
Matrix Algebra I

1 Terminology

Matrix algebra is widely used in econometrics. The course will follow the appendix of Green(2003).
Besides, the course will use Curtis(2012) as the supplement. There are many books which con-
tain much books contain more advanced theory about matrix algebra, such as Magnus and
Neudecker(2002).

Definition. A field is a mathematical system F consisting of a nonempty set F together with
two operations, addition and multiplication\, which assign to each pair of elements α, β ∈ F
uniquely determined elements α + β and αβ of F , such that the following conditions are
satisfied, for α, β, γ ∈ F .

1. α+ β = β + α, αβ = βα.

2. α+ (β + γ) = (α+ β) + γ, (αβ) γ = α (βγ).

3. α (β + γ) = αβ + αγ.

4. ∃0 ∈ F , such thatα+ 0 = α ,∀α ∈ F .

5. ∀α ∈ F , ∃−α ∈ F , such that α+ (−α) = 0.

6. ∃1 ∈ F , such that 1 6= 0 , α1 = α, ∀α ∈ F .

7. ∀α ∈ F, α 6= 0, ∃α−1 ∈ F , such that αα−1 = 1.

Exercise. 1. Examine that the real number system R is a field.
2. Verify that Z = {. . . ,−2,−1, 0, 1, 2, . . . } is not a field.

Definition. A n×1 vector a over F is an ordered set of n elements arranged either in a column.
Let ai be the ith component of the vecor a, thena can be denote as a = (a1, a2, . . . , an)′, ai ∈ F
for i = 1, 2, . . . , n.

Since the field of real number R is a specific example of field, the results holds over the general
field F are also applicable over the field R.

Definition. A m× n matix A over field F is a rectangular array of elements in m rows and
n columns with each element belongs to F , and m× n is its dimension.
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If we denote the element at ith row and jth column as aij , the matrix A ∈ Fm×n can be
represented as:

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

 = (aij) .

Sometimes, we write the matrix in a vector form, that is, A = (a1,a2, . . . ,an), ai =
(a1i, a2i,, . . . , ami)

′.
In view of the preceding, a row vector is also a matrix with one row, whereas a column

vector is a matrix with one column. A matrix can also be viewed as a set of column vectors
or as a set of row vectors.

Based on the different properties of the matrix, there are some terminology defining a
corresponding type of matrix. Given the matrix m× n matrix A,

• Symmetric matrix: for i = 1, 2, ..., n and j = 1, 2, ..., n, aij = aji, m = n.

• Square matrix: the dimension of the matrix satisfyes m = n.

• Diagonal matrix: a diagonal matrix is a square matrix whose only nonzero elements
appear on the main diagonal, that is, moving from upper left to lower right.

• Identity matrix: a diagonal matrix with the same value, which is one, on the main
diagonal. It is always denote by I.

• Scalar matrix: a diagonal matrix with the same value, λ, in all diagonal elements,
which can be written as A = λI.

• Triangular matrix: one that has only zeros either above or below the main diagonal.
If the zeros are above the diagonal, the matrix is lower triangular. Otherwise, it is
upper triangular.

• Idempotent Matrix: An idempotent matrix A, is the one that satisfies A′A = A.

2 Algebraic Manipulation and Application

2.1 Basic Algebraic Manipulation for Matrices

Similar to the algebra manipulation of the scalar variable, there are also corresponding ma-
nipulation for the matrix. They are defined as follows.

• Equality of matrix: A = B if and only if aij = bij , for all i and j.

• Transposition: Given the m×n matrix A, its transposition can be written as A′ , and

A′ =


a11 am1 · · · am1

a12 a22 · · · am2
...

...
...

a1n a2n · · · amn

 = (aji) .

If A is symmetric, A′ = A. For a vector a = (a1, a2, . . . , an)′, a′ = (a1, a2, . . . , an).
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• Addition: Given two matrices A and B with same dimension m × n, the addition of
this two matrix is defined as

A+B = (aij + bij) for i = 1, 2, . . . ,m, j = 1, 2, . . . , n. (1)

Matrices cannot be added unless they have the same dimensions, in which case they are
said to be conformable for addition. A zero matrix or null matrix is one whose
elements are all zero. In the addtion of matrices, the zero matrix plays the same role as
the scalar 0 in scalar addition; that is,

A+ 0 = A.

Exercise. Based on (1), examine the following properties.

1. Commutative: A+B = B +A.

2. Associative:(A+B) +C = A+ (B +C) .

3. (A+B)′ = A′ +B′.

• Multiplication: For a m ×K matrix A and a K × n matrix B, the product matrix,
C = AB, is an m× n matrix with

C︸︷︷︸
m×n

= A︸︷︷︸
m×K

B︸︷︷︸
K×n

⇔ cij =

K∑
k=1

aikbkj . (2)

To multiply two matrices, the number of columns in the first must be the same as the
number of rows in the second, in which case they are conformable for multiplication.
Mulplication of matrices is generally not commutative. In some cases, AB may exist,
even if AB and BA do have the same dimensions, they will not be equal(You can
examin this based on (2).

Example. If

A =

(
0 1
0 1

)
, B =

(
1 1
0 0

)
,

then,

AB =

(
0 1
0 1

)(
1 1
0 0

)
=

(
0 0
0 0

)
.

However,

BA =

(
1 1
0 0

)(
0 1
0 1

)
=

(
0 2
0 0

)
,

hence,
AB 6= BA.

• Scalar Multiplication: the operation of multiplying every element of the matrix by a
given scalar. For scalar c ∈ F and matrix A ∈,

cA = (caij) , c ∈ R. (3)
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Exercise. Please examine the following properties,

1. Associative law: (AB)C = A (BC).

2. Distributive law: A (B + C) = AB +AC.

3. Transpose of a product: (AB)′ = B′A′, (ABC)′ = C′B′A′.

2.2 Some Useful Applications

Based the above algbric manipulations, the product of a m× n matrix X and a n× 1 vector
β is written

y = Xβ =
n∑

i=1

Xiβi,

where Xi is the ith column vector of X; the number of elements in β must equal the number
of the columns inX; and the result y is a vector with number of elements equal to the number
of rows in X, m× 1.

Example. The equations

5 = 4a+ 2b+ c

4 = 2a+ 6b+ c

1 = a+ b

can be written as,  5
4
1

 =

 4 2 1
2 6 1
1 1 0

 a
b
c

⇔ y = Xβ,

which is the usual form of regression model in econometrics. And we can see that the model
can be represented in a concise form now.

We can easily derive that for any matrix or vector A, AI = A, IA = A, A0 = 0,0A = 0.
only when A is a square matrix, IA = AI = A,0A = A0 = 0.

Usually we always need to sum up the values of a vector of a column vector in a matrix.
When the dimension of the target vector is very high, we can use matrix to simplify the rep-
resentation. Define a n× 1 vector,

ι = (1, 1, . . . , 1)′︸ ︷︷ ︸
n elements

.

For a vector x = (x1, x2, . . . , xn) ,y = (y1, y2, . . . , yn), we can have following useful represen-
tation,

•
∑n

i=1 xi = ι′x.

• If x = λι, λ ∈ R, then
∑n

i=1 xi = ι′ιλ = nλ.

• Given λ ∈ R,
∑n

i=1 λxi = λ
∑n

i=1 xi = λι′x. In particular, if λ = 1/n, then x̄ = ι′x/n.
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•
∑n

i=1 x
2
i = x′x.

•
∑n

i=1 xiyi = x′y.

Furthermore, given the matrix X =


X ′1
X ′2
...
X ′n

 , Xi = (xi1, xi2, . . . , xin)′ for i = 1, 2, . . . ,m,

we have,

X′X = (X1,X2, . . . ,Xn)


X ′1
X ′2
...
X ′n

 =
n∑

i=1

XiX
′
i.

A fundamental matrix in statistics is the one that is used to transform data to deviations
from their mean, that is, x− ιx. It can be written as

x− ιx = Ix− ιι′

n
x =

(
I − ιι′

n

)
x = M0x. (4)

Henceforth, the symbol M0will be used only for this matrix. Its diaonal elements are all
(1− 1/n), and its off-diagonal elements are −1/n, which implies that the matrix are sym-
metric. The matrix M0 is primarily useful in computing sums of squared deviations. Some
conputations are simplified by the following results, which is left as an excercise.

Exercise. Prove the following equations,

1. M0ι = 0.

2. (Idempotent Matrix)M0′M0 = M0.

Hence, ι′M0 = 0′ and further,
n∑

i=1

(xi − x̄) = ι′
(
M0x

)
=
(
ι′M0

)
x = 0′x = 0.

Thus the sum of the squared deviations about the mean is,
n∑

i=1

(xi − x̄)2 = (x− x̄ι)′ (x− x̄ι) =
(
M0x

)′
M0x = x′M0′M0x = x′M0x. (5)

For two vectors x and y,
n∑

i=1

(xi − x̄) (yi − ȳ) =
(
M0x

)′ (
M0y

)
= x′M0y. (6)

So, ( ∑n
i=1 (xi − x̄)2

∑n
i=1 (xi − x̄) (yi − ȳ)∑n

i=1 (yi − ȳ) (xi − x̄)
∑n

i=1 (yi − ȳ)2

)
=

(
x′M0x x′M0y.
y′M0x. y′M0y

)
=

(
M0Z

)′ (
M0Z

)
= Z ′M0Z,

where Z = (x,y) .
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3 Geometry Interpretation

3.1 Vector Space, Basis and Linear Independence

As we have said, the vector can be treated as matrix, thus the addition and scalar multiplication
of the vector is the same as defined for the matrix.

Definition. Let F be an arbitrary field. A vector space V over F is a nonempty set V of
objects v, called vectors, together with two operatons, one of which assigns to each pair of
vectors v and w a vector v + w called sum of v and w, and the other of which assigns
to each element α ∈ F and each vector v ∈ V a vector αv called the product of v by the
element α ∈ F . The operations are assumed to satisfy the following axioms, for α, β ∈ F and
u, v, w ∈ V .

1. u+ (v + w) = (u+ v) +w and u+ v = v + u.

2. ∃0 ∈ V , such that u+0 = u, ∀u ∈ V .

3. ∀u ∈ V , ∃−u ∈ V , such that u+ (−u) = 0.

4. α (u+ v) = αu+ αv.

5. (α+ β)v = αv + βv.

6. (αβ)u = α (βu).

7. 1u = u.

The usual common vector space is the Rn, which is defined in the following.

Definition. The vector space Rn over the field of real numbers R is the algebraic system
consisting of all n × 1 vector a with ai ∈ R. ∀a = (a1, . . . , an) , b = (b1, . . . , bn) ∈ Rn,
a = b if and only if ai = bi, for i = 1, 2 . . . , n. And it includes operations sum,a + b =
(a1 + b1, . . . , an + bn) ∈ Rn and product, ∀λ ∈ R, λa = (λa1, . . . , λan) ∈ Rn.

Exercise. Examine the space Rn is a vector space.

Example. For a special case, R2, given two vectors α = (1, 0)′, β = (0, 1)′, ∀γ ∈ R2, we can
always find a ∈ R and b ∈ R that satisfy γ = aα + bβ. As it suggests, any vector in R2 can
be represented as a linear combination of α and β.

Definition. A subspace S of the vector space V is a nonempty set of vectors in V such that:

• If a and b are in S, then a+ b ∈ S.

• If a ∈ S and λ ∈ F , then λa ∈ S.

The definition for a vector space are clearly satisfied for any subspace S of a vector space
V .

Definition. Let (a1,a2, . . . ,an) be a set of vectors in V . A vector b ∈ V is said to be a linear
combination of (a1,a2, . . . ,an) if ∃λ1, . . . , λn ∈ F and not all equal to zero, such that

b = λ1a1 + · · ·+ λnan.
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Exercise. If S is a subspace of V containing the vectors a1, . . . ,an, then every linear combi-
nation of a1, . . . ,an belongs to S.

Definition. Given a set of vectorsX = (X1,X2, . . . ,Xn) , S = {a : a =
∑n

i=1 λiXi, λi ∈ F}
is a subspace spanned by X, denote S = 〈X1,X2, . . . ,Xn〉 or S = 〈X〉. A subspace S is
called finitely spanned if ∃s1, . . . , sk such that S = 〈s1, . . . , sk〉.

Lemma. Let (a1,a2, . . . ,an) be a set of vectors in V , for n ≥ 1. Some vector ai can be
expressed as a linear combination of the remaining vectors (a1,a2, . . . ,ai−1,ai+1, . . . ,an) if
and only if ∃µ1, . . . , µm ∈ F , not all equal zero, such that

∑n
i=1 µiai = 0.

Definition. A set of vectors (β1,β2, . . . ,βn) is linearly independent if and only if the only
solution to

λ1β1 + λ2β2 + · · ·+ λnβn = 0, λi ∈ F,

is λ1 = λ2 = · · · = λn = 0. It is linearly dependent if and only if {λi} not all equal to zero.

Lemma. Let S be a subspace of a vector space V over a field F , such that S is spanned by n
vectors (a1,a2, . . . ,an). Suppose (b1, . . . , bm) are vectors in S with m > n. Then the vectors
(b1, . . . , bm) are linearly dependent.

Proof. For n = 1, S = 〈a〉, bi = λia, for i = 1, 2, . . . ,m. Then, at least one λi 6= 0, otherwise,
bi = 0, i = 1, . . . ,m. Thus, assume λj 6= 0,

λjb1 + 0b2 + · · ·+ (−λ1) bj + 0bj+1 + · · ·+ 0bn = λjλ1a− λ1λja = 0,

which means that (b1, . . . , bm) are linearly dependent.
Now suppose the theorem is true for subspaces spanned by n− 1 vectors, and consider m

distinct vectors(b1, . . . , bm) in S, with m > n. Then, bi =
∑n

j=1 λijaj .
Without loss of generality, let λi1 = 0, then the terms involving a1 are all missing for

bj . (b1, . . . , bm) belongs to the subspace 〈a2, . . . ,an〉. Since m > n > n − 1, the induction
hypothesis implies that (b1, . . . , bm) are linear dependent.

Assume for some i, λi1 6= 0, more specifically, let i = 1. Then the coefficient of a1 in
b2−λ21λ−111 b1 is λ21−λ21λ

−1
11 λ11 = 0, so that, for each j, bj−λj1λ−111 b1 belongs to 〈a2, . . . ,an〉.

And from the induction hypothesis, m−1 > n−1, ∃µ2, µ3, . . . , µm ∈ F , not all zero such that

µ2
(
b2 − λ21λ−111 b1

)
+ · · ·+ µm

(
bm − λmλ−111 b1

)
= 0.

It can be rewritten as[(
−µ2λ21λ−111

)
+ · · ·+

(
−µmλm1λ

−1
11

)]
b1 + µ2b2 + · · ·+ µmbm = 0,

since µ2, µ3, . . . , µm are not all zero, then (b1, . . . , bm) are linearly dependent.

Lemma. Let S be a subspace of a vector space V , and suppose that (a1,a2, . . . ,an) and
(b1, . . . , bm) are both sets of generators of S, which are linearly independet. Then n = m.

Exercise. Prove the above lemma.

Definition. A finite set of vectors A set of vectors (a1,a2, . . . ,an) is said to be a basis of a
vector space V if (a1,a2, . . . ,an) is a linearly independent set of generators of V .
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Obviously, in the above case, (α,β) is a basis for R2. There are also other basis for
this vector space. Generally, for Rn, a specific basis is that E = (e1, e2, . . . , en) with ei =0, 0, . . . , 1︸︷︷︸

ith

, . . . , 0

′. Then ∀β ∈ Rn, ∃b ∈ Rn, β = Eb. For a specific vector space, the

basis is not unique. However, given the basis, the representation of a given vector is unique.

Definition. Suppose V is a vector space which has a basis (a1,a2, . . . ,an). The uniquely
determined number of basis vectors, n, is called the dimension of the vector space V (dimV =
n).

Example. By definition, the space spanned by a basis for Rn is Rn. An implication of this is
that if a and b bare a basis for R2 and c is another vector in R2, the space spanned by (a, b, c)
is, again, R2.

And consider the set of three coordinate vectors whose third element is zero. In particular,

a = (a1, a2, 0)′ and b = (b1, b2, 0)′ .

If the spanned vector space 〈a, b〉 =
{
x : x = (x1, x2, x3) ∈ R3, x3 = 0

}
. This area is a sub-

space, a two-dimensional subspace.

Exercise. Let (a1,a2, . . . ,an) be a basis for a vector space V . Prove that ai 6= 0 for i =
1, . . . , n.

