = 2

π

∫ π
0
f(x)sin(nx)dx = 2

π ·
1−(−1)n

n

Remark 2.5. In general, f(x) defined on (a, a + 2p), a ∈ R could also be ex-
panded in a Fourier series. Suppose that f(x) is a function defined on (0, 2p)
and Fourier series is given by

f(x) =
a0
2

+

∞∑
n=1

[
ancos(

nπ

p
x) + bnsin(

nπ

p
x)

]
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where ao = 1
p

∫ 2p

0
f(x)dx

an = 1
p

∫ 2p

0
f(x)cos(nπp x)dx

bn = 1
p

∫ 2p

0
f(x)sin(nπp x)dx

3 Elementary Partial Differential Equation

Here we only focus on how to solve the simple partial differential equations, and
three main solving techniques are provided,
Separation of Variable
Laplace Transformation
Combination of Variable

3.1 Separation of Variable Method

The method of Separation of Variables cannot always be used and even when
it can be used it will not always be possible to get much past the first step in
the method. However, it can be used to easily solve the 1 − D heat equation
with no sources, the 1 −D wave equation, and the 2 −D version of Laplace’s
Equation, 52u = 0.

In order to use the method of separation of variables we must be working
with a linear homogenous partial differential equations with linear homogeneous
boundary conditions. At this point we’re not going to worry about the initial
condition(s) because the solution that we initially get will rarely satisfy the
initial condition(s). As we’ll see however there are ways to generate a solu-
tion that will satisfy initial condition(s) provided they meet some fairly simple
requirements.

The method of separation of variables relies upon the assumption that a
function of the form,

u(x, t) = ψ(x)G(t)

will be a solution to a linear homogeneous partial differential equation in x
and t. This is called a product solution and provided the boundary conditions
are also linear and homogeneous this will also satisfy the boundary conditions.
However, as noted above this will only rarely satisfy the initial condition, but
that is something for us to worry about in the next section.

Example 3.1. Give T (x, y), a function of x&y: steady-state, solid and no

heat generation ⇒ 52T = 0 ⇒ ∂2T
∂x2 + ∂2T

∂2 = 0 Boundary Conditions are,
x = 0, T = 0
y = 0, T = 0
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x = L, T = 0
y = b, T = f(x)

Let T (x, y) = X(x) ·Y (y) be put back into the original equation ∂2T
∂x2 + ∂2T

∂2 =

0⇒ Y (y)d
2X
dx2 +X(x)d

2Y
dy2 = 0

⇒ 1

X

d2X

dx2
+

1

Y

d2Y

dy2
= 0

⇒ − 1

X

d2X

dx2
=

1

Y

d2Y

dy2
= λ2, λ : Eigenvalueconstant

d2X
dx2 + λ2X = 0 x = 0, T = 0→ T (0, y) = X(0) · Y (y) = 0

x = L, T = 0→ T (L, y) = X(L) · Y (y) = 0
d2Y
dy2 + λ2Y = 0 y = 0, T = 0→ Y (y) = 0

y = b, T = f(x)

• From d2X
dx2 + λ2X = 0 (2nd order homogeneous ordinary differential equa-

tion)
Let X = er, r2 + λ2 = 0,
r2 = iλ or r2 = −iλ,
X = Acosλx+Bsinλx
Put BC1 into the system, and we have
AY (y) = 0⇒ A = 0
Put BC2 into the system, and we have
BsinλL = 0, and B 6= 0, thus sinλL = 0 ⇒ λ = nπ

L , n = 1, 2, 3, ...(eigen
value)
so X = Bsin(nπL x)(eigen function)

• From d2Y
dy2 + λ2Y = 0, r2 − λ2 = 0⇒ r2 = ±λ, Y = Ceλy +De−λy

and since cosh(λy) = eλy+e−λy

2 , sinh(λy) = eλy−e−λy
2

⇒ Y = C · cosh(λy) +D · sinh(λy)

⇒ Y = Ccosh(
nπ

L
y) +Dsinh(

nπ

L
y)

Put BC3 into the system, and we have
0 = C · cosh0 +D · sinho = C ⇒ Y = S · sinh(nπL y)

• T (x, y) = X(x)·Y (y) =
∑∞
n=1Bsin(nπL x)·Dsinh(nπL y) =

∑∞
n=1Ensin(nπL x)·

Dsinh(nπL y)

• Put BC4 into f(x) =
∑∞
n=1Ensinh(nπbL ) · sinh(nπxL )

By the definition of Fourier sin-series expansion, we have

Ensinh(
nπ

L
b) =

L

2

∫ L

0

f(x)sin(
nπx

L
)dx

⇒ En =
L
2

∫ L
0
f(x)sin(nπxL )dx

sinh(nπbL )