Lemma. If (a1,a2, . . . ,an) is linearly dependent and if (a1,a2, . . . ,an−1) is linearly indepen-
dent, then an is a linear combination of (a1,a2, . . . ,an−1).

Proposition. Let V = 〈a1,a2, . . . ,an〉 be a finitely generated vector space with genenra-
tors (a1,a2, . . . ,an). Then a basis for V can be selected from among the set of generators
(a1,a2, . . . ,an). In other words, a set of generators for a finitely generated vector space al-
ways contains a basis.

3.2 Rank of a Matrix

We view a matrix as a set of column vectors. The number of columns in the matrix equals
the number of vectors in the set, and the number of rows equals the number of coordinates in
each column vector.

Definition. The column space of a matrix is the vector space that is spanned by its column
vectors.The row space of a matrix is the vector space that is spanned by its row vectors.

If the matrix X = (xij)m×n , it can be written as X = (X1,X2, . . . ,Xn), where Xi =

(x1i, x2i, . . . , xmi)
′ ∈ Rm×1. Then the column space of the matrixX is 〈X1,X2, . . . ,Xn〉. The

column space might have n dimensions. But, as we have seen, it might have fewer dimensions;
the column vectors migth be linearly dependent, or there might be fewer rows than n.

Example. The matrix

A =

 1 5 6
2 6 8
7 1 8
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has three vectors from R3, but the third is the sum of the first two, so the column space of
the matrix cannot have three dimensions. Nor does it have only one, since the three columns
are not all scalar multiplies of one another. Hence, the column space is a two-dimensional
subspace of R3. Similar to the row space, it can easily find the dimension of the row space is
also two.

Definition. Let A be an m×n matrix with column vector {a1,a2, . . . ,an}. The rank of the
matrix,rank (A), is defined as the dimension of the column space 〈a1,a2, . . . ,an〉.

Actually, we can also conclude that the rank of the matrix is equal to the dimension of
the row sapce. And it holds regardless of the actual row and column rank, which means
rank (A) = rank (A′).

Definition. For an m × n matrix A, if rank (A) = m, then the matrix is said to have full
row rank. Similarly, if rank (A) = n, it has full column rank.

Furthermore, we have,

rank (A) ≤ min(row number, column number). (7)

Proposition. For the rank of the matrix, the following results hold, let A be m ×K matrix
and B, K × n.

rank (AB) ≤ min (rank (A) , rank (B)) .

Proof. For C = AB, if C = (c1, . . . , cn), A = (a1, . . . ,aK), then ci =
∑K

i=1 bi1ai, for
i = 1, . . . , n, which means the column space is spanned by the column vectors of A. Hence,
rank (C) ≤ rank (A). Apply the same logic to the rows ofC, which are all linear combinations
of the rows of B, rank (C) ≤ rank (B). Therefore,

rank (AB) ≤ min (rank (A) , rank (B)) . (8)

Further we have ,

• If B is K ×K matrix of rank K, then rank (AB) = rank (A) .

• rank (A) = rank (A′A) = rank (AA′) .

3.3 Determinant of Matrix

The determinant is only defined for square matrix. It is a function of the elements of the matrix.
There are various definitions, most of which are not useful for our work. Determinants figure
into our results in several ways, however, that we can enumerate before we need formally to
define the computations.

In this section, the determinant is defined as a rule which assigns to matrix a number
which tells something about the its behavior.

Definition. Let F be an arbitrary field. A determinant is a function which assigns to a matrix
A = (a1,a2, . . . ,an) in Fn×n an element of F , D (a1,a2, . . . ,an) (or, |A| , |(a1,a2, . . . ,an)|) :
Fn×n 7→ F , such that

9



• |(a1, . . . ,ai−1,ai + aj ,ai+1 . . . ,an)| = |(a1,a2, . . . ,an)|, for i ≤ n and j 6= i.

• |(a1, . . . ,ai−1, λai,ai+1 . . . ,an)| = λ |(a1,a2, . . . ,an)|, for all λ ∈ F .

• |(e1, e2, . . . , en)| = 1, if ei =

0, 0, . . . , 1︸︷︷︸
ith

, . . . , 0

.

Proposition. Let D and D′ be two functions satisfying the definition of determinant, then
for all a1,a2, . . . ,an ∈ Fn,

D (a1,a2, . . . ,an) = D′ (a1,a2, . . . ,an)

The proposition establishes the uniqueness of determinant.

Proposition. There exists a function D (a1,a2, . . . ,an) satisfying the definition of determi-
nant. Further,

D (a1,a2, . . . ,an) =

n∑
j1=1

· · ·
n∑

jn=1

a1j1 . . . anjnD (ej1 , ej2 , . . . , ejn)

=
∑

j1,...,jn

a1j1 . . . anjnD (ej1 , ej2 , . . . , ejn) .

where it is understood that the sum is taken over the n! possible choices of {j1, . . . , jn} in which
all the ji’s are distinct.

Example. There are some settings in which the value of the determinant is also of interest,
so we now consider some algebraic results. Consider a matrix,

D =


d1 0 . . . 0
0 d2 . . . 0
...

...
. . .

...
0 0 . . . dn

 .

The determinant is simply the product of the diagonal values, which is,

|D| =
n∏

i=1

di.

A special case is the identity matrix, |I| = 1. Let C = diag (c1, c2, . . . , cn), then,

|DC| =
n∏

i=1

cidi =

n∏
i=1

ci

n∏
j=1

dj ,

which can be written as,
|DC| = |D| |C| . (9)

And then we have
|cD| = cn |D| . (10)

10



Actually, we have the following result.

Proposition. Let A and B be n× n matrices, then

• |A| = |A′| .

• |AB| = |A| |B| .

For matrices more than two dimensions, the determinant can be obtained by using an
expansion by cofactors. Using any row, say, i, we obtain

A =
n∑

j=1

aij (−1)i+k |Aij | ,

where Aij is called cofactors, the matrix obtained from A by deleting row i and column j.
The determinant of the Aij is called a minor of A.

Exercise. Calculate the following resutls,

1.
∣∣∣∣ a c
b d

∣∣∣∣ =?.

2.

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ =?

Combined with the rank of the matrix, the following proposition holds.

Proposition. For a n× n matrix A, |A| 6= 0 if and only if rank (A) = n, which means A is
full of rank.

3.4 A Least Squares Problem

For a regression model,
y = Xβ + e,

y is the m × 1 vector of independent varables, the X = (X1, . . . ,Xn) with Xi ∈ Fm×1, β
the n× 1 parameter that we are interested, e is the n× 1 residual term vector.

Based on above sections, let 〈X〉 be the column space spanned by column vectors, if
y ∈ 〈X〉, ∃β ∈ Fn×1, y =

∑n
i=1 βiXi = Xβ, which means that e = 0.

Suppose, however, that y is not in the column space of X. Then there is no β satisfying
y = Xβ. But we can still we can find that Xβ ∈ 〈X〉, and e is the difference, or ’residual’.
We are interested in finding β such that y is as close as possible to Xβ in the sense that e is
as short as possible.

Definition. The length, or norm, of a vector e is

‖e‖ =
√
e′e.

The problem is to find the ‖e‖ = ‖y −Xβ‖ is as small as possible. The solution is that β
that makes e perpendicular, or orthogonal, to Xβ, which represents the column space 〈X〉.
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Definition. Two nonzero vectors a and b are orthogonal, written a ⊥ b, if and only if

a′b = b′a = 0.

Returning once again to our fitting problem, we find that the β we seek is that for which

e ⊥Xβ.

Expanding this set of equation gives the requirement

(Xβ)′ e = 0

= β′X′y − β′X′Xβ

= β′ (X′y −X′Xβ
)
.

Generally, β 6= 0, then the set of equations becomes

X′y = X′Xβ . (11)

The means of solving such a set of equations is the subject of next section. Actually, the linear
combination Xβ is called the projection of y into the column space of X, 〈X〉. We use the
cosine function in order to measure how close of y to the column space 〈X〉, that is,

Theorem 1. The angle θ between two vectors a and b satisfies

cos θ =
a′b

‖a‖ · ‖b‖
.

cos θ ∈ [0, 1]. The larger, a is closer to b.
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Matrix Algebra II

1 Solution of a System of Linear Equations

Consider the set of n linear equations,

Xβ = y (1)

in which β is the n× 1 unknown parameters vector. X is a known matrix of data, m×n, and
y is a specified vector of values. We are interested in knowing whether a solution exists; if so,
then how to obtain it; and finally, if it does exist, then whether it is unique.

1.1 Systems of Linear Equations

For most of our applications, we shall consider only square systems of equations, that is, those
in which X is a square matrix. In what follows, therefore, we take m to equal n. Since the
number of rows in X is the number of equations, whereas the number of columns in X is the
number of variables, this case is the familiar one of “n equations with n unknowns.”

There are two types of systems of equations.

Definition. A homogeneus system is of the form Xβ = 0 .

By definition, a nonzero solution to such a system will exist if and only if X does not have
full rank. If so, then for at least one column of X, we can write the preceding as

Xk = −
∑
j 6=k

βj

βk

Xj .

This means, as we know, that the columns of X are linearly dependent and that |X| = 0.

Definition. A nonhomogeneous system of equations is of the orm Xβ = y, where y is a
nonzero vector.

The vector y is chosen arbitrariliy and is to be expressed as a linear combination of the
columns of X. Since β has n elements, this solution will exist only if the columns of X span
the entire n-dimensional space, Rn. Equivalently, we shall require that the columns of X be
linearly independent or that |X| not be equal to zero.
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1.2 Inverse Matrices

Definition. Given a n× n matrix A, if there is a n× n matrix B satisfies AB = BA = I,
then B is the inverse matrix of A. Denote it as B = A−1. And A is also called nonsingular
matrix.

Example. We consider the 2× 2 matrix here, let

A =

(
a11 a12
a21 a22

)
,

then,

A−1 =
1

a11a22 − a12a21

(
a22 −a12
−a21 a11

)
=

1

|A|

(
a22 −a12
−a21 a11

)
.

For equation system Xβ = y, suppose that we could find the inverse matrix X−1, then
the following would be obtained:

X−1Xβ = Iβ = β =X−1y.

Proposition. If the inverse exists, then it must be unique.

Proof. Suppose it is not true and let B and C be the different inverse matrices of the matrix
A. Then CAB = CAB, but B = IB = (CA)B = CAB = C (AB) = CI = C, which
would be a contradiction if C did not equal B.

We shall use aij to indicate the ijth element of A−1. The general formula for computing
an inverse matrix is

aij =
(−1)j+i |Aji|

|A|
=
Cji

|A|
(2)

where Cji is the jith cofactor of A. Then we can write,

A−1 =
1

|A|
C ′, C = (Cij) .

It follows, therefore, that for A to be nonsingular, |A| must be nonzero.

Proposition. If a n× n matrix A is invsersible if and only if |A| 6= 0 or rank (A) = n.

Exercise. Some computational results involving inverses are

1.
∣∣A−1∣∣ = 1

|A| ;

2.
(
A−1

)−1
= A;

3.
(
A−1

)′
= (A′)

−1;

4. If A is symmetric, then A−1 is symmetric;

5. (AB)−1 = B−1A−1;

6. (ABC)−1 = C−1 (AB)−1 = C−1B−1A−1

2



Recall that for a data matrix X, X ′X is the sum of the outer products of the rows X.
The following result, which is called an updating formula, shows how to compute the new S

that would result when a new row b is addded to X: X̃ =

(
X
b′

)
, then

(
X̃
′
X̃
)−1

=
(
X ′X + bb′

)−1
=
(
X ′X

)−1 −( 1

1 + b′ (X ′X)
−1
b

)(
X ′X

)−1
bb′
(
X ′X

)−1
.

(3)
Note it results from the following general formulas:

(
A± bc′

)−1
= A−1 ∓

(
1

1± c′A−1b

)
A−1bc′A−1; (4)

(
A±BCB′

)−1
= A−1 ∓A−1B

(
C−1 ±B′A−1B′

)−1
BA−1. (5)

1.3 Solving the Least Squares Problem

We now have the tool needed to solve the least squares problem posed before. The problem
is in equation (??):

X′y = X′Xβ .

Then if X′X nonsingular, then

β̂ =
(
X ′X

)−1
X′y.

1.4 The Generalized Inverse of a Matrix

Inverse matrices are fundamental in econometrics. Although we shall not require them much in
our treatment in this book, there are more general forms of matrices than we have considered
thus far. A general inverse of a matrix A+ that satisfies the following requirements:

• AA+A = A.

• A+AA+ = A+.

• A+A is symmetric.

• AA+ is symmetric.

A unique A+ can be found for any matrix, whether A is singular or not, or even if A is not
square.

The unique matrix that satisfies all four requirements is called the Moore-Penrose inverse
or pseudoinverse of A. If A happens to be square and nonsingular, then the generalized
inverse will be the familiar ordinary inverse. But if A−1 does not exist, then A+can still be
computed.

Example. For a special case,
Xβ = y,
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where X has m rows, n < m columns, and column rank equal r = n. Then, since X ′X is
n× n and

rank
(
X ′X

)
= rank (X) = n.

(X ′X)
−1 exists. Then the Moore-Penrose inverse of X is X+ = (X ′X)

−1
X ′, which can be

verified by multiplication. Then the solution can be written as

β =X+y.

Recall this was the solution to the least squares problem obtained before. If y lies in the
column space of X, this vector will be zero, but otherwise, it will not.

2 Partitioned Matrices

In formulating the elements of a matrix, it is sometimes useful to group some of the elements in
submatrices. For example, we may want to test the structural change, or make the partitioned
regression. One way to partition the matrix is like the following.

A︸︷︷︸
m×n

=


A11︸︷︷︸

m1×n1

A12︸︷︷︸
m1×n2

A21︸︷︷︸
m2×n1

A22︸︷︷︸
m2×n2

 ,

where n = n1+n2, m = m1+m2. A is a partitioned matrix. The subscripts of the submatrices
are defined in the same fashion as those for the elements of a matrix. A common special case
is the block diagonal matrix,

A =

(
A11 0
0 A22

)
,

where A11 and A22 are square matrices.

2.1 Manipulation of Partitioned Matrices

Similar to the algebraic manipulation of matrices element by element, we can define the minip-
ulation for partitioned matrices. In all the following manipulation, the matrices must be
conformable for the operations involved.

• Addition:

A+B =

(
A11 +B11 A11 +B12

A11 +B21 A22 +B22

)
.

• Multiplication:

AB =

(
A11 A12

A21 A22

)(
B11 B12

B21 B22

)
=

(
A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

)
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• Determinant: ∣∣∣∣ A11 0
0 A22

∣∣∣∣ = |A11| |A22| ,∣∣∣∣ A11 A12

A21 A22

∣∣∣∣ = |A11|
∣∣A22 −A21A

−1
11 A12

∣∣ = |A22|
∣∣A11 −A12A

−1
22 A21

∣∣ .
• Inverse: (

A11 0
0 A22

)−1
=

(
A−111 0

0 A−122

)
,(

A11 A12

A21 A22

)−1
=

(
A−111

(
I +A12F 2A21A

−1
11

)
−A−111 A12F 2

−F 2A21A
−1
11 F 2

)
,

where
F 2 =

(
A22 −A21A

−1
11 A12

)−1
.

The upper left block could also be written as

F 1 =
(
A11 −A12A

−1
22 A21

)−1
.

Example. (Deviations from Means)For a matrix,

A =

(
n

∑n
i=1 xi∑n

i=1 xi
∑n

i=1 x
2
i

)
=

(
ι′ι ι′x
x′ι x′x

)
,

the inverse of the lower right-hand element of A−1 is

F 2 =
(
x′x−

(
x′ι
) (
ι′ι
)−1 (

ι′x
))−1

=

[
x′
(
I − ιι′

n

)
x

]−1
=
(
x′M0x

)−1
.

Now suppose that we replace x with X, a matrix with several columns. We seek the lower
right block of (Z ′Z)

−1, where Z = (ι,X) . Tha analogous result is((
Z ′Z

)−1)
22

=
(
X ′M0X

)−1
.

• Kronecker Product: For general matrix A and B,

A⊗B =


a11B a12B . . . a1nB
a21B a22B . . . a2nB

. . .
am1B am2B . . . amnB

 .

Notice that there is no requirement for conformability in this operation. The Kronecker
product can be computed for any pair of matrices. If A is m1 × n1 and B is m2 × n2,
then A⊗B is m1m2 × n1n2. And furthermore, if A is m×m and B is n× n,

– |A⊗B| = |A|m|B|n;
– (A⊗B)′ = A′ ⊗B′ ;
– tr (A⊗B) = tr (A) tr (B);
– (A⊗B) (C ⊗D) = AC ⊗BD.
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3 Characteristic Roots and Vectors

Definition. For a square matrix A over field F , the characteristic vectors c over field F and
characteristic roots λ ∈ F are those that satisfy

Ac = λc. (6)

If c is any solution vector, then kc is also for any value of k. To remove the indeterminancy,
c is nomalized so that c′c = 1.

Proposition. λ ∈ F is a charateristic root of n× n matrix A if and only if the determinant
|A− λI| = 0.

Proof. The (6) can be rewritten as (A− λI) c = 0. This equation is a homogeneous sys-
tem that has nonzero solution if and only if the matrix (A− λI) is singular or has a zero
determinant. Therefore, if λ is a solution, then

|A− λI| = 0. (7)

This polynomial in λ is the characteristic equation of A.

Example. If

A =

(
5 1
2 4

)
,

then

|A− λI| =
∣∣∣∣ 5− λ 1

2 4− λ

∣∣∣∣ = λ2 − 9λ+ 18.

The two solutions are λ = 6 and λ = 3.

In solving the characteristic equation, there is no guarantee that the characteristic roots
will be real.

Example. If

A =

(
5 1
−2 4

)
,

then

|A− λI| =
∣∣∣∣ 5− λ 1
−2 4− λ

∣∣∣∣ = λ2 − 9λ+ 22.

The two solutions are λ = 9±
√
7i

2 .

The same result can emerge in the general n× n case.
However, the characteristic roots of a symmetric matrix are real. This result

will be convenient because most of our applications will involve the characteristic roots and
vectors of symmetric matrices.

For an n × n matrix, the characteristic equation is an nth-order polynomial in λ. Its
solutions may be n distinct values, as in the preceding example, or may contain repeated
values of λ, and may contain some zeros as well.
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A n× n sysmmetric matrix has n distinct characteristic vectors, c1, c2, . . . , cn. The corre-
sponding characteristic roots, λ1, λ2, . . . , λn, although real, need not be distinct, which means
there may be many characteristic belonging to a given characteristic root. The characteristic
vectors of a symmetric matrix are orthogonal, which implies that for every i 6= j, cicj = 0. It
is convenient to collect the n-characteristic vectors in a n×n matrix whose ith columns is the
cicorresponding to λi,

C = (c1, c2, . . . , cn) ,

and the n-characteristic roots in the same order, in a diagonal matrix,

Λ =


λ1 0 . . . 0
0 λ2 . . . 0

. . .
0 0 0 λn

 .

Then, the full set of equations
Aci = λici

is contained in
AC = CΛ.

Since the vectors are orthogonal and c′ici = 1, we have

C ′C = I. (8)

It implies that
C ′ = C−1. (9)

Consequently,
CC ′ = C ′C = I (10)

as well, so the rows as well as the columns of C are orthogonal.

Definition. The diagonalization of matrix A is

C ′AC = C ′CΛ = IΛ = Λ. (11)

Furthermore, we also have,

Definition. The spectral decomposition of A is

A = CΛC ′ =
n∑

i=1

λicic
′
i. (12)

In this representation, the n×n matrix A is written as a sum of n rank one matrices. This
sum is also called the eigenvalue decomposition of A.
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3.1 Rank of the Matrix

The diagonalization result enables us to obtain the rank of a matrix very easily.

Theorem 1. For any matrix A and nonsingular matrices B and C, the rank of BAC is
equal to the rank of A.

Proof. rank (BAC) = rank ((BA)C) = rank (BA) . And rank (BA) = rank (A′B′) =
rank (A′) = rank (A).

Corollary. For a symmetric matrix A, A = CΛC ′, rank (A) = rank (Λ).

Proof. Since C and C ′ are nonsingular and square matrices, then,

rank (A) = rank
(
CΛC ′

)
= rank (Λ) .

Finding the rank of Λ is trivial. Since Λ is a diagonal matrix, its rank is just the number of
nonzero values on its diagonal. By extending this result, we can prove the following theorems.

Theorem 2. The rank of a symmetric matrix is the number of nonzero characteristic roots it
contains.

Note how this result enters the spectral decomposition given above. If any of the char-
acteristic roots are zero, then the number of the rank one matrices in the sum is reduced
correspondingly. It would appear that this simple rule will not be useful if A is not square.
But recall that

rank (A) = rank
(
A′A

)
.

Since A′A is always square, we can use it instead of A. Indeed, we can use it even if A is not
square, which leads to a fully general result.

Theorem 3. The rank of any matrix A equals the number of nonzero characteristic roots in
A′A.

Since the row rank and column rank of a matrix are equal, we should be able to apply this
theorem to AA′ as well. This process, however, requires an additional result.

Theorem 4. The nonzero characteristic roots of AA′ are the same as those of A′A.

3.2 Condition Number of a Matrix

As the preceding might suggest, therre is a discrete difference between full rank and short
rank matrices. In analyzing data matrices, however, we shall often encounter cases in which
a matrix is not quite short ranked, because it has all nonzero roots, but it is close. That
is, by some measure, we can come very close to being able to write one column as a linear
combination of the others. This case is important; it will be examined in the discussion of
multicollinearity in econometrics I. Our definitions of rank and determinant will fail to indicate
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this possibility, but an alternative measure, the condition number, is designed for that purpose.
Formally, the condition number for a square matrix A is

γ =

√
λmax

λmin
,

where λmax is maximum characteristic root and λmin the minimum one. For nonsquare ma-
trices X, such as the data matrix in the example, we use A =X ′X. As a further refinement,
because the charecteristic roots are affected by the scaling of the columns of X, we scale the
columns to have length 1 by dividing each column by its norm.

For this measure, the smallest root is close to zero compared with the largest means that
this matrix is nearly singular. Matrices with large condition numbers are difficult to invert
accurately.

3.3 Trace of a Matrix

Definition. The trace of a square n× n matrix is the sum of its diaonal elements:

tr (A) =

n∑
i=1

aii.

Exercise. Examine the following properties of trace manipulation.

1. tr (cA) = c · tr (A) c ∈ R.

2. tr (A′) = tr (A).

3. tr (A+B) = tr (A) + tr (B).

4. tr (In) = n.

5. tr (AB) = tr (BA).

6. a′a = tr (a′a) = tr (aa′).

7. tr (A′A) =
∑n

i=1 a
′
iai =

∑n
i=1

∑n
j=1 a

2
ij .

8. The permutation rule can be extended to any cyclic permutation in a product

tr (ABCD) = tr (BCDA) = tr (CDAB) = tr (DABC) . (13)

Theorem 5. The trace of a matrix equals the sum of its characteristic roots.

Proof. For a matrix A,

tr (A) = tr
(
CΛC ′

)
= tr

(
C ′CΛ

)
= tr (Λ) . (14)

Since Λ is diagonal with the roots of A on its diagonal, the general result is the following.
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3.4 Determinant of a Matrix

Recalling how tedious the calculation of a determinant promised to be, we find that the
following is particularly useful. Since

C ′AC = Λ,

|Λ| =
∣∣C ′AC∣∣ = ∣∣C ′∣∣ |A| |C|

=
∣∣C ′∣∣ |C| |A| = ∣∣C ′C∣∣ |A|

= |A| . (15)

Since |Λ| is just the product of its diagonal elements, the following is implied.

Theorem 6. The determinant of a matrix equals the product of its characteristic roots.

Notice that we get the expected result if any of these roots is zero. Since the determinant
is the product of the roots, it follow that a matrix is singular if and only if its determinant is
zero and, in return, if and only if it has at lest one zero characteristic root.

3.5 Powers of a Matrix

We often use expressions involving powers of matrices, such as AA = A2. For positive integer
powers, these expressions can be computed by repeated multiplication. But this does not show
how to handle a problem such as finding a B such that B2 = A, that is, the square root of a
matrix. The characteristic roots and vectors provide a solution. Consider first,

AA = A2 = CΛC ′CΛC ′ = CΛ2C ′ (16)

Two results follow. Since Λ is a diagonal matrix whose nonzero elements are the squares of
those in Λ, the following is implied.

For any symmetric matrix, the characteristic roots of A2 are the squares of those of A,
and the charecteristic vectors are the same.

The proof is obtained by observing that (16) is the spectral decomposition of the matrix
B = AA. Since A3 = A2A and so on, it is easy to extend to any positive integer. By
convention, for any A, A0 = I. Thus, for any symmetric matrix A, Ak = CΛkC ′for k =
1, 2 . . . . Hence, the chracteristic roots of Ak is λk if the characteristic roots of A is λ, whereas
the charecteristic vectors remain the same as those of A.

If A is nonsingular, so that its roots λi are nonzero, then this proof can be extended to
negative powers as well. If A−1 exists, then,

A−1 =
(
CΛC ′

)−1
=
(
C ′
)−1

(Λ)−1 (C)−1 = CΛ−1C ′,

where we have used the earlier result, C ′ = C−1. This gives an important result that is useful
for analyzing inverse matrices.

Theorem 7. For any nonsingular symmetric matrix A = CΛC ′, Ak = CΛkC ′, for k =
. . . ,−2,−1, 0, 1, 2, . . . .
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We now turn to the general problem of how to compute the square root of a matrix. In the
scalar case, the value would have to be nonnegative. The matrix analog to this requirement
is that all the characteristic roots are nonnegative. Consider, then, the candidate

A1/2 = CΛ1/2C ′ = Cdiag
(√

λ1, . . . ,
√
λn

)
C ′.

This equation satisfies the requirement for a square root, since

A1/2A1/2 = CΛ1/2C ′CΛ1/2C ′ = CΛC ′ = A.

If we continue in this fashion, we can define the powers of a matrix more generally, still
assuming that all the chareacteristic roots are nonnegative.

If all the roots are strictly positive, we can go one step further and extend the result to
any real power.

Theorem 8. For the characteristic roots of matrix A is positive, then Ar = CΛrC ′, for any
real number r.

Example. (Idempotent Matrices)
For an idempotent matrix A, A2 = A. Therefore for any nonnegative number k, Ak = A.

Further, if λ is a characteristic root of an indempotent matrix, then λ = λk, from which λ = 1
or λ = 0. If A is a symmetric idempotent matrix, all its roots are one or zero.

Assume that all the roots of A are one. Then Λ = I, and A = CΛC ′ = CC ′ = I. If the
roots are not all one, then one or more are zero, which means |A| = |Λ| = 0. Hence, we have
the following results for symmetric idempotent matrices: (1) The only full rank, symmetric
idempotent matrix is the identity matrix I;(2)All symmetric idempotent matrices except the
identity matrix are singular.

The diagonal matrix only contains value one or zero, then

rank (A) = rank
(
A′A

)
= rank (AA) = rank (Λ) = tr (Λ) = tr (A) .

Example. (Factoring a Matrix)

In some applications, we shall require a matrix P such that

P ′P = A−1.

One choice is
P = Λ−1/2C ′

so that,
P ′P =

(
Λ−1/2C ′

)′
Λ−1/2C ′ = CΛ−1C ′,

are desired. Thus, the spectral decomposition of A, A = CΛC ′ is a useful result for this kind
of computation.

There are other method that we can use, such as the Cholesky factorization and singular
value decomposition.
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4 Quadratic Forms and Definite Matrices

Many optimization problem involves double sums of the form

q =
n∑

i=1

n∑
j=1

xixjaij .

This quadratic form can be written as

q = x′Ax,

where A is a symmetric matrix. In general, q may be positive, negative or zero; it depends on
A and x. There are some matrices, however, for which q will be positive regardless of x, and
others for which q will always be negative.

Definition. For a given matrix A,

• If x′Ax > (<) 0 for all nonzero x, then A is positive(negative) definite.

• If x′Ax ≥ (≤) 0 for all nonzero x, then A is nonegative definite or positive semidefi-
nite(nonpositive definite).

Recall that a symmetric matrix can be decomposed into

A = CΛC ′.

Therefore, the quadratic form can be written as

x′Ax = x′CΛC ′x.

Let y = C ′x. Then

x′Ax = y′Λy =

n∑
i=1

λiy
2
i . (17)

If λi is postitive for all i, then regardless of y, that is, regardless of x, q will be positive.
Continuing this line of reasoning, we obtain the following theorem.

Theorem 9. Let A be a symmetric matrix.

• If all the chareacteristic roots of A are positive(negative), then A is postitive defi-
nite(negative definite).

• If some of the roots are zero, then A is nonnegative(nonpositive) definite if the
remainder are positive.

• If A has both negative and positive roots, then A is indefinite.

Exercise. Examine the theorem implies a number of related results.

1. If A is nonnegative definite, then |A| ≥ 0.

2. If A is positive definite, so is A−1.
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3. The identity matrix I is positive definite.

4. If A is m × n matrix with full column rank and m > n, then A′A is positive definite
and AA′ is nonnegative definite.

5. If A is positive definite and B is a nonsingular matrix, then B′AB is positive definite.

6. For the idempotent symmetric matrices,

7. Every symmetric idempotent matrix is nonnegative definite.

8. If A is symmetric and idempotent, n× n with rank J , then every quadratic form in A
can be written as x′Ax =

∑J
j=1 y

2
j , where y has relationship with x.

4.1 Comparing Matrices

Derivations in econometrics often focus on whether one matrix is “larger” than another. As a
starting point, the two matrices must have the same dimensions.

Definition. For two n× n matrices A and B,

d = x′Ax− x′Bx = x′ (A−B)x.

If d is always positive for any nonzero vector, x, then by this criterion, we can say that A is
larger than B. The reverse would apply if d is always negative.

It follows from the definition that if d > 0 for all nonzero x, then A−B is positive definite.
If d is only greater than or equal to zero, then A−B is nonnegative definite. The ordering

is not complete. For some pairs of matrices, d could have either sign, depending on x. In this
case, there is no simple comparison.

A particular case of the general result which we will encounter frequently is: if A is positive
definite and B is nonnegative definite, then A+B ≥ A.

Example. For the updating formula,

X̃
′
X̃ =X ′X + bb′ ≥X ′X.

Furthermore, we have the following theorem.

Theorem 10. If A and B are two positive definite matrices with the same dimensions and
if every characteristic root of A is larger than (at least as large as) the corresponding charac-
teristic root of B when bothsets of roots are ordered from largest to smallest, then A −B is
positive(nonnegative) definite.

Example. For the inverses of symmetric matrices, the result analogous to a familiar result
for scalars is: if A > B, for any nonzero vector x,

d = x′
(
B−1 −A−1

)
x > 0⇒ B−1 > A−1. (18)

5 Matrix Calculus

After the introductory sections above, now we will turn to the matrix calculus.
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5.1 Differentiation

For a scalar function, f (x) : R→ R, let y = f (x). If it is differentiable, then we denote

f ′ (x) =
dy

dx
, f ′′ (x) =

d2y

dx2
.

Then for a scalar-valued function, f (x) : Rn 7→ R, let y = f (x). The vector of partial
derivatives, or gradient vector, or simply gradient, is

g (x) =
∂f (x)

∂x
=


∂y/∂x1
∂y/∂x2

...
∂y/∂x1

 =


f1
f2
...
fn

 .

Notice that it is a column vector. The shape of the derivative is determined by the denominator
of the derivative.

A second derivatives matrix or Hessian is computed as

H (x) =


∂2y

∂x1∂x1

∂2y
∂x1∂x2

. . . ∂2y
∂x1∂xn

∂2y
∂x2∂x1

∂2y
∂x2∂x2

. . . ∂2y
∂x2∂xn

. . . . . . . . . . . .
∂2y

∂xn∂x1

∂2y
∂xn∂x2

. . . ∂2y
∂xn∂xn


=

(
∂

∂x1

(
∂y
∂x

)
∂

∂x2

(
∂y
∂x

)
. . . ∂

∂xn

(
∂y
∂x

) )
=

∂

∂x′

(
∂y

∂x

)
=

∂2y

∂x′∂x
.

If function is defined as f (X) : Rm×n 7→ R, the gradient is defined as:

∂f (X)

∂X
=

(
∂f (X)

∂xij

)
m×n

. (19)

The following are some results for common function.

• For a linear function, y = a′x =
∑n

i=1 aixi, the gradient is

g (x) =
∂y

∂x
=


∂y/∂x1
∂y/∂x2

...
∂y/∂xn

 =


a1
a2
...
an

 = a. (20)

H = 0.

• For a set of linear functions y =Xβ, we have yi =X ′iβ, where X
′
i is the ith row of X.

Therefore, for each i,
∂yi
∂β

=Xi

14



Therefore, 
∂y1/∂β

′

∂y2/∂β
′

...
∂yn/∂β

′

 =


X ′1
X ′2
...
X ′n

 =X.