• T (x, y) =
∑∞
n=1Ensin(nπxL ) · sinh(nπyL ), where En =

L
2

∫ L
0
f(x)sin(nπxL )dx

sinh(nπbL )
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3.2 Laplace Transformation Method

Assume T (x, t), x ≤ x ≤ b, t ≥ 0, L [T (x, t)] = T (x, s)
1.L

[
∂T
∂t

]
= sT (x, s)− T (x, 0)

2.L
[
∂2T
∂t2

]
= s2T (x, s)− sT (x, 0), where Tt = ∂T

∂t

3.L
[
∂T
∂x

]
= d

dxT (x, s)

4.L
[
∂2T
∂x2

]
= d2

dxT (x, s)

Example 3.2. ∂T
∂x + x∂T∂t = 0, T (x, 0) = 0, T (0, t) = 4t

Take Laplace on each part of PDE, which is

dT

dx
+ x

[
sT − T (x, 0)

]
And put T (x, 0) = 0 into it then get dT

dx + xsT = 0(1storderlinearODE)

T (x, s) = c · exp(− 1
2sx

2), T (0, s) = L [T (0, t)] = L [4t] − 4
s2 ⇒ c = − 4

s2 ⇒
T (x, s) = − 4

s2 · exp(−
1
2sx

2) Thus the solution for PDE is as

T (x, t) = L−1 [T (x, s)] = L−1
[
− 4

s2
· exp(−1

2
sx2)

]
= 4(t− 1

2
x2)u(t− 1

2
x2)

By 2nd−transition theorem

Remark 3.3. Other kinds of PDE could be solved by Laplace transformation

• Heat equation k ∂u
2

∂x2 = ∂u
∂t

• Laplace equation ∂2u
∂x2 + ∂2u

∂y2 = 0

•

3.3 Combination of Variable Method

Remark 3.4. Combination of Variable method is useful for homogeneous ODE,
and non-homogenous Boundary Condition

Example 3.5. Given Q(x, t) a function of x&t,

∂Q

∂t
= α

∂2Q

∂x2

And the Boundary Condition is given as,

t = 0, Q = 0;x = 0, Q = 1;x =∞, Q = 0

By combination of variable method,
Let η = axbtc ⇒ Q(x, t) = Q(η)
Then ∂Q

∂t = dQ
dη ·

∂η
∂t = cη

t Q
′

cη t = caxbtc−1 = cηt
∂Q
∂x = dQ

dη ·
∂η
∂x = bη

x Q
′
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∂2Q
∂x2 = ∂

∂x (∂Q∂x ) = −bηQ
′

x2 + b2η
x2 (ηQ

′
)
′

And put them back into the original ODE ∂Q
∂t = α∂

2Q
∂x2

⇒ cη

t
Q = α

[
−bηQ′

x2
+
b2η

e2
(ηQ

′
)
′

]

Multiply both sides by x2

η

cx2

t
Q
′

= α
[
−bQ

′
+ b2(ηQ

′
)
′
]

= α
[
−bQ

′
+ b2Q

′
+ b2ηQ

′′
]

Because of the relationship of x2

t , b : c = 2 : (−1), and b2 − b = 0⇒ b = 1

⇒ −1

2
(
η

a
)2Q

′
α
[
−Q

′
+Q

′
+ ηQ

′′
]

⇒ Q
′′

+
η

2a2α
Q
′

= 0

Replace Q
′

= u, and Q
′′

= du
dη

⇒ du

dη
+

η

2a2α
u = 0

which is 1st-order ODE, and take integration on both sides of the equation, which
is as,

ln(u) +
η2

4a2α
= ln(c1)

And let 1
4a2α = 1⇒ a = 1√

4α

Thus
⇒ η = axbtc =

x√
4αt

⇒ ln(u) + η2 = ln(c1)

⇒ u = c1e
−η2 =

dQ

dη

⇒ Q = c1

∫ η

0

d−η
2

dη + c2

Boundary conditions are η = 0, Q = 1, and η = ∞, Q = 0 Put BC1 into
Q = c1

∫ η
0
d−η

2

dη + c2 ⇒ c2 = 1 And Put BC2 into Q = c1
∫ η
0
d−η

2

dη + c2 ⇒
c1 = 1∫ η

0
e−η2dη

Finally, the solution is

Q = 1−
∫ η
0
e−η

2

dη∫∞
0
e−η2dη
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4 Feynman-Kac formula

Theorem 4.1. (Feynman-Kac formula) Consider the stochastic differential
equation

dXt = β(t,Xt)dt+ γ(t,Xt)dWt

Let f be a Borel-measurable function. Fixe T > 0 and let t ∈ [0, T ] be given.
Define the function,

g(t, x) = Etx [f(XT )] = E [f(XT )|XT = x]

Assume that g(t, x) < ∞ for all (t, x). Then g(t, x) satisfies the partial differ-
ential equation

gt(t, x) + β(t, x)gx(t, x) +
1

2
γ2(t, x)gxx(t, x) = 0

with the terminal condition g(T, x) = f(x) for all x.