This can be written as ∂y
∂β =X ′, whereas the more familiar form will be

∂Xβ

∂β
=X ′. (21)

• For a quadratic form,

x′Ax =

n∑
i=1

n∑
j=1

xixjaij , (22)

which is very common in econometrics. The gradiant w.r.t. x,

∂x′Ax

∂x
=


∂x′Ax
∂x1

∂x′Ax
∂x2
...

∂x′Ax
∂xn

 =


∑n

i=1 xia1i +
∑n

i=1 xiai1∑n
i=1 xia2i +

∑n
i=1 xiai2

. . .∑n
i=1 xiani +

∑n
i=1 xiain

 =
(
A+A′

)
x. (23)

For the gradient w.r.t. X, the coefficient on aij is xixj . Therefore,

∂x′Ax

∂aij
= xixj .

The square matrix whose ijth element is xixj is xx′, so

∂x′Ax

∂A
= xx′. (24)

• For a determinant form, f (A) = log |A| , the gradient for each term is

∂ |A|
∂aij

= (−1)i+j |Aij | ,

where |Aij | is the ijth minor in A. The ijth element of the inverse of A is

bij =
(−1)i+j |Aji|

|A|
,

which implies that,
∂f (A)

∂aij
=

(−1)i+j |Aij |
|A|

= bji,

hence,
∂f (A)

∂A
=
(
A−1

)′
= A′−1 (25)

Those above are some basic calculus. For more examples, please refer to Magnus and Neudecker(2002).
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5.2 Taylor Expansion

In econometrics, Taylor series approximation is frequently used. A Taylor series is a poly-
nominal approximation to the target function. For example for function f (x), let x0 be an
arbitrarily chosen expansion point

f (x) ≈ f (x0) +
P∑

n=1

1

n!

dnf (x0)

dxi
(x− x0)n (26)

The choice of the number of terms is arbitrary; the more that are used, the more accurate
the approximation will be. The approximation used most frequently in econometrics is the
following approximations.

• Linear approximation:

f (x) ≈ f (x0) + f ′ (x0) (x− x0) , (27)

which can be written as

f (x) ≈
[
f (x0)− f ′ (x0)x0

]
+ f ′ (x0)x

= α+ βx

• Quadratic approximation:

f (x) ≈ f (x0) + f ′ (x0) (x− x0) +
1

2
f ′′ (x0) (x− x0)2 . (28)

It can also be written as

f (x) ≈
[
f (x0)− f ′ (x0)x0 +

1

2
f ′′ (x0)x

2
0

]
+
[
f ′ (x0)− f ′′ (x0)x0

]
x+

1

2
f ′′ (x0)x

2

= α+ βx+ γx2

Extend the above results to single-valued function, we have

• Linear approximation

f (x) ≈ f (x0) +

n∑
n=1

fi (x0) (xi − x0i)

= f (x0) +
∂f (x0)

∂x′
(x− x0) .

=
[
f (x0)− g (x0)

′ x0

]
+ g (x0)

′ x

= α+ β′x. (29)

• Quadratic approximation:

f (x) = f (x0) +
n∑

n=1

fi (x0) (xi − x0i) +
1

2

n∑
i=1

n∑
j=1

∂f (x0)

∂xi∂xj
(xi − x0i) (xj − x0j) (30)
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The second-oder terms in the expansion is

1

2

n∑
i=1

n∑
j=1

∂f (x0)

∂xi∂xj
(xi − x0i) (xj − x0j) =

1

2
(x− x0)

′H (x0) (x− x0) ,

to the preceding one. Collecting all the terms, we have

f (x) ≈ α+ β′x+
1

2
x′H (x0)x, (31)

where
α = f (x0)− g (x0)

′ x0 +
x′0H (x0)x0

2
, β = g (x0)−H (x0)x0.

5.3 Transformations

If y is a column vector of functions, y = f (x). The inverse trasformation is x = f−1 (y) if
f−1 (y) exists. Then the Jacobian matrix of the transformation from y to x is

J =
∂x

∂y′
=


∂x1
∂y1

∂x1
∂y2

. . . ∂x1
∂yn

∂x2
∂y1

∂x2
∂y2

. . . ∂x2
∂yn

. . .
∂xn
∂y1

∂xn
∂y2

. . . ∂xn
∂yn

 . (32)

Then the absolute value of the determinant of J , abs (|J |) is the Jacobian determinant of the
transformation from y to x. In the nonsingular case,

abs (|J |) = abs
(∣∣A−1∣∣) = 1

abs (|A|)
.

In the singular case, the matrix of the partial derivatives will be singular and the determinant
of the Jacobian will be zero.

Example. For linear function y = Ax = f (x), the inverse transformation is x = f−1 (y). If
A is nonsingular, then,

x = A−1y

If A is singular, then there is no inverse transformation. Let J be the matrix of partial
derivatives of the inverse function:

J =

(
∂xi
∂yj

)
.

The absolute value of the determinant of J is

abs (|J |) = abs

(∣∣∣∣∂x∂y
∣∣∣∣) .

And it is the Jacobian determinant of the transformation from y to x. In the nonsingular
case,

abs (|J |) = abs
(∣∣A−1∣∣) = 1

abs (|A|)
.
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In the singular case, the matrix of the partial derivatives will be singular and the determinant
of the Jacobian will be zero, which means the transformation from x to y are functionally
dependent.

Clearly, if the vector x is given, then y = Ax can be computed from x. Whether x can be
deduced from y is another question. Evidently, it depends on the Jacobian. If the jacobian is
not zero, then the inverse transformations exist, and we can obtain x. If not, then we cannot
obtain x.

5.4 Optimization and Constrained Optimization

The optimization is very important in econometrics. There are many estimators obtained by
minimizing or maximizing some specific criterion function. In this section, we assume that the
criterion function are secondly diffentiable.

Consider finding the x where f (x) is maximized or minimized. Since f ′ (x) is the slope
of the f (x), either optimum must occur where f ′ (x) = 0. Otherwise, the function will be
increasing or decreasing at x. This result implies the first-order or necessary condition for an
optimum:

dy

dx
= 0 (33)

For a maximun, the function must be concave; for a minimum, it must be convex. The
sufficient condition for an optimun is:

For a maximun,
d2y

dx2
< 0;

For a minimum,
d2y

dx2
> 0.

Some functions, such as the sine and cosine functions, have many local optima , that is, many
minima and maxima.

Example. The function f (x) = cos(x)
1+x2 , the damped cosine wave, does as well but differs in

that although it has many local maxima, it has one, at x = 0, at which f (x) is greater than
it is at any other point. We can see those properties from the following figure.

Thus, x = 0 is the global maximun, whereas the other maxima are only local maxima.

Certain functions have only a single optimum, such as the gllobally convex or globally
concave. These function are very common in econometrics and some theoretical economics
modelling. Further, the globally concave functions usually have a maximun and globally
convex functions have a minimum.

For maximizing or minimizing a function of several variables, f (x), the first-order condi-
tions are,

∂f (x)

∂x
= 0. (34)

The result is interpreted in the same manner as the necessary condition in the univariate
case. At the optimum, it must be true that no small change in any variable leads to an
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Figure 1: The function f (x) = cos(x)
1+x2

improvement in the function value. Meanwhile, the second-order condition for an optimum in
the multivariate case is that, at the optimizing value,

H =
∂2f (x)

∂x∂x′
(35)

must be positive definite for a minimum and negative definite for a maximum.
In a single-variable problem, the second-order can usually be verified by inspection. This

situation will not generally be true in the multivariate case. As discussed earlier, checking the
definiteness of a matrix is, general, a difficult problem. For most of the problems encountered
in econometrics, however, the second-order condition will be implied by the structure of the
problem. That is, the matrix H will usually be of such a form that it is always definite.

Example. Consider the problem,

max
x∈Rn

R = a′x− x′Ax.

The first-order condition is
∂R

∂x
= a−

(
A+A′

)
x = 0.

If A is inversible, then
x =

(
A+A′

)−1
a.

And the second-order condition is,
∂R

∂x∂x′
= −

(
A+A′

)
.

Then we can verify the charateristic roots of − (A+A′) are all negative or positive.

Exercise. Solve the following problem,

min
β∈Fn×1

(y −Xβ)′ (y −Xβ) .

Example. It is often necessary to solve an optimization problem subject to some constraints
on the solution. For such problems, the common used method is the Lagrange multipliers.
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Basics of Probability Theory

1 Brief Introduction

The subject of probability theory is the foundation upon which all of statistics is built, pro-
viding a means for modeling populations, experiments, or almost anything else that could be
considered a random phenomenon. Before we define probability, we have to introduce the set
theory. For more details, please refer to Resnick(1998).

1.1 Set Theory

Definition 1. If A is any set(whose element may be numbers or any other objects), then
If x is a member(or an element) of A, then x ∈ A.
If x is not a memeber of A, then x /∈ A .
The set which contains no element will be called the empty set, ∅. If a set has at least one

element, it is called nonempty.
If A and B are sets, and if every element of A is an element of B, we say that A is a subset

of B, and write A ⊂ B, or B ⊃ A. If, in addition, there is an element of B which is not in A,
then A is said to be a proper subset of B.

If A ⊂ B and B ⊂ A, we write A = B. Otherwise, A 6= B.

In order to draw conclusions related to a random phenomenon, the first step is to identify
the following definitions.

Definition 2. An experiment is repeatable process that has a well defined set of possible
outcomes. The set, Ω, of all possible outcomes of a particular experiment is called the sample
space for the experiment. An event is a subset of the sample space, A ⊆ Ω.

Exercise 1. For each of the following experiments, describe the sample space.

1. Toss a coin four times.

2. Count the number of insect-damaged leaves on a plant.

3. Measure the lifetime(in hours) of a particular brand of light bulb.

4. Record the weights of 10-day-old rats.

Remember that probability is a mathematical construct and when we apply probability
ideas to real situations we always make assumptions (e.g.. fairness of a dice, etc.). Hence,
probability statements are statements about a mathematical model not statements about
reality.

Given any two events(or sets), we have the following elementary set operations:

1



• Union: The union of A and B, A ∪B = {x : x ∈ A or x ∈ B}.

• Intersection: The intersection of A and B, A ∩B = {x : x ∈ A and x ∈ B}.

• Complementation: The complementation of A, Ac ={x : x /∈ A}.

Example 1. Consider the experiment of selecting a card at random from a standard deck
and noting its suit: clubs(C), diamonds(D), hearts(H), or spades(S). The sample space is

Ω = {C,D,H, S} ,

and possible events are
A = {C,D} , B = {D,H, S} .

From the events we can form

A ∪B = {C,D,H, S} , A ∩B = {D} , AC = {H,S} .

Furthermore, notice that A ∪B = Ω and (A ∪B)c = ∅.

Theorem 1. For any three events A, B and C, defined on a sample space, Ω, then we have

1. Commutativity: A ∪B = B ∪A, A ∩B = B ∩A.

2. Associativity: A ∪ (B ∪ C) = (A ∪B) ∪ C,A ∩ (B ∩ C) = (A ∩B) ∩ C.

3. Distributive Laws: A∩ (B ∪ C) = (A ∩B)∪ (A ∩ C), A∪ (B ∩ C) = (A ∪B)∩ (A ∪ C).

4. DeMorgan’s Law: (A ∪B)c = Ac ∩Bc, (A ∩B)c = Ac ∪Bc.

Exercise 2. Do the following excercise.

1. Prove Theorem 1.

2. Verify the following identities.

(a) A\B = A\ (A ∩B) = A ∩Bc.

(b) B = (B ∩A) ∪ (B ∩Ac).
(c) B\A = B ∩Ac.
(d) A ∪B = A ∪ (B ∩Ac).

The operations of union and intersection can be extended to infinite collections of sets as well,
which is called countable union and countable intersection. If A1, A2, . . . is a collection of sets,
all defined on a sample space, Ω, then

∞⋃
i=1

Ai = {x ∈ Ω : x ∈ Ai for some i} ,

∞⋂
i=1

Ai = {x ∈ Ω : x ∈ Ai for all i} .

2



Exercise 3. Let Ω = (0, 1], Ai = [1/i, 1]. Verify the following identiy

1.
⋃∞
i=1

[
1
i , 1
]

= (0, 1].

2.
⋂∞
i=1

[
1
i , 1
]

= {1}.

Definition 3. Two events A and B are disjoint(or mutually exclusive) if A ∩ B = ∅. The
events A1, A2 . . . are pairwise disjoint if Ai ∩Aj = ∅ for all i 6= j.

Example 2. Consider the collection Ai = [i, i+ 1), i = 0, 1, . . . , then it is consist of pairwise
disjoint sets. Further,

⋃∞
i=1Ai = [0,∞).

Definition. If A1, . . . are pairwise disjoint and
⋃∞
i=1Ai = Ω, then the collection A1, A2, . . .

forms a partition of Ω.

2 Mathematical Probability

2.1 Axiomatic Foundations

For each event A in the sample space Ω we want to associate with A a number between zero
and one that will be called the probability of A, denote by P (A). It would seem natural to
define the domain of P as all subsets of Ω; that is, for each A ⊂ Ω we define P (A) as the
probability that A occurs.

Definition 4. A collection of subsets of Ω is called a σ−algebra, denoted by B, if it satisfies
the following three properties:

• Ω ∈ B.

• If A ∈ B, then Ac ∈ B.

• If A1, A2, · · · ∈ B, then
⋃∞
i=1Ai ∈ B.

The pair consisting of a set and a σ−algebra defined on that set is referred to as a mea-
surable space.

Exercise 4. Do the following exercise,

1. Prove if A1, A2, · · · ∈ B, B is a σ−algebra, then
⋂∞
i=1Ai ∈ B.

2. Prove if B1 and B2 are both σ−algebra, then B1 ∩ B2 is also a σ−algebra.

Example 3. Consider a set Ψ together with non-trivial subset A ⊂ Ψ .

1. The trivial σ−algebra: B = {∅,Ω}.

2. The power set. B = P (Ω) or {0, 1}Ψ , the class of all subsets of Ω.

The sample space Ω is the set of all possible outcomes of an experiment and we can
define events as subsets of Ω containing outcomes that are of interest. Now we can generate
a measurable space (Ω,F), where F is a σ-algebra defined on Ω. Here F is a collection of
subsets of Ω and we interpret the elements of F as being events. Thus if A ∈ F then A is an
event. We say “event A occur”. Since probability is always associated with events so F will
be the domain for probability measure.
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Definition 5. Given a sample space Ω and an associated σ−algebra F , the probability measure
on (Ω,F) is a function P : F → [0, 1] with the following properties,

• P (A) ≥ 0 for ∀A ∈ F .

• P (Ω) = 1.

• If A1, · · · ∈ F are disjoint then P (
⋃∞
i=1Ai) =

∑∞
i=1 P (Ai).

Then (Ω,F , P ) is called a probability space.

2.2 The Calculus of Probabilities

From the definition of the probability, we can build up many properties of probability measure,
which are quite helpful in calculation of more complicated probabilities.

Proposition 1. If P is a probability measure on (Ω,F), and A is any set in F , then,

1. P (∅) = 0, where ∅ is the empty set.

2. P (A) ≤ 1.

3. P (Ac) = 1− P (A).

For Proposition 1, it is very easy to prove based on the definition of probability measure.

Theorem 2. If P is a probability measure on (Ω,F), A and B is any set in F , then,

1. P (B ∩Ac) = P (B)− P (A ∩B).

2. P (A ∪B) = P (A) + P (B)− P (A ∩B).

3. If A ⊂ B, then P (A) ≤ P (B).

Exercise 5. Prove Proposition 1 and Theorem 2.

Proposition 2. Consider a probability space (Ω,F , P ),

1. P (A) =
∑∞

i=1 P (A ∩ Ci) for any partition C1, C2, . . . .

2. If A1, · · · ∈ F , then, P (
⋃∞
i=1Ai) ≤

∑∞
i=1 P (Ai).

Theorem 3. For general, Consider a probability space (Ω,F , P ), with A1, . . . , An ∈ F , then,

P

(
n⋃
i=1

Ai

)
=

n∑
i=1

P (Ai)−
∑
i<j

P (Ai ∩Aj)+
∑
i<j<k

P (Ai ∩Aj ∩Ak)+· · ·+(−1)n+1 P (A1 ∩ · · · ∩An) .

Proposition 3. (Probability limit of sequence of sets)

1. If {Ai} is an increasing sequence of sets A1 ⊂ A2 ⊂ . . . , then, limn→∞ P (An) =
P (
⋃∞
i=1Ai),

2. If {Ai} is an increasing sequence of sets A1 ⊃ A2 ⊃ . . . , then, limn→∞ P (An) =
P (
⋂∞
i=1Ai).

Exercise 6. Prove Proposition 2, Theorem 3 and Proposition 3.
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3 Conditional Probability and Independence

All of the probabilities that we have dealt with thus far have been unconditional probabiliteis.
A sample space was defined and all probabilities were calculated with respect to that sample
space. In many instances, however, we are in a position to update the sample space based on
new information. In such cases, we want to be able to update probability calculations or to
calculate conditional probabilites.

Definition 6. Consider a probability space (Ω,F , P ). If A and B are events in F , and
P (B) > 0, then the conditional probability of A given B, written P (A|B), is

P (A|B) =
P (A ∩B)

P (B)
.

Example 4. Some trivial properties of conditional probabilities can be obtain.

1. We can notice that P (A|B) = 1 if A ⊂ B. The intuition is that our original sample
space, Ω, has been updated to B. All further occurrences are then calibarated with
respect to their relation to B.

2. In particular, note what happens to conditional probabilites of disjoint sets. Suppose A
and B are disjoint, so P (A ∩B) = 0. It then follows that P (A|B) = P (B|A) = 0.

3. We have P (A ∩B) = P (A|B)P (B), and similarly, P (A ∩B) = P (B|A)P (A), then
P (A|B) = P (B|A) P (A)

P (B) .

Proposition 4. (law of total probability) Consider a probability space (Ω,F , P ) with a parti-
tion {C1, C2 · · · } of Ω. For all A ∈ F , P (A) =

∑∞
i=1 P (A|Bi)P (Bi) .

Theorem 4. (Bayes’ rule) Let A1, A2, . . . , be a partition of the sample space, and let B ∈ F .
Then for each i = 1, 2, . . . ,

P (Ai|B) =
P (B|Ai)P (Ai)∑∞
j=1 P (B|Aj)P (Aj)

.

In some cases, it may happen that the occurence of a particular event, B, has no effect on
the probability of another event, A. Symbolically, we are saying that

P (A|B) = P (A) .

If this holds, then by Bayes’ rule and Example 4, we have,

P (B|A) = P (A|B)
P (B)

P (A)
= P (A)

P (B)

P (A)
= P (B) ,

so the occurrence of A has no effect on B. Moreover, since P (B|A)P (A) = P (A ∩B), it
then follows that

P (A ∩B) = P (A)P (B) .

Definition 7. For a probability space (Ω,F , P ), if A,B ∈ F , A and B are statistically
independent if

P (A ∩B) = P (A)P (B) .
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Based on the independence, we introduce the mutual independence.

Definition 8. Consider a probability space(Ω,F , P ) and a set of events {A1, A2, . . . , An}. We
say that {A1, . . . , An} are mutually independent if any subcollection Ai1 , . . . , Aik , we have

P

 k⋂
j=1

Aij

 =
k∏
j=1

P
(
Aij
)
.

Exercise 7. Consider the experiment of tossing a fair coin three times. List the sample space
Ω. Let Hi be the event that ith toss is a head. Prove that H1, H2 and H3 are mutually
independent.
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Probability Distributions

1 Random Variables
In many experiments it is easier to deal with a summary variable X than with the original probability
structure.

Example 1.1. In an opinion poll, we might decide to ask 50 people whether they agree or disagreee
with a certain issue. If we record a 1 for agree and 0 for disagree, the sample space for this experiment
has 2250 elements, each an ordered string of 1s and 0s of length 50. We should be able to reduce this to
a reasonable size! It may be that the only quantity of interest is the number of people who agree out
of 50 and, if we define a variable X =number of 1s recorded out of 50, we have captured the essence
of the problem. Note that the sample space for X is the set of integers {0, 1, 2, . . . , 50} and is much
easier to deal with than the original sample space.

Usually in defining the quantity X, we have to defined a mapping from the original sample space
to a new sample space, usually a set of real numbers.

Suppose Ω is the sample space and F is the corresponding σ−algebra generated by Ω. Let 
′
be the another set and F ′ be the σ−algebra generated by Ω′. Hence, (Ω,F) and (Ω′,F ′) are two
measurable spaces. Suppose a function,

X : Ω→ Ω′,

meaning X is a function with domain Ω and range 
′.Then X determins a function,

X−1 : P (Ω′)→ P (Ω) ,

where P (Ω′) and P (Ω) are the power sets for Ω′ and Ω, respectively. It can be defined by

X−1 (A′) = {ω ∈ Ω : X (ω) ∈ A′} , for A′ ∈ Ω′,

which you can see from the Figure 1.

Definition 1.2. The map X is called measurable if X−1 (F ′) ⊂ F . Then X is also called a random
element of Ω′. The following notation is used to represent X,

X : (Ω,F)→ (Ω′,F ′) .

Definition 1.3. Consider a probability space (Ω,F , P ), and suppose

X : (Ω,F)→ (R,B (R)) ,

where B (R) is the σ−algebra generated by R, then X is called random variable.

Although we define the random variable, we must check that our probability function, which is
defined on the original sample space, can be used for the random varaible.

Suppose we have a sample space S = {s1, . . . , sn} with a probability function P and we define a
random variable X with a range X = {x1, . . . , xm} . We can define a probability function PX on X in
the following way. We will observe X = xi if and only if the outcome of the random experiment is an
sj ∈ S such that X (sj) = xi. Thus,

PX (X = xi) = P ({sj ∈ S : X (sj) = xi}) .

1



Figure 1: Inverse

Definition 1.4. Consider a probability space (Ω,F , P ), for X : (Ω,F) → (Ω′,F ′), define a set
function, P ◦X−1 (A′) = P

(
X−1 (A′)

)
. Then P ◦X−1 is a probability function on (Ω′,F ′), and it is

called induced probability or the distribution of X.

Hence, based on the discussion above, we don’t have to discuss the probability based on the general
set now. We can turn to the probability based on the measural space (R,B (R)), which we are very
familiar with.

Exercise 1.5. Consider the experiment of tossing a fair coin three times again. Let X =the number
of heads obtained in the three tosses. Find the range of X , X and the induced probability function
on X .

2 Distribution Functions
With every random variable X, we associate a function called the cumulative distribution function of
X.

Definition 2.1. The cumulative distribution function or cdf of a random variable X, denoted by
FX (x), is defined by

FX (x) = PX (X ≤ x) , for all x.

Exercise 2.2. (Cintinuation of Exercise 1.5)Consider the experiment of tossing three fair coins, and
let X =number of heads observed. Define and draw the cdf of X.

Theorem 2.3. The function F (x) is a cdf if and only if the following three conditions hold:

• limx→−∞ F (x) = 0 and limx→+∞ F (x) = 1.

• F (x) is a nondecreasing function of x.

• F (x) is right-continuous; that is, for every number x0, limx↓x0
F (x) = F (x0).

Exercise 2.4. Suppose we do an experiment that consists of tossing a coin until a head appears. Let
p =probability of a head on any given toss, and X =number of tosses required to get a head. Define
the cdf of X and verify the three properties of this cdf.

We may state that FX completely determines the probability distribution of a random variable
X. This is true if P (x ∈ A) is defined only for events in B1, the smallest σ−algebra containing all
the intervals of real numbers of the form (a, b) , [a, b), [a, b] and (a, b]. If probability is defined for a

2



larger class of events, it is possible for two random variables to have the same distribution function
but not the same probability for every event. In our usual applications, we are concerned only with
events that are intervals, countable unions or intersections of intervals. Hence, we do not consider such
pathological cases.

Definition 2.5. The random variables X and Y are identically distributed if, for every set A ∈ B1,
P (X ∈ A) = P (Y ∈ A).

Note that two random variables that are identically distributed are not necessarily equal.

Theorem 2.6. The following two statements are equivalent:

1. The random variables X and Y are identically distributed.

2. FX (x) = FY (x) for every x.

Exercise 2.7. (Cintinuation of Exercise 2.2) Define Y =the number of tails observed. Check that X
and Y are identically distributed.

3 Density and Mass Functions
Exercise 3.1. (logistic distribution) Check the function FX = 1

1+e−x is a cdf.

Combined with Exercise 2.4, whether a cdf is continuous or has jumps corresponds to the associated
random variable being continuous or not.

Definition 3.2. A random variable X is continuous if FX (x) is a continuous function of x A random
variable X is discrete if FX (x) is a step function of x, which means X only takes values that are in
some countable subset {x1, x2, . . . } of R..

Associatedwith a random variable X and its cdf FX (x) is another function, called either the
probability density function(pdf) or probability mass function(pmf). The terms pdf and pmf refer to
the continuous and discrete cases, respectively.

Definition 3.3. The probability mass function(pmf) of a discrete random variable X ,fX (x) : R →
[0, 1], is given by

fX (x) = P (X = x) , for all x,

which is the probability at the point x.

Proposition 3.4. Properties of pmf:

• 0 ≤ fX (x) ≤ 1, ∀x.

• fX (x) = 0, if x /∈ {x1, x2, . . . }.

•
∑
x fX (x) = 1.

For the relationship between the cdf of X and pmf of X,

FX (x) =
∑
u:u≤x

fX (u) .

Definition 3.5. The probability density function(pdf), fX (x), of a continuous random variable is the
integrable function fX (x) : R→ [0,∞) that satiesfies

FX (x) =

ˆ x

−∞
fX (t) dt for all x.

It can also be written as
fX (x) =

d

dx
FX (x) .
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Note that the expression “X has a distribution given by FX (x)” is abbreviated symbolically by
“X ∼ FX (x)”.

For continuous random variable, since {X = x} ⊂ {x− ε < X ≤ x}, for any ε > 0, then

P (X = x) ≤ P (x− ε < X ≤ x) = FX (x)− FX (X − ε) ,

for any ε > 0. Therefore,

0 ≤ P (X = x) ≤ lim
ε↓0

[FX (x)− FX (X − ε)] = 0,

by the continuity of FX . It implies that

P (a < x < b) = P (a ≤ x ≤ b) = P (a ≤ x < b) = P (a < x ≤ b) .

Proposition 3.6. Properties of pdf:

• 0 ≤ fX (x) ≤ 1, ∀x.

•
´∞
−∞ fX (x) = 1 .

Exercise 3.7. Check the following function is a pdf,

1. (Normal distribution) fX (x) = 1√
2πσ

exp
(
− 1

2σ2 (x− µ)
2
)
, x ∈ R.

2. (Exponential distribution) fX (x) =

{
λe−λx x ≥ 0

0 Otherwise
.

3. (Cauchy distribution) fX (x) = 1
π(1+x2) for x ∈ R.

4 Expected Value and Variance
The expected value, or expectation, of a random variable is merely its average value, where we speak
of “average” value as one that is weighted according to the probability distribution. By weighting the
values of the random variable according to the probability distribution, we hope to obtain a number
that summarizes a typical or expected value of an observation of the random variable.

Definition 4.1. If X is a random variable with sample space X (R or subsets of R), the expected value
or mean of the function g (X) :X → Y, where Y is new sample space(R or subsets of R), is

EX [g (X)] =

{´
X g (x) fX (x) dx If X is continuous∑
x∈X g (x) fX (x) =

∑
x∈X g (x)P (X = x) If X is discrete,

provided that the integral or sum exist, that is, EX [|g (X)|] < ∞. In particular, the mean of the
random variable X is defined as,

EX [X] =

{´
X xfX (x) dx If X is continuous∑
x∈X xfX (x) =

∑
x∈X xP (X = x) If X is discrete,

provided that the integral or sum exist, that is, EX [|X|] <∞.

Note that usually we just write it as E [g (X)] and E (X).

Exercise 4.2. Calculate the mean of the follow distributin,
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1. X ∼ Exp (λ), with fX (x) =

{
λe−λx x ≥ 0

0 Otherwise
.

2. Let pdf of X be fX (x) = 1
π(1+x2) .

3. Let pdf of X be fX (x) = 1√
2πσ

exp
(
− 1

2σ2 (x− µ)
2
)
, x ∈ R.

Theorem 4.3. Let X be a random variable and let a, b, c be constants. Then for any functions g1 (x)
and g2 (x) whose expectations exist,

• E(ag1 (x) + bg2 (x) + c) = aE [g1 (x)] + bE [g2 (x)] + c.

• If g1 (x) ≥ 0 for all x, then E [g1 (x)] ≥ 0.

• If g1 (x) ≥ g2 (x) for all x, then E [g1 (x)] ≥ E [g2 (x)].

• If a ≤ g1 (x) ≤ b for all x, then a ≤ E [g1 (x)] ≤ b.

Exercise 4.4. Prove Theorem 4.3.

Exercise 4.5. Prove minbE
[
(X − b)2

]
= E (X − EX)

2.

Definition 4.6. If X is a random variable with sample space X (R or subsets of R), the variance of
X is V ar (X) = EX

[
(X − EX)

2
]
, that is,

V ar (X) =

{´
X [x− E (X)]

2
fX (x) dx If X is continuous∑

x∈X [x− E (X)]
2
fX (x) =

∑
x∈X [x− E (X)]

2
P (X = x) If X is discrete,

whenever the sum or integral is fintie.

Exercise 4.7. Calculate the variance of the follow distributin,

1. X ∼ Exp (λ), with fX (x) =

{
λe−λx x ≥ 0

0 Otherwise
.

2. Let pdf of X be fX (x) = 1
π(1+x2) .

3. Let pdf of X be fX (x) = 1√
2πσ

exp
(
− 1

2σ2 (x− µ)
2
)
, x ∈ R.

Theorem 4.8. If X is a random variable with finite variance, then for any constants a and b,

V ar (aX + b) = a2V ar (X) .

Exercise 4.9. Prove Theorem 4.8.

5 Higher Moments and Moment Generating Functions
The various moments of a distribution are an important class of expectations.

Definition 5.1. For each integer, the nth moment of X (or FX (x)), µ′n, is

µ′n = E (Xn) .

The nth central moment of X, µn, is

µn = E (X − µ)
n
,

where µ = µ′1 = E (X).
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We now introduce a new function that is associated with aprobability distribution, the moment
generating function(mgf). As its name suggests, the mgf can be used to generate moments. In practise,
it is easier in many cases to calculate moments directly than to use the mgf. However, the main use of
the mgf is not to generate moments, but to help characterizing a distribution. This property can lead
to some extremely powerful results when used properly.

Definition 5.2. Let X be a random variable with cdf FX . The moment generating function(mgf) of
X, denoted by MX (t), is

MX (t) = E
[
etX
]

=

{´
X etxfX (x) dx If X is continuous∑
x∈X e

txfX (x) =
∑
x∈X e

txP (X = x) If X is discrete,
,

provided that the expectation exists for t in some neighborhood of 0. That is, ∃h > 0, ∀t ∈ (−h, h),
E
[
etX
]
exists.

If the expectation does not exist in a neighborhood of 0, we say that the moment generating function
does not exist.

Theorem 5.3. If X has mgf MX (t), then

E (Xn) = M
(n)
X (0) ,

where
M

(n)
X (0) =

dn

dtn
MX (t)

∣∣∣∣
t=0

.

That is, the nth moment is equal to the nth derivative of MX (t) evaluated at t = 0.

Exercise 5.4. Prove Theorem 5.3.

Exercise 5.5. Calculate the mgf of the follow distributin. Use the mgf to calculate the mean and
variance.

1. X ∼ Exp (λ), with fX (x) =

{
λe−λx x ≥ 0

0 Otherwise
.

2. Let pdf of X be fX (x) = 1√
2πσ

exp
(
− 1

2σ2 (x− µ)
2
)
, x ∈ R.

Proposition 5.6. For any constants a and b, the mgf of the random variable aX + b is given by

MaX+b (t) = ebtMX (at) .

Exercise 5.7. Prove Proposition 5.6.

As we mentioned, the usefulness of the mgf stem from the fact that, in many cases, the mgf can
characterize a distribution.

Theorem 5.8. Let FX (x) and FY (y) be two cdfs all of whose moment exist. If the mgf exist and
MX (t) = MY (t) for all t in some neighborhood of 0, then FX (u) = FY (u) for all u.

Further, we can have the following theorem.

Theorem 5.9. (Convergence of mgfs) Suppose {Xi, i = 1, 2, . . . } is a sequence of random variables,
each with mgf MXi

(t). Furthermore, suppose that

lim
i→∞

MXi
(t) = MX (t) , for all t in a neighborhood of 0,

and MX (t) is an mgf. Then there is a unique cdf FX whose moments are determened by MX (t) and,
for all x where FX (x) is continuous, we have

lim
i→∞

FXi (t) = FX (t) .

That is, convergence, for |t| < h, of mgfs to an mgf implies convergence of cdfs(Convergence in
distribution).