Remark 4.2. (g(t,Xt))0≤t≤T is a martingale

Theorem 4.3. (Discounted Feynman-Kac formula) Consider the stochastic dif-
ferential equation

dSt = rβ(t, St)dt+ σγ(t, St)dWt

Let f be a Borel-measural function and let r be constant. Fix T > 0 and let
t ∈ [0, T ] be given. Define the function

h(t, x) = Et,x
[
e−r(T−t)f(XT )

]
= E

[
e−r(T−t)f(XT )|Xt = x

]
Assume that h(t, x) < ∞ for all (t, x). Then h(t, x) satisfies the partial differ-
ential equation

ht(t, x) + β(t, x)hx(t, x) +
1

2
γ2(t, x)hxx(t, x) = rh(t, x)

with the terminal condition h(T, x) = f(x) for all x

Example 4.4. Suppose that (St) satisfies the stochastic differential equation

dSt = rStdt+ σStdWt

Let
f(t, x) = Et,x [h(St)]

Then f(t, x) satisfies the partial differential equation

ft(t, x) + rxfx(t, x) +
1

2
σ2x2fxx(t, x) = rf(t, x)

with terminal condition h(T, x) = f(x). This equation could be solved numeri-
cally.
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Theorem 4.5. (2-dimensional Feynman-Kac formula) Let Wt = (W 1
t ,W

2
t ) be a

2-dimensional Brownian motion. Consider two stochastic differential equations

dXt = β1(t,Xt, Yt)dt+ γ11(t,Xt, Yt)dW
1
t + γ12(t,Xt, Yt)dW

2
t

dXt = β2(t,Xt, Yt)dt+ γ21(t,Xt, Yt)dW
1
t + γ22(t,Xt, Yt)dW

2
t

Let f(x, y) be Borel measurable function, define

g(t, x, y) = Et,x,y [f(XT , YT )]

h(t, x, y) = Et,x,y
[
e−r(T−t)f(XT , YT )

]
Then g and h satisfy the partial differential equations

gt + β1gx + β2gy +
1

2
(γ211 + γ212)gxx + (γ11γ12 + γ21γ22)gxy +

1

2
(γ221 + γ222)gyy

ht + β1hx + β2hy +
1

2
(γ211 + γ212)hxx + (γ11γ12 + γ21γ22)hxy +

1

2
(γ221 + γ222)hyy

with terminal conditions

g(T, x, y) = h(T, x, y) = f(x, y)

for all x,y

5 Black-Scholes Economy and Black-Scholes For-
mula

There are two assets: a risky stock S and riskless bond B: These assets are
driven by the SDEs

dSt = µStdt+ σStdWt

dBt = rtBtdt

The time zero value of the bond is B0 = 1 and that of the stock is S0. The
model is valid under certain market assumptions.
Let C(t, St) be the European call price. With Ito lemma, it must satisfy

dC =

[
Ct + µSCS +

1

2
σ2S2CSS

]
dt+ σSCSdW

Let V denote the dollar value of a portfolio with x shares of stock and y dollars
of deposit

V = xS + y

If this is self-financing portfolio,i.e., y = V − xS, then

dV = xdS + yrdt

Let x = Cs. Then V − C is a risk-free portfolio, and we have

d(V − C) =

[
rV − rSCS − Ct −

1

2
σ2S2CSS

]
dt = r(V − C)dt
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Now we have the Black-Scholes PDE

Ct + rSCS +
1

2
σ2S2CSS − rC = 0

with V (T ) = C(T, ST ) = max(ST −K, 0)
Solving Ct + rSCS + 1

2σ
2S2CSS − rC = 0 gives us,

C(t, St) = SN (d1)−Ke−r(T−t)N (d2)

where N (·) is the standard normal CDF and

d1 =
log(StK ) + (r + σ2/2)(T − t)

σ
√
T − t

d2 = d1 − σ
√
T − t

And this is the famous Black-Scholes Formula. Besides, Put-call parity is

C +Ke−r(T−t) = P + S

And European put-option formula is

P (t, S) = Ke−r(T−t)N (−d2)− SN (−d1)

Remark 5.1. By Ito Lemma the value St of a derivative written on the stock
follows the diffusion, and here we do not assume the functional form of Vt.

dVt =
∂V

∂t
dt+

∂V

∂S
dS +

1

2

∂2V

∂S2
(dS)2

= (
∂V

∂t
+ µSt

∂V

∂S
+

1

2
σ2S2

t

∂2V

∂S2
)dt+ (σSt

∂V

∂S
)dWt
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