6



6 Differentiating and Integral
In some cases, we will encounter such a problem like

d

dθ

ˆ b(θ)

a(θ)

f (x, θ) dx,

where −∞ < a (θ) , b (θ) <∞ for all θ. Sometimes we are desired to interchange the order of integration
and differentiation.

The following theorem provides a rule for that problem.

Theorem 6.1. (Leibnitz’s rule) If f (θ), a (θ) and b (θ) are differentiable with respect to θ, then

d

dθ

ˆ b(θ)

a(θ)

f (x, θ) dx = f (b (θ) , θ)
d

dθ
b (θ)− f (a (θ) , θ)

d

dθ
a (θ) +

ˆ b(θ)

a(θ)

∂f (x, θ)

∂θ
dx.

Thus if a (θ) and b (θ) are constant, we have a special case of Leibnitz’s rule:

d

dθ

ˆ b

a

f (x, θ) dx =

ˆ b

a

∂f (x, θ)

∂θ
dx.

Thus, in general, if we have the integral of a differentiable function over a fintie range, differentiation
of the integral poses no problem.

However, for infinite range, problems can arise. For such problems, we use the following theorem to
verify the interchange. The following theorems are all corollaries of Lebesgue’s Dominated Convergence
Theorem.

Theorem 6.2. Suppose the function h (x, y) is continuous at y0 for each x, and there exists a function
g (x) satisfying

• |h (x, y)| ≤ g (x) for all x and y,

•
´ +∞
−∞ g (x) dx <∞.

Then

lim
y→y0

ˆ +∞

−∞
h (x, y) dx =

ˆ +∞

−∞
lim
y→y0

h (x, y) dx.

The key condition in this theorem is the existence of a dominating function g (x), with a finite
integral, which ensures the integrals connot be too badly behaved. Let

h (x, y) =
f (x, θ + δ)− f (x, θ)

δ
,

then we have the following theorem.

Theorem 6.3. Suppose f (x, θ) is differentiable at θ = θ0, that is,

lim
δ→0

f (x, θ0 + δ)− f (x, θ0)

δ
=

∂

∂θ
f (x, θ)

∣∣∣∣
θ=θ0

exists for every x, and there exists a function g (x, θ0) and a constant δ0 > 0 such that

•
∣∣∣ f(x,θ0+δ)−f(x,θ0)δ

∣∣∣ ≤ g (x, θ0), for all x and |δ| ≤ δ0.

•
´ +∞
−∞ g (x, θ0) dx <∞.
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Then
d

dθ

ˆ +∞

−∞
f (x, θ) dx

∣∣∣∣
θ=θ0

=

ˆ +∞

−∞

[
∂

∂θ
f (x, θ)

∣∣∣∣
θ=θ0

]
dx.

In Theorem 6.3, the statement is for one value of θ, θ0. Typically, if f (x, θ) is differentiable at all
θ, not joust one value θ0, we have the following corollary.

Corollary 6.4. Suppose f (x, θ) is differentiable in θ and there exists a function g (x, θ) such that

•
∣∣ ∂
∂θf (x, θ)

∣∣
θ=θ′

∣∣ ≤ g (x, θ), for all θ′ such that |θ′ − θ| ≤ δ0.

•
´ +∞
−∞ g (x, θ) dx <∞, for all θ′ such that |θ′ − θ| ≤ δ0.

Then
d

dθ

ˆ +∞

−∞
f (x, θ) dx

∣∣∣∣
θ=θ0

=

ˆ +∞

−∞

[
∂

∂θ
f (x, θ)

∣∣∣∣
θ=θ0

]
dx.
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Random Variables

1 Univariate Random Variable

1.1 Transformation for Univariate Distribution

If X is a random variable, then any function of X, say g (X), is also a random variable. Often
g (X) is of interest itself and we write Y = g (X) to denote the new random variable g (X).
Formally, g (X) is defined as

g (X) : X → Y.

Then for any set A ⊂ Y, we have

P (Y ∈ A) = P (g (X) ∈ A) = P ({x ∈ X : g (x) ∈ A}) = p
(
X ∈ g−1 (A)

)
.

When transformations are made, it is important to keep track of the sample spaces of the
random variables. We define

X = {x : fX (x) > 0} and Y = {y : y = g (x) , for some x ∈ X} . (1.1)

The pdf of X is positive only on the set X and is 0 elesewhere, X is called support of a
distribution. This terminology can also apply to a pmf.

Theorem 1.1. Let X have cdf FX (x), let Y = g (X), and let X and Y be defined as (1.1).

• If g is an increasing function on X , FY (y) = FX
(
g−1 (y)

)
for y ∈ Y.

• If g is a decreasing function on X and X is a continuous random variable, FY (y) =
1− FX

(
g−1 (y)

)
for y ∈ Y.

Exercise 1.2. Prove Theorem 1.1.

Theorem 1.3. Let X have a pdf fX (x) and let Y = g (X), where g is a monotone function.
Let X and Y be defined as (1.1). Suppose that fX (x) is conituous on X and that g−1 (y) has
a continuous derivative on Y. Then the pdf of Y is given by

fY (y) =

{
fX
(
g−1 (y)

) ∣∣∣ ddyg−1 (y)
∣∣∣ y ∈ Y

0 otherwise
.

Exercise 1.4. Prove Theorem 1.3.
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1.2 Normal Distribution

A fundamental distribution in statistical inference. Not only it provides a reasonable model
for many quantities that practitioners are interested in it is also the approximate distribution
of many statistics like sample mean. A key feature of the normal distribution is that it is
completely characterised by its mean and variance.

Definition 1.5. The pdf of the normal distribution with mean µ and variance σ2 is given by

f
(
x|µ, σ2

)
=

1√
2πσ

exp

(
−(x− µ)2

2σ2

)
,−∞ < x <∞. (1.2)

If X ∼ N
(
µ, σ2

)
, then the random variable Z = (X − µ) /σ has N (0, 1) distribtuion also

known as the standard normal. It is easily established by the result in Section 1.1,

f (Z ≤ z) =
1√
2π

ˆ z

−∞
e−

t2

2 dt.

then the pdf of Z is f (z) = 1√
2π

exp
(
− z2

2

)
.

Example 1.6. As we have talked, f (z) = 1√
2π

exp
(
− z2

2

)
is a pdf, then it should have

ˆ +∞

−∞
exp

(
−z

2

2

)
dz =

√
2π.

Notice that the ingegrand above is symmetric around 0, implying that m
´ +∞

0 exp
(
− z2

2

)
dz =´ 0

−∞ exp
(
− z2

2

)
dz, which means

ˆ +∞

0
exp

(
−z

2

2

)
dz =

√
π

2
.

It can be shown in the following.[ˆ +∞

0
exp

(
−z

2

2

)
dz

]2

=

ˆ +∞

0
exp

(
−u

2

2

)
du

ˆ +∞

0
exp

(
−v

2

2

)
dv

=

ˆ +∞

0

ˆ +∞

0
exp

(
−u

2

2
− v2

2

)
dudv.

Define u = r cos θ, and v = r sin θ,

abs

(∣∣∣∣∂ (u, v)

∂ (r, θ)

∣∣∣∣) = abs

(∣∣∣∣ cos θ sin θ
−r sin θ r cos θ

∣∣∣∣) = r,

then,ˆ +∞

0

ˆ +∞

0
exp

(
−u

2

2
− v2

2

)
dudv =

ˆ π
2

0

ˆ +∞

0
exp

(
−r

2

2

)
abs

(∣∣∣∣∂ (u, v)

∂ (r, θ)

∣∣∣∣) drdθ
=

ˆ π
2

0

ˆ +∞

0
exp

(
−r

2

2

)
rdrdθ

=
π

2

ˆ +∞

0
exp

(
−r

2

2

)
rdr

=
π

2
.
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Figure 1: Standard Normal Density

Since the normal distribution is determined by its mean and variance, we can use the
result of last class to derive the following properties. If X ∼ N

(
µ, σ2

)
, then Y = aX + b ∼

N
(
aµ+ b, a2σ2

)
.

Straightforward calculus show that the normal pdf (1.2) has its maximum at x = µ and
inflection points(where the curve changes from concave to convex) at µ±σ. Furthermore, the
probability content within 1,2, or 3 standard deviation from the mean is

P (|X − µ| ≤ σ) = P (|Z| < 1) = .6826,

P (|X − µ| ≤ 2σ) = P (|Z| < 2) = .9544,

P (|X − µ| ≤ 2σ) = P (|Z| < 3) = .9974.

Figure 1.1 shows the features of the nomal pdf.

Exercise 1.7. Examine the mgf of normal distributionN
(
µ, σ2

)
isMX (t) = exp

(
µt+ σ2

2 t
2
)
.

1.3 Gamma Distribution

The gamma family of distributions is a flexible family of distributions on [0,∞). At first, we
talk about the gamma function.

Definition 1.8. The gamma function is a function Γ (α) : R+ → R+ such that

Γ (α) =

ˆ ∞
0

tα−1e−tdt.

One can easily verify that Γ (α+ 1) = αΓ (a), In particular, when α = n, Γ (n) = n ×
(n− 1)× · · · × 1 = n!.

Based on the gamma function it immediately follows that

f (t|α) =
tα−1e−t

Γ (α)
, 0 < t <∞,
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is a pdf. Further, we let X = βT , from the transformation rule, we have,

fX (x|α, β) =
1

Γ (α)βα
xα−1e

− x
β , 0 < x <∞, α > 0, β > 0. (1.3)

Definition 1.9. A random variable X with pdf (1.3) is called that X follows gamma distri-
bution with parameter α and β, denoted as X ∼ Gamma (α, β).

The α is called shape parameter since it most influences the peakedness of the distribution,
while the parameter β is called the scale parameter, since most of its influence i son the spread
of the distribution.

If X ∼ Gamma (α, β), we have

• Moment generating function: MX (t) =
(

1
1−βt

)α
, t < 1

β .

• E (X) = αβ, V ar (X) = aβ2.

Exercise 1.10. Verify the properties of the gamma distribution.

1.4 Chi-square Distribution

Chi-square distribution is a very widely used distribution in econometrics. Actually it is a
special case of gamma distribution family. If we set α = p/2, where p is an integer, and β = 2,
then the gamma pdf becomes

f (x|p) =
1

Γ (p/2) 2p/2
xp/2−1e−x/2, 0 < x <∞. (1.4)

Definition 1.11. A random variable X with pdf (1.4) is called that X follows Chi-square
distribution with p degrees of freedom, denoted as X ∼ χ2 (p).

We know that Chi-square distribution is special distribution in the gamma distribution
family. Hence, it shares the properties of the gamma distribution. If X ∼ χ2 (p), then

• Moment generating function:MX (t) =
(

1
1−2t

) p
2 ,t < 1

2 .

• E (X) = p, V ar (X) = 2p.

1.5 Beta Distribution

Before we talk about the beta distribution, we have to talk about the beta function.

Definition 1.12. The beta function is defined as B (α, β) : R+ × R+ → [0,+∞),

B (α, β) =

ˆ 1

0
xα−1 (1− x)β−1 dx.

The beta function is related to the gamma function through the following identity,

B (α, β) =
Γ (α) Γ (β)

Γ (α+ β)
.

This equation is very useful in dealing with the beta function since we can take advantage of
the properties of the gamma function.

4



Figure 2: Beta Densities

Definition 1.13. The beta family of distributions is continuous family on (0, 1) indexed by
two parameters (α, β),

f (x|α, β) =
1

B (α, β)
xα−1 (1− x)β−1 , 0 < x < 1, α > 0, β > 0.

The beta distribution is one of the few common ’named’ distributions that give probability
1 to a finite interval, here taken to be (0, 1). As the parameters α and β vary, the beta
distribution takes on many shapes, as shown in Figure 2.

Further, for the beta distribution, we have

• E (Xn) = 1
B(α,β)

´ 1
0 x

α+n−1 (1− x)β−1 dx = B(α+n,β)
B(α,β) = Γ(α+n)Γ(α+β)

Γ(α+β+n)Γ(α) .

E (X) = α
α+β , V ar (X) = αβ

(α+β)2(α+β+1)
.

• Moment generating function: MX (t) = 1 +
∑∞

k=1

(∏k−1
r=0

α+r
α+β+r

)
tk

k! .

2 Multivariate Random Variable

What we have talked about are all univariate random variable, actually we always encounter
multivariate case. A multivariate model attempts to capture the nature of any dependencies
(e.g. dependence between income and expenditure).

Definition 2.1. An n-dimensional random variables is a function from a sample space Ω into
Rd, the n-dimensional Euclidean space. That is, X : Ω → Rd. And the probability space
change from (Ω,F , P ′) to

(
Rd, σ

(
Rd
)
, P
)
.
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2.1 Joint and Marginal Distributions

Similar to the univariate case, for multivariate random variables, we have the joint distribution
function, joint density/mass function, moment generating function.

Definition 2.2. If X = (X1, X2, . . . , Xn)′ is a random variable, the joint cumulative distri-
bution is a function FX : Rd → [0, 1] given by, FX (x) = P (X1 ≤ x1, . . . , Xn ≤ xn) , where
x = (x1, . . . , xn).

Most ideas associated with multivariate distributions are illustrated using the bivariate
case. The generalisations to n−dimensions are usually obvious.

Theorem 2.3. Suppose that X and Y are random variables. If FX,Y is the joint distribution
function of X and Y then FX,Y has the following properties.

FX,Y (−∞, y) = limx→−∞ FX,Y (x, y) = 0.
FX,Y (y,−∞) = limy→−∞ FX,Y (x, y) = 0.
FX,Y (∞,∞) = limx→∞,y→∞ FX,Y (x, y) = 1.
Right continuous in x and y: limh→0+ FX,Y (x+ h, y) = FX,Y (x, y) and limh→0+ FX,Y (x, y + h) =

FX,Y (x, y).

There are also discrete random variables and continuous random variabls. Correspondingly
we have the following definitions.

Definition 2.4. Let Z = (X,Y )′ be a discrete bivariate random vector. Then the function
f (x, y) : R × R → [0,∞) defined by f (x, y) = P (X = x, Y = y) is called the joit probability
mass function or joint pmf of Z. Sometime we also write fZ (x, y) = P (X = x, Y = y).

Apparently, we have,

• 0 ≤ fZ (x, y) ≤ 1.

•
∑

(x,y)∈R2 fZ (x, y) = 1.

• P ((X,Y ) ∈ A) =
∑

(x,y)∈A fZ (x, y).

Definition 2.5. Let Z = (X,Y )′ be a discrete bivariate random vector. Then the function
f (x, y) : R × R → [0,∞) is called a joint probability density function or joint pdf of the
continuous bivariate random vector Z if , for every A ⊂ R× R,

P (Z ∈ A) =

ˆ ˆ
A
f (x, y) dxdy.

We sometimes denote the R× R as R2. And we have,

• 0 ≤ fZ (x, y) ≤ 1.

•
´ ´

R2 f (x, y) dxdy = 1.

• ∂2F (x,y)
∂x∂y = f (x, y).
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Definition 2.6. Let Z = (X,Y )′ be a discrete bivariate random vector. Function g (x, y) is
defined as a real-valued function, g (X,Y ) : R2 → R. The expectation of g (X,Y ) is

E [g (X,Y )] =

{∑
(x,y)∈R2 g (x, y) f (x, y) if Z is discrete´

R
´
R g (x, y) f (x, y) dxdy if Z is continuous

.

Definition 2.7. Let Z = (X,Y )′ be a discrete bivariate random vector. Denote t = (t1, t2)′.
The moment generating function of Z is defined as

MZ (t) = EZ

(
et

′Z
)

=

{∑
(x,y)∈R2 exp (t1X + t2Y ) f (x, y) if Z is discrete´

R
´
R exp (t1X + t2Y ) f (x, y) dxdy if Z is continuous

.

Proposition 2.8. Let Z = (X,Y )′ be a bivariate random vector. If Z is discrete with joit
pmf fX,Y (x, y). Then the marginal pmf of X, fX (x) = P (X = x) is given by

fX (x) =
∑
y∈R

fX,Y (x, y) ,

and the marginal pmf of Y is defined similarly.
If Z is continuous, the marginal probability density functions of X is definded as

fX (x) =

ˆ
R
f (x, y) dy, −∞ < x <∞.

Exercise 2.9. Define a joint pdf by

f (x, y) =

{
kxy2 x ∈ (0, 1) , y ∈ (0, 1)

0 otherwise
.

Calculate

• k.

• P (X + Y > 1).

• fX (x), P
(

1
2 < X < 3

4

)
.

2.2 Transformation for Multivariate Distributions

The transformation can be extended to multivariate distributions. Let X = (X1, . . . , Xn)be
a random vector with pdf fX (x1, . . . , xn). Let A = {x : fX (x) > 0}. Consider a new ran-
dom vector (U1, . . . , Un), defined by U1 = g1 (X1, . . . , Xn), U2 = g2 (X1, . . . , Xn) . . . Un =
gn (X1, . . . , Xn) . Suppose that A0, A1, . . . , Ak form a partition of A with these properties.
The set A0, which may be empty satisfies P ((X1, . . . , Xn) ∈ A0) = 0. The transforma-
tion (U1, . . . , Un) = (g1 (X) , . . . , gn (X)) is a one-to-one transformation from Ai to B for
each i = 1, 2, . . . , k. Then for each i, the inverse functions from B to Ai can be found.
Denote the ith inverse by x1 = h1i (u1, . . . , un) , . . . , xn = hni (u1, . . . , un). This ith in-
verse gives, for (u1, . . . , un) ∈ B, the unique (x1, . . . , xn) ∈ Ai such that (u1, . . . , un) =
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(g1 (x1, . . . , xn) , . . . , gn (x1, . . . , xn)). Let Ji denote the Jacobian computed from the ith in-
verse. That is,

Ji =

∣∣∣∣∣∣∣∣∣
∂x1
∂u1

∂x1
∂u2

. . . ∂x1
∂un

∂x2
∂u1

∂x2
∂u2

. . . ∂x2
∂un

...
...

. . .
...

∂xn
∂u1

∂xn
∂u2

. . . ∂xn
∂un

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣

∂h1i(u)
∂u1

∂h1i(u)
∂u2

. . . ∂h1i(u)
∂un

∂h2i(u)
∂u1

∂h2i(u)
∂u2

. . . ∂h2i(u)
∂un

...
...

. . .
...

∂hni(u)
∂u1

∂hni(u)
∂u2

. . . ∂hni(u)
∂un

∣∣∣∣∣∣∣∣∣∣
,

the determinant of an n× n matrix. Assuming that these Jacobians do not vanish identically
on B, we have the following representation of the joint pdf, fU (u) for u ∈ B:

fU (u) =
k∑
i=1

fX (h1i (u) , . . . , hni (u)) |Ji| . (2.1)

Example 2.10. Let X = (X1, X2, X3, X4) with fX (x) = 24 exp (−x1 − x2 − x3 − x4),0 <
x1 < x2 < x3 < x4 <∞. Consider the transformation,

U1 = X1, U2 = X2 −X1, U3 = X3 −X2, U4 = X4 −X3.

This transformation maps the set A onto the set B = {u; 0 < ui <∞, i = 1, 2, 3, 4}. The
transformation is one-to-one, so k = 1, and the inverse is

X1 = U1, X2 = U1 + U2, X3 = U1 + U2 + U3, X4 == U1 + U2 + U3 + U4.

The Jacobian of the inverse is

J =

∣∣∣∣∣∣∣∣
1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

∣∣∣∣∣∣∣∣ = 1.

Since the matrix is triangular, the determinant is equal the the product of the diagonal ele-
ments. Thus, by (2.1), we obtain

fU (u) = 24 exp (−4u1 − 3u2 − 2u3 − u4) ,

on B.

2.3 Conditional Distributions and Independence

As we have learned in the previous classes, the conditional probability plays an important
rolein econometrics. And since the original sample space is very difficult to deal with, we
change the sample space to the real line. Based on the multivariate random variables, we
define some useful definitions. We still consider the bivariate case.

Definition 2.11. Let (X,Y ) be a discrete bivariate random vector with joint pmf f (x, y)and
marginal pmfs fX (x) and fY (y). For any x such that P (X = x) = fX (x) > 0, the conditional
pmf of Y given thatX = x is the function of y denoted by f (y|x) = P (Y = y|X = x) = f(x,y)

fX(x) .
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Definition 2.12. Let (X,Y ) be a continuous bivariate random vector with joint pdf f (x, y)
and marginal pdfs fX (x) and fY (y). For any x such that fX (x) > 0, the conditional pdf of
Y given that X = x is the function of y denoted by f (y|x) and defined by

f (y|x) =
f (x, y)

fX (x)
.

Besides, remember that f (y|x) is pdf or pmf and use it in the same way that have previously
used unconditional pdfs or pmfs.

Definition 2.13. If g (Y ) is a funcion of Y , then the conditional expected value of g (Y ) given
that X = x is denoted by E [g (Y ) |x] and is given by

E [g (Y )] =

{∑
y∈R g (y) f (y|x) if Z is discrete´

R g (y) f (y|x) dxdy if Z is continuous
.

Of course, the conditional expected value has all of the properties of the usual expected value.

Theorem 2.14. If X and Y are any two random variables, then

E (X) = E [E (X|Y )] .

It can be interpreted as

E (X) =

ˆ
R
E (X|Y = y) fY (y) dy =

ˆ
R

[ˆ
R
xf (x|y) dx

]
fY (y) dy =

ˆ
R

ˆ
R
xf (x, y) dxdy,

where E (X|Y = y) is a function of y, then we can interpret it by the definition of expected
value.

Theorem 2.15. (Conditional variance identity) For any two random variables X and Y ,

V ar (X) = E (V ar (X|Y )) + V ar (E (X|Y )) ,

provided that the expectation exists.

Proof. By definition,

V ar (X) = E
[
(X − EX)2

]
= E

[
(X − E (X|Y ) + E (X|Y )− EX)2

]
= E

[
(X − E (X|Y ))2

]
+ E

[
(E (X|Y )− EX)2

]
+2E {[X − E (X|Y )] [E (X|Y )− EX]}

= E
[
(X − E (X|Y ))2

]
+ E

[
(E (X|Y )− EX)2

]
= E

{
E
[
(X − E (X|Y ))2 |Y

]}
+ V ar (E (X|Y ))

= E (V ar (X|Y )) + V ar (E (X|Y )) .
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Again, we also have talked about the independence of probability, here is the similar
definition.

Definition 2.16. Let (X,Y ) be a bivriate random vector with joint pdf or pmf f (x, y) and
marginal pdfs or pmfs fX (x) and fY (y). Then X and Y are called independent random
variables if, for every x ∈ R and y ∈ R,

f (x, y) = fX (x) fY (y) .

Theorem 2.17. Let X and Y be independent random variables.

• For any A ⊂ R and B ⊂ R, P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B); that is, events
{X ∈ A} and {Y ∈ B} are independent events.

• Let g (x) be a function only of x and h(y) be a function only of y. Then

E [g (X)h (Y )] = E [g (X)]E [h (Y )] .

Exercise 2.18. Prove Theorem 2.17.

Theorem 2.19. Let X and Y be independent random variables with mgf MX (t) and MY (t).
Then the mgf of the random variable Z = X + Y is given by

MZ (t) = MX (t)MY (t) .

Exercise 2.20. Prove Theorem 2.19.

2.4 Covariance and Correlation

In the univariate case we used mean as a measure of central tendency and the variance as a
measure of spread. In the multivariate case, in the last section, we have discussed the absence
or presence of a relationship between two random variables, independence or nonindependence.
In this section, we define some tools to measure the relationship.

Definition 2.21. The covariane of X and Y is the number defined as

Cov (X,Y ) = E [(X − EX) (Y − EY )] .

Theorem 2.22. For any two random variables X and Y ,

• Cov (X,Y ) = E (XY )− E (X)E (Y ).

• Var(aX ± bY ) = a2V ar (X) + b2V ar (Y )± 2ab (X,Y ).

• Cov (aX, bY ) = abCov (X,Y ).

Definition 2.23. The correlation coeficient of X and Y is the number defined by

ρXY =
Cov (X,Y )

σXσY
,

where σX =
√
V ar (X) and σY =

√
V ar (Y ) .
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Correlation measures the degree of linear association between two variables. While the
magnitude of the covariance between X and Y depends on the variances of X and Y , corre-
lation always satisfies −1 ≤ ρXY ≤ 1.

Theorem 2.24. For any random variable X and Y ,

• −1 ≤ ρXY ≤ 1.

• |ρXY | = 1 if and only if ∃a 6= 0, b such that P (Y = aX + b) = 1.If ρXY = 1,then a > 0,
and if ρXY = −1, then a < 0.

2.5 More about Univariate Distributions

In this section, we will use the tools introduced above to examine some properties of specific
distributions and the relationship between distributions.

Theorem 2.25. Let X1, . . . , Xn be mutually independent random variables with mgfsMX1 (t) , . . . ,MXn (t).
Let Z = X1 +X2 + · · ·+Xn. Then the mgf of Z is

MZ (t) = MX1 (t) · · · · ·MXn (t) .

In particular, if X1, . . . , Xn all have the same distribution with mgf MX (t), then,

MZ (t) = (MX (t))n .

This theorem is an extension of Theorem 2.19.

Proposition 2.26. Suppose X1, . . . , Xn are mutually independent random variables, and Xi ∼
Gamma (αi, β). If Z = X1 + · · ·+Xn, Z ∼ Gamma (

∑n
i=1 αi, β).

Corollary 2.27. Suppose X1, . . . , Xn are mutually independent random variables, and Xi ∼
χ2 (pi). If Z = X1 + · · ·+Xn, Z ∼ χ2 (

∑n
i=1 pi).

For Chi-square distribution, we have,

• If X ∼ N (0, 1), then Y = X2 ∼ χ2 (1) .

• If X ∼ N
(
µ, σ2

)
, then X−µ

σ ∼ χ2 (1).

• If X1, X2, . . . , Xn are mutually independent, Xi ∼ N (0, 1),
∑n

i=1X
2
i ∼ χ2 (n).

Exercise 2.28. Examine the properties of Chi-square distribution.

Definition 2.29. If Z ∼ N (0, 1) and X ∼ χ2 (p), X and Z are independent. Then the ratio

Z√
X/p

∼ t (p) ,

where t (p) is called t distribution with p degree of freedom. The density of t (p) is

f (x|p) =
Γ
(
p+1

2

)
Γ
(p

2

)√
pπ

(
1 +

x2

p

)− p+1
2

,−∞ < x <∞.

Further, we can verify that for t (p), E (X) = 0, p > 1, V ar (X) = p
p−2 , p > 2.
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Definition 2.30. If X1 and X2 are two independent chi-square distribution with degrees of
freedom parameters p1 and p2, then the ratio

X1/p1

X2/P2
∼ F (p1, p2) ,

where F (p1, p2) is called the F distribution with degree p1 and p2. Further, the density of
F (p1, p2) is

f (x|p1, p2) =
Γ
(p1+p2

2

)
Γ
(p1

2

)
Γ
(p2

2

) (p1

p2

) p1
2 x(p1−2)/2(

1 + p1x
p2

) p1+p2
2

.

2.6 Extension to General Case

The extension of the results for bivariate distributions to more than two variables is direct.
Let X = (X1, . . . , Xn)′ be a random vector, then the mean vector is

µ = E (X) =


E (X1)
E (X2)

...
E (Xn)

 .

The covariance matrix is defined as

V ar (X) = E
[
(X − µ) (X − µ)′

]
= E

[
XX ′

]
− µµ′.

Usually we denote it as Σ. That is V ar (X) = Σ. Further, based on the properties of the
expected value operation, let a = (a1, . . . , an)′,

E
(
a′X

)
= a′E (X) = a′µ. (2.2)

V ar
(
a′X

)
= E

[(
a′X − a′µ

)2]
= E

[(
a′X − a′µ

) (
a′X − a′µ

)′]
= a′E

[
(X − µ) (X − µ)′

]
a

= a′V ar (X)a. (2.3)

If we let V ar (X) = (σij), V ar (a′X) =
∑n

i=1

∑n
j=1 aiajσij .

For the case Y = AX, where A is a m × n matrix. Then Yi = a′iX since A =
(a1,a2, . . . ,an)′, from (2.2) and (2.3),

E (Yi) = a′iµ, V ar (Yi) = a′iV ar (X)ai.

Further,

E (Y ) =


E (Y1)
E (Y2)

...
E (Ym)

 =


a′1µ
a′2µ
...

a′mµ

 =


a′1
a′2
...
a′m

µ = Aµ.
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We can also have

Cov
(
a′iX,a′jX

)
= E

[(
a′iX − a′iµ

) (
a′jX − a′jµ

)′]
= a′iE

[
(X − µ) (X − µ)′

]
aj

= a′iV ar (X)aj

= a′iΣaj .

Since a′iΣaj is the ijth element of AΣA′,

V ar (AX) = AΣA′.

2.7 Multivariate Normal Distribution and Chi-square Distribution

Definition 2.31. If X = (X1, . . . , Xn)′ follows a multivariate normal distribution with mean
vector µ and covariance Σ, then the joint density is

f (x|Σ,µ) = (2π)−
n
2 |Σ|−

1
2 exp

{
−1

2
(x− µ)′Σ−1 (x− µ)

}
, x ∈ Rn.

It is denoted as X ∼ N (µ,Σ).

Theorem 2.32. LetX = (X ′1,X
′
2)
′, then correspondingly, µ = (µ′1,µ

′
2)′, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

And then the marginal distributions are

X1 ∼ N (µ1,Σ11) ,

X1 ∼ N (µ2,Σ22) .

The conditional distribution of X1given X2 is normal as well:

X1|x2 ∼ N (µ1.2,Σ11.2) ,

where
µ1.2 = µ1 + Σ12Σ−1

22 (x2 − µ2) ,

Σ11.2 = Σ11 − Σ12Σ−1
22 Σ21.

The result is similar to X2|x1.

Proposition 2.33. If X ∼ N (µ,Σ), then Z = AX + b ∼ N (Aµ+ b,AΣA′).

Proof. Since the mgf of X is

MX (t) = exp

(
t′µ+

1

2
t′Σt

)
,

MZ (t) = E
[
exp

(
t′ (AX + b)

)]
= E

[
exp

(
t′AX + t′b

)]
= exp

(
t′b
)
E
{

exp
[(
A′t
)′
X
]}

= exp
(
t′b
)

exp

(
t′Aµ+

1

2
t′AΣA′t

)
= exp

(
t′ (Aµ+ b) +

1

2
t′AΣA′t

)
,
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thus,
Z ∼ N

(
Aµ+ b,AΣA′

)
.

Corollary 2.34. If X ∼ N (0, I), and C is a square matrix such that C ′C = I, then
C ′X ∼ N (0, I) .

Theorem 2.35. If X ∼ N (0, I), A is a idempotent and symmetric matrix, then X ′AX ∼
χ2 (rank (A)).

Proof. X ′AX = X ′CΛC ′X after the diagnalization. And we know that Y = C ′X ∼
N (0, I). And A is projection, which is symmetric and idempotent, such that there are only
1 or 0 in the diagnal line ofΛ. Thus,

Y ′ΛY =
∑

λiy
2
i ∼ χ2 (rank (A)) .

Corollary 2.36. If X ∼ N (0, In) ,
∑

(xi − x̄) ∼ χ2 (n− 1).

Theorem 2.37. If X ∼ N (0, I), X ′AX and X ′BX are two idempotent quadratic forms
in X, then X ′AX and X ′BX are independent if AB = 0.

Proof. We know that

X ′AX = X ′A′AX = X1X
′
1, X

′BX = X ′B′BX = X2X
′
2.

Then
E
(
X1X

′
2

)
= AE

(
XX ′

)
B′ = AB.

Since AX and BX are also normal distributed random vector. Their zero covariance
matrix implies that they are statistically independent. Thus, if AB = 0, then AX and BX
are independent.

Proposition 2.38. If X ∼ N (0, I),X ′AX andX ′BX are two idempotent quadratic forms
in X, AB = 0,

X ′AX/rank (A)

X ′BX/rank (B)
∼ F (rank (A) , rank (B)) .

Surely some of cases above can be easily extended to general case that X ∼ N (µ,Σ).
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Estimation and Inference

1 Basic Concepts of Random Samples

Often, the data collected in an experiment consist of several observations on a variable of
interest. We usually present a model for data collection that is often used to describe the
situation. In assumptions of many econometric models, we always assume the data satisfies
some similar conditions, for example, in classical regression, the data collected are assumed to
be independent and identical ; in time series, we always construct the data generating process
for the data.

Definition 1.1. The random variables X1, . . . , Xn are called random sample of size n from the
population f (x) if X1, . . . , Xn are mutually independent random variables and the marginal
pdf or pmf of each Xi is the same function f (x) : R→ [0,+∞). Alternatively, X1, . . . , Xn are
called independent and identically distributed(i.i.d) random variables with pdf or pmf f (x).

As we have emphasized, the random variable can help us to transform the original sample
place to the real number system. Here, the random sampling model describes a type of
situation in which the variable of interest has a probability distribution described by f (x).
Since the random variables X1, . . . , Xn are mutually independent, the joint pdf or pmf is

f (x1, . . . , xn) = f (x1) f (x2) . . . f (xn) =
n∏
i=1

f (xi) .

Further, since they are identically distributed, each marginal density function is f (x).
In particular, if the population pdf or pmf is a member of a parametric family, with pdf

or pmf given by f (x|θ), then the joint pdf or pmf is

f (x1, . . . , xn|θ) =

n∏
i=1

f (xi|θ) ,

where the same parameter value θ is used in each term in the product. By considering different
possible values of θ, we can study how a random sample would behave for different populations.

2 Data Reduction

When a sample X1, . . . , Xn is drawn, some summary of the values is usually computed. Any
well-defined summary may be expressed mathematically as a function S (x1, . . . , xn) whose
domain includes the sample space of the random vector (X1, . . . , Xn). Since the random
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sample X1, . . . , Xn has a simple probabilistic structure, the disribution of Y = S (X1, . . . , Xn),
which is also a random variable, is particularly tractable.

Since the distribution of Y is always derived from the distribution of the variables in the
random sample, it is called the sampling distribution of Y .

Definition 2.1. Let X1, . . . , Xn be a random sample of size n from a population and let
S (x1, . . . , xn) : Rn → Rd+∪{0}. Then Y = S (X1, . . . , Xn) is called a statistic. The probability
distribution of a statistic Y is called the sampling distribution of Y .

Remark 2.2. The definition of a statistic is very board, with the only restriction being that a
statistic cannot be a function of a parameter. For example, if Xi ∼ f (x|θ),i = 1, . . . , n, then
S1 = X1 is a statistic but S1 = X1 + θ is not.

Example 2.3. Before attempting to estimate parameters of a population or fit models to
data, we normally examine the data themselves. . Given Xi ∼ F (x) for i = 1, . . . , n, where
F (x) is a probability distribution, we define the following widely used descriptive statistics.

• Sample mean: X̄ = 1
n

∑n
i=1Xi.

• Median: M =middle ranked observation.

• Sample midrange: midrange = Maximum-Minimum
2 .

• Sample variance:S2 = 1
n−1

∑n
i=1

(
Xi − X̄

)2.
• Standard deviation:S is the square root of S2.

Lemma 2.4. Let X1, . . . , Xn be a random sample from a population and let g (x) be a funxtion
such that E [g (x)] and V ar [g (X)] exist. Then

E

(
n∑
i=1

g (Xi)

)
= nE (g (X1)) , (1)

and

V ar

(
n∑
i=1

g (Xi)

)
= nV ar [g (X1)] . (2)

Proof. Note that

E

(
n∑
i=1

g (Xi)

)
=

n∑
i=1

E [g (Xi)] = nE (g (X1)) .

Since the Xis are identically distributed, the second equality is true because E [g (Xi)] is the
same for all i. Note that the independence of X1, . . . , Xn is not needed for (1) to hold. To
prove (2),

V ar

(
n∑
i=1

g (Xi)

)
= E

[
n∑
i=1

g (Xi)− E

(
n∑
i=1

g (Xi)

)]2

= E

[
n∑
i=1

(g (Xi)− E [g (Xi)])
2

]
.
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Then there is n2 terms. For each term that i 6= j,

E {(g (Xi)− E [g (Xi)]) (g (Xj)− E [g (Xj)])} = Cov (g (Xi) , g (Xj)) = 0

due tot he independence. Hence,

V ar

(
n∑
i=1

g (Xi)

)
=

n∑
i=1

E
[
(g (Xi)− E [g (Xi)])

2
]

= nV ar [g (X1)] .

Theorem 2.5. Let X1, . . . , Xn be a random sample from a population with mean µ and vari-
ance σ2 <∞. Then,

• E
[
X̄
]

= µ.

• Var
[
X̄
]

= σ2

n .

• E
[
S2
]

= σ2.

Exercise 2.6. Prove Theorem 2.5.

Remark 2.7. Pay attention to that the expectation and variance are all based on the probability
measure of the random sample X1, . . . , Xn.

Theorem 2.8. Let X1, . . . , Xn be a random sample from a population with mgf MX (t). Then
the mgf of sample mean is

MX̄ (t) =

[
MX

(
t

n

)]n
.

Exercise 2.9. Prove Theorem 2.8.

2.1 The Sufficiency Principle

Usually we want to use the information in a sample X1, . . . , Xn to make inferences about an
unkown parameter θ. If the sample size n is large, then the oberved sample x1, . . . xn is a
long list of numbers that may be hard to interpret. Hence in this way, we also want to use
some statistic to summarizes the information. Remerber, no matter how you summarize the
sample, all the randomness comes from the sample X1, . . . , Xn.

Any statistic, T (X), X = (X1, . . . , Xn)′, defines a form of data reduction or data sum-
mary. An experimenter who uses only the observed value of the statistic, T (X), rather
than the entire observed sample, X, will treat as equal two samples, x and y, that satisfy
T (x) = T (y) even though the actual sample values may be different in some ways.

In this section, we study the sufficiency principle when we are doing data reduction, which
promotes a method of reduction that does not discard information about θ while achieving
some summarization of the data.

Definition 2.10. SUFFICIENCY PRINCIPLE: If T (X) is a sufficient statistic for θ, then
any inference about θ should depend on the sample X only through the value T (X). That is,
if x and y are two sample points such that T (x) = T (y), then the inference about θ should
be the same whether X = x or X = y is observed.

3



Definition 2.11. Let X be a vector containing a random sample of size n. A statistic T (X)
is a sufficient statistic for θif the conditional distribution of the sample X given the value of
T (X) does not depend on θ.

Remark 2.12. When T (X) has a continuous distribution, then Pθ (T (X) = t) = 0 for all
values of t. For this case, a more sophisticated notion of conditional probability is needed. A
discussion of this can be found in Lehmann(1986). In the following, we will use the discrete
case to illustrate the concepts.

As we have emphasized, the randomness comes from X. And Xi ∼ F (x|θ) , i = 1, . . . , n.
Therefore, we use Pθ (·) denote the probability measure ofX condion onθ. If Pθ (T (X) = t) =
Pθ (X : T (X) = t) > 0, conider the probability Pθ (X = x|T (X) = t). By the definition, if
T (X) is a sufficient statistic, this conditional probability is the same for all values of θ so we
have omitted the subscript, that is,

Pθ (X = x|T (X) = t) = P (X = x|T (X) = t) .

The sufficient statistic captures all the information about θ in this sense. Consider the
first case, we only observes X = x and we can compute T (X) = T (x), since we define T (·)
and have the observations x. Then we can use the X = x and T (X) = T (x) to make the
inference of θ.

For the second case, assume T (X) = T (x) is a sufficient statistic and we cannot oberve
X but only know T (X) = T (x), then we know P (X = y|T (X) = T (x)), a probability
distribution on a sample space AT (z) = {y : T (y) = T (x)}, because this can be computed
from the model without knowledge of the true value of θ. Then we can define a new random
variable satisfies P (Y = y|T (X) = T (x)) = P (X = y|T (X) = T (x)). We donot have to
worry about the value of θ. Further, X and Y have the same unconditional distribution.
Since {Y = x} and {X = x} are both subsets of the event {T (X) = T (x)},

Pθ (X = x) = Pθ (X = x and T (X) = T (x))

= P (X = y|T (X) = T (x))Pθ (T (X) = T (x))

= P (Y = y|T (X) = T (x))Pθ (T (X) = T (x))

= Pθ (Y = y) .

Then for both cases, we all have equivalent knowledge about the random sample X. For
the first case, we can observe X = x and the information about θ contained in X = x. For
the second case, we do not have more knowledge about θ than the first case. But we can
still have have equivalent information about random sample X. All the knowledge about θ is
contained in the statistic T (X).
Remark 2.13. We know that if T (X) is a sufficient statistic for θ, fix x and t, for any θ,
Pθ (X = x|T (X) = T (x)) is the same. Further,

Pθ (X = x|T (X) = t) =
Pθ (X = x and T (X) = T (x))

Pθ (T (X) = T (x))

=
Pθ (X = x)

Pθ (T (X) = T (x))

=
f (x|θ)

q (T (x) |θ)
,
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where f (x|θ) is the joint pmf of the sample X and q (t|θ) is the pmf of T (X). Thus, T (X)
is a sufficient statistic for θ is and only if, for every x, the above ratio of pmfs is constant as
a function of θ.

Theorem 2.14. If f (x|θ) is the joint pdf or pmf of X and q (t|θ) is the pdf or pmf of T (X),
then T (X) is a sufficient statistic for θ if, for every x in the sample space, the ratio f(x|θ)

q(T (x)|θ)
is constant as afunction of θ.

Exercise 2.15. Let X1, . . . , Xn be i.i.d. N
(
µ, σ2

)
, where σ2 is known. Show that T (X) = X̄

is the sufficient statistic for µ.

Theorem 2.16. Let f (x|θ) denote the joint pdf or pmf of a sample X. A statistic T (X) is
a sufficient statistic for θ if and only if there exist function g (t|θ) and h (x) such that ,for all
sample points x and all parameter points θ,

f (x|θ) = g (T (x) |θ)h (x) .

Exercise 2.17. Prove Theorem 3.7.

Exercise 2.18. Assume X1, . . . , Xn are i.i.d. N
(
µ, σ2

)
and both µ and σ2 are unknown.

Show that T (X) =
(
X̄, S2

)
is a sufficient statistic for

(
µ, σ2

)
.

3 Point Estimation

Usually we want to use the information in a sample X1, . . . , Xn to make inferences about an
unkown parameter θ. If the sample size n is large, then the oberved sample x1, . . . xn is a
long list of numbers that may be hard to interpret. Hence in this way, we also want to use
some statistic to summarizes the information. Remerber, no matter how you summarize the
sample, all the randomness comes from the sample X1, . . . , Xn.

Any statistic, T (X), X = (X1, . . . , Xn)′, defines a form of data reduction or data sum-
mary. An experimenter who uses only the observed value of the statistic, T (X), rather
than the entire observed sample, X, will treat as equal two samples, x and y, that satisfy
T (x) = T (y) even though the actual sample values may be different in some ways.

Definition 3.1. If X1, . . . , Xn is sampled from density function f (x|θ). Any statistic θ̂ (x)
with the same dimension of θ is a point estimate.

Definition 3.2. An estimator, T (X), is a rule or strategy for using the data to estimate the
parameter, which is defined before the data is drawn.

Remark 3.3. What is the difference between estimators and estimates? The estimator is a
ramdom variable from whose distribution the estimates are sampled; an estimator captures
our uncertainty about the values of our estimates. Properties of an estimator determines how
useful it is. A good point estimator will have most of its mass concentrated around the value
that we’re trying to estimate. This will ensure that the estimator has a high probability of
yielding a value close to the parameter value.

Definition 3.4. Finite sample properties of estimators are those attributes that can be com-
pared regardless of the sample size.

Some estimation problems involve characteristics that are not known in finite samples. In
these instances, estimators are compared on the basis on their large sample, or asymptotic
properties.
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3.1 Methods of Finding Estimatros

3.1.1 Method of Moments

Let X1, . . . Xn be a sample from a population with pdf f (x|θ) ,θ = (θ1, . . . , θk)
′. Method

of moments estimators are found by equating the first k sample moents to the correponding
k population moments, and solving the resulting system of simultaneous equations. More
precisely, define

mj =
1

n

n∑
i=1

Xj
i , µj = Eθ

[
Xj
]
j = 1, . . . k.

Then let mj = µj , j = 1, . . . , k. We have k equations for k unkonwn parameters.

3.1.2 Maximum Likelihood Estimators

Definition 3.5. Let f (x|θ) denote the joint pdf or pmf of the sample X = (X1, . . . , Xn)′.
Then given that X = x is observed, the function of θ defined by

L (θ|x) = f (x|θ)

is called the likelihood function. The log-likelihood function is

` (θ|x) = logL (θ|x) .

Remark 3.6. When X1, . . . Xn are i.i.d., the likelihood can be written as

L (θ|x) =
n∏
i=1

f (xi|θ) , ` (θ|x) =
n∑
i=1

log f (xi|θ) .

If not, sometimes we can use the decomposition, f (x|θ) = f (xn|x1:n−1,θ) f (xn−1|x1:n−2,θ) . . . f (x1|θ),
x1:j = (x1, . . . , xj−1)′, which is widely used in time series analysis, then,

L (θ|x) = f (x1|θ)

n∏
i=2

f (xi|x1:i−1,θ) , ` (θ|x) =

n∑
i=1

log f (xi|x1:i−1θ) + log f (x1|θ) .

Likelihood is used as a measure of the plausibility of parameter values for a given sample
hence it is reasonable to take as a point estimator the value that maximises the likelihood
function.

Definition 3.7. For each sample point x, let θ̂ (x) be a parameter value at which L (θ|x)
attains its maximum as a function of θ, with x held fixed. A maximum likelihood estima-
tor(MLE) of the parameter θ based on a sample X is mθ̂ (X).

Remark 3.8. Intuitivel, the MLE is the parameter point for which the observed sample is
most likely. In general, the MLE is a good point estimator, possessing some of the optimality
properties discussed later.

The way we obtain the MLE is always differentiable the likelihood with respect to θ, that
is

∂

∂θ
` (θ|x) = 0. (3)
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And then check the second derivative. Any way the procedure is a case in optimization
application.

We proceed by defining for τ (θ) the induced likelihood function L∗, given by

L ∗ (η|x) = sup
{θ:τ(θ)=η}

L (θ|x) .

The value η̂ that maximizes L∗ (η|x) will be called the MLE of η = τ (θ), and it can be seen
that the maxima of L∗ and L conincide.

Theorem 3.9. (Invariance property of MLEs) If θ̂ is the MLE of θ, then for any function
τ (θ), the MLE of τ (θ) is τ

(
θ̂
)
.

Proof. Let η̂ denote the value that maximizes L∗ (η|x). We must show that L∗ (η̂|x) =
L∗ [τ (θ) |x]. Then

L∗ (η̂|x) = sup
η

sup
{θ:τ(θ)=η}

L (θ|bx)

= sup
θ
L (θ|x)

= L
(
θ̂|x
)
,

where the second equality follows because the iterated maximization is equal to the uncondi-
tional maximization over θ, which is attained at θ̂. Furthermore,

L
(

ˆθ|x
)

= sup
{θ:τ(θ)=τ(θ̂)}

L (θ|x)

= L∗
[
τ
(
θ̂
)
|x
]
.

Hence, the string of equalities shows that L∗ (η̂|x) = L∗
(
τ
(
θ̂
)
|x
)

and that τ
(
θ̂
)

is the
MLE of τ (θ).

There are many other methods to find estimator for parametric models, such as Markov
Chain Monte Carlo, Expectation maximization and so on.

3.2 Methods of Evaluating Estimators

In order to identify good estimators, we may insist that the center of the distribution of the
estimator is close to the parameter j. The usual measure of central tendency is the mean. If
the mean of an estimator is equal to the parameter, then the estimator is unbiased.

Definition 3.10. An estimator of parameter θ, θ̂, is unbiased if

Biasθ

(
θ̂
)

= Eθ

(
θ̂ − θ

)
= 0,

i.e., Eθ
(
θ̂
)

= θ.

Unbiasesdness is a desirable attribute, but many unbiased estimators are poor uses of data.
A second criterion used to choose among unbiased estimators is efficiency.
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Definition 3.11. An unbiased estimator θ̂1 is more efficient than another unbiased estimator
θ̂2 if

V ar
(
θ̂1

)
− V ar

(
θ̂2

)
is a positive definite matrx.

In discussing efficiency, we have restricted the discussion to unbiased estimators. But
focusing on unbiasedness may still preclude a tolerably biased estimator with a much smaller
variance. A criterion that recognizes this possible tradeoff is the mean-squared error.

Definition 3.12. The mean-square error of an estimator θ̂ is

MSE
(
θ̂|θ
)

= Eθ

[(
θ̂ − θ

)(
θ̂ − θ

)′]
.

Remark 3.13. It is obvious that

Eθ

[(
θ̂ − θ

)(
θ̂ − θ

)′]
= Eθ

[(
θ̂ − Eθ

(
θ̂
)

+ Eθ

(
θ̂
)
− θ

)(
θ̂ − Eθ

(
θ̂
)

+ Eθ

(
θ̂
)
− θ

)′]
= Eθ

[(
θ̂ − Eθ

(
θ̂
))(

θ̂ − Eθ
(
θ̂
))′]

+
(
Eθ

(
θ̂
)
− θ

)(
Eθ

(
θ̂
)
− θ

)′
= V ar

(
θ̂
)

+Biasθ

(
θ̂
)
Biasθ

(
θ̂
)′
.

8